package containers-data

  1. Overview
  2. Docs

Source file CCMultiSet.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
(* This file is free software, part of containers. See file "license" for more details. *)

(** {1 Multiset} *)

type 'a iter = ('a -> unit) -> unit

let max_int = max
let min_int = min

module type S = sig
  type elt
  type t

  val empty : t
  val is_empty : t -> bool
  val mem : t -> elt -> bool
  val count : t -> elt -> int
  val singleton : elt -> t
  val add : t -> elt -> t
  val remove : t -> elt -> t

  val add_mult : t -> elt -> int -> t
  (** [add_mult set x n] adds [n] occurrences of [x] to [set]
      @raise Invalid_argument if [n < 0]
      @since 0.6 *)

  val remove_mult : t -> elt -> int -> t
  (** [remove_mult set x n] removes at most [n] occurrences of [x] from [set]
      @raise Invalid_argument if [n < 0]
      @since 0.6 *)

  val remove_all : t -> elt -> t
  (** [remove_all set x] removes all occurrences of [x] from [set]
      @since 0.22 *)

  val update : t -> elt -> (int -> int) -> t
  (** [update set x f] calls [f n] where [n] is the current multiplicity
      of [x] in [set] ([0] to indicate its absence); the result of [f n]
      is the new multiplicity of [x].
      @raise Invalid_argument if [f n < 0]
      @since 0.6 *)

  val min : t -> elt
  (** Minimal element w.r.t the total ordering on elements *)

  val max : t -> elt
  (** Maximal element w.r.t the total ordering on elements *)

  val union : t -> t -> t
  (** [union a b] contains as many occurrences of an element [x]
      as [count a x + count b x]. *)

  val meet : t -> t -> t
  (** [meet a b] is a multiset such that
      [count (meet a b) x = max (count a x) (count b x)] *)

  val intersection : t -> t -> t
  (** [intersection a b] is a multiset such that
      [count (intersection a b) x = min (count a x) (count b x)] *)

  val diff : t -> t -> t
  (** MultiSet difference.
      [count (diff a b) x = max (count a x - count b x) 0] *)

  val contains : t -> t -> bool
  (** [contains a x = (count m x > 0)] *)

  val compare : t -> t -> int
  val equal : t -> t -> bool

  val cardinal : t -> int
  (** Number of distinct elements *)

  val iter : t -> (int -> elt -> unit) -> unit
  val fold : t -> 'b -> ('b -> int -> elt -> 'b) -> 'b
  val of_list : elt list -> t
  val to_list : t -> elt list
  val to_iter : t -> elt iter
  val of_iter : elt iter -> t

  val of_list_mult : (elt * int) list -> t
  (** @since 0.19 *)

  val to_list_mult : t -> (elt * int) list
  (** @since 0.19 *)

  val to_iter_mult : t -> (elt * int) iter
  (** @since 0.19 *)

  val of_iter_mult : (elt * int) iter -> t
  (** @since 0.19 *)
end

module Make (O : Set.OrderedType) = struct
  module M = Map.Make (O)

  type t = int M.t
  type elt = O.t

  let empty = M.empty
  let is_empty = M.is_empty
  let mem ms x = M.mem x ms
  let count ms x = try M.find x ms with Not_found -> 0
  let singleton x = M.singleton x 1

  let add ms x =
    let n = count ms x in
    M.add x (n + 1) ms

  let add_mult ms x n =
    if n < 0 then invalid_arg "CCMultiSet.add_mult";
    if n = 0 then
      ms
    else
      M.add x (count ms x + n) ms

  let remove_mult ms x n =
    if n < 0 then invalid_arg "CCMultiSet.remove_mult";
    let cur_n = count ms x in
    let new_n = cur_n - n in
    if new_n <= 0 then
      M.remove x ms
    else
      M.add x new_n ms

  let remove ms x = remove_mult ms x 1
  let remove_all ms x = M.remove x ms

  let update ms x f =
    let n = count ms x in
    match f n with
    | 0 ->
      if n = 0 then
        ms
      else
        M.remove x ms
    | n' ->
      if n' < 0 then
        invalid_arg "CCMultiSet.update"
      else
        M.add x n' ms

  let min ms = fst (M.min_binding ms)
  let max ms = fst (M.max_binding ms)

  let union m1 m2 =
    M.merge
      (fun _x n1 n2 ->
        match n1, n2 with
        | None, None -> assert false
        | Some n, None | None, Some n -> Some n
        | Some n1, Some n2 -> Some (n1 + n2))
      m1 m2

  let meet m1 m2 =
    M.merge
      (fun _ n1 n2 ->
        match n1, n2 with
        | None, None -> assert false
        | Some n, None | None, Some n -> Some n
        | Some n1, Some n2 -> Some (max_int n1 n2))
      m1 m2

  let intersection m1 m2 =
    M.merge
      (fun _x n1 n2 ->
        match n1, n2 with
        | None, None -> assert false
        | Some _, None | None, Some _ -> None
        | Some n1, Some n2 -> Some (min_int n1 n2))
      m1 m2

  let diff m1 m2 =
    M.merge
      (fun _x n1 n2 ->
        match n1, n2 with
        | None, None -> assert false
        | Some n1, None -> Some n1
        | None, Some _n2 -> None
        | Some n1, Some n2 ->
          if n1 > n2 then
            Some (n1 - n2)
          else
            None)
      m1 m2

  let contains m1 m2 =
    try M.for_all (fun x c -> M.find x m1 >= c) m2 with Not_found -> false

  let compare m1 m2 = M.compare (fun x y -> x - y) m1 m2
  let equal m1 m2 = M.equal (fun x y -> x = y) m1 m2
  let cardinal m = M.cardinal m
  let iter m f = M.iter (fun x n -> f n x) m
  let fold m acc f = M.fold (fun x n acc -> f acc n x) m acc

  let of_list l =
    let rec build acc l =
      match l with
      | [] -> acc
      | x :: l' -> build (add acc x) l'
    in
    build empty l

  let to_list m =
    (* [n_cons n x l] is the result of applying [fun l -> x :: l]  [n] times
        to [l] *)
    let rec n_cons n x l =
      match n with
      | 0 -> l
      | 1 -> x :: l
      | _ -> n_cons (n - 1) x (x :: l)
    in
    fold m [] (fun acc n x -> n_cons n x acc)

  let to_iter m k =
    M.iter
      (fun x n ->
        for _i = 1 to n do
          k x
        done)
      m

  let of_iter seq =
    let m = ref empty in
    seq (fun x -> m := add !m x);
    !m

  let of_list_mult l = List.fold_left (fun s (x, i) -> add_mult s x i) empty l
  let to_list_mult m = fold m [] (fun acc n x -> (x, n) :: acc)
  let to_iter_mult m k = M.iter (fun x n -> k (x, n)) m

  let of_iter_mult seq =
    let m = ref empty in
    seq (fun (x, n) -> m := add_mult !m x n);
    !m
end
OCaml

Innovation. Community. Security.