package containers-data

  1. Overview
  2. Docs

Source file CCFun_vec.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
(* This file is free software, part of containers. See file "license" for more details. *)

(** {1 Hash Tries} *)

type 'a iter = ('a -> unit) -> unit
type 'a gen = unit -> 'a option
type 'a printer = Format.formatter -> 'a -> unit
type 'a ktree = unit -> [ `Nil | `Node of 'a * 'a ktree list ]

(* TODO
   (** {2 Transient IDs} *)
   module Transient = struct
   type state = { mutable frozen: bool }
   type t = Nil | St of state
   let empty = Nil
   let equal a b = Stdlib.(==) a b
   let create () = St {frozen=false}
   let active = function Nil -> false | St st -> not st.frozen
   let frozen = function Nil -> true | St st -> st.frozen
   let freeze = function Nil -> () | St st -> st.frozen <- true
   let with_ f =
    let r = create() in
    try
      let x = f r in
      freeze r;
      x
    with e ->
      freeze r;
      raise e
   exception Frozen
   end
*)

(* function array *)
module A = struct
  type 'a t = 'a array

  let length_log = 5
  let max_length = 32
  let mask = max_length - 1
  let () = assert (max_length = 1 lsl length_log)
  let length = Array.length
  let iteri = Array.iteri
  let iter = Array.iter
  let map = Array.map

  let iteri_rev f a =
    for i = length a - 1 downto 0 do
      f i a.(i)
    done

  let empty = [||]
  let is_empty a = length a = 0
  let return x = [| x |]

  let get a i =
    if i < 0 || i >= length a then invalid_arg "A.get";
    Array.unsafe_get a i

  (* push at the back *)
  let push x a =
    let n = length a in
    if n = max_length then invalid_arg "A.push";
    let arr = Array.make (n + 1) x in
    Array.blit a 0 arr 0 n;
    arr

  let pop a =
    let n = length a in
    if n = 0 then invalid_arg "A.pop";
    Array.sub a 0 (n - 1)

  let set ~mut a i x =
    if i < 0 || i > length a || i >= max_length then invalid_arg "A.set";
    if i = length a then (
      (* insert in a longer copy *)
      let arr = Array.make (i + 1) x in
      Array.blit a 0 arr 0 i;
      arr
    ) else if mut then (
      (* replace element at [i] in place *)
      a.(i) <- x;
      a
    ) else (
      (* replace element at [i] in copy *)
      let arr = Array.copy a in
      arr.(i) <- x;
      arr
    )
end

(** {2 Functors} *)

type 'a t = {
  size: int;
  leaves: 'a A.t;
  subs: 'a t A.t;
}
(* invariant:
   - [A.length leaves < A.max_length ==> A.is_empty subs]
   - either:
    * [exists n. forall i. subs[i].size = n] (all subtrees of same size)
    * [exists n i.
        (forall j<i. sub[j].size=32^{n+1}-1) &
        (forall j>=i, sub[j].size<32^{n+1}-1)]
    (prefix of subs has size of complete binary tree; suffix has
     smaller size (actually decreasing))
*)

let empty = { size = 0; leaves = A.empty; subs = A.empty }
let is_empty { size; _ } = size = 0
let length { size; _ } = size
let return x = { leaves = A.return x; subs = A.empty; size = 1 }

type idx_l =
  | I_one of int
  | I_cons of int * idx_l

(* split an index into a low and high parts *)
let low_idx_ i = i land A.mask
let high_idx_ i = i lsr A.length_log
let combine_idx i j = (i lsl A.length_log) lor j

(* split an index into a high part, < 32, and a low part *)
let split_idx i : idx_l =
  let rec aux high low =
    if high = 0 then
      low
    else if high < A.max_length then
      I_cons (high - 1, low)
    else
      aux (high_idx_ high) (I_cons (low_idx_ high, low))
  in
  aux (high_idx_ i) (I_one (low_idx_ i))

let get_ (i : int) (m : 'a t) : 'a =
  let rec aux l m =
    match l with
    | I_one x ->
      assert (x < A.length m.leaves);
      A.get m.leaves x
    | I_cons (x, tl) -> aux tl (A.get m.subs x)
  in
  aux (split_idx i) m

let get_exn i v =
  if i >= 0 && i < length v then
    get_ i v
  else
    raise Not_found

let get i v =
  if i >= 0 && i < length v then
    Some (get_ i v)
  else
    None

let push_ (i : int) (x : 'a) (m : 'a t) : 'a t =
  let rec aux l m =
    match l with
    | I_one i ->
      assert (i = A.length m.leaves);
      assert (A.length m.leaves < A.max_length);
      assert (A.is_empty m.subs);
      { m with size = m.size + 1; leaves = A.push x m.leaves }
    | I_cons (i, tl) -> aux_replace_sub tl m i
  and aux_replace_sub l m x =
    assert (x <= A.length m.subs);
    (* insert in subtree, possibly a new one *)
    let sub_m =
      if x < A.length m.subs then
        A.get m.subs x
      else
        empty
    in
    let sub_m = aux l sub_m in
    { m with size = m.size + 1; subs = A.set ~mut:false m.subs x sub_m }
  in
  aux (split_idx i) m

let push x (v : _ t) : _ t = push_ v.size x v

let pop_ i (m : 'a t) : 'a * 'a t =
  let rec aux l m =
    match l with
    | I_one x ->
      assert (x + 1 = A.length m.leaves);
      (* last one *)
      let x = A.get m.leaves x in
      x, { m with size = m.size - 1; leaves = A.pop m.leaves }
    | I_cons (x, tl) -> aux_remove_sub tl m x
  and aux_remove_sub l m x =
    let sub = A.get m.subs x in
    let y, sub' = aux l sub in
    if is_empty sub' then (
      assert (x + 1 = A.length m.subs);
      (* last one *)
      y, { m with size = m.size - 1; subs = A.pop m.subs }
    ) else
      y, { m with size = m.size - 1; subs = A.set ~mut:false m.subs x sub' }
  in
  aux (split_idx i) m

let pop_exn (v : 'a t) : 'a * 'a t =
  if v.size = 0 then invalid_arg "Fun_vec.pop_exn";
  pop_ (v.size - 1) v

let pop (v : 'a t) : ('a * 'a t) option =
  if v.size = 0 then
    None
  else
    Some (pop_ (v.size - 1) v)

let iteri ~f (m : 'a t) : unit =
  (* basically, a 32-way BFS traversal.
     The queue contains subtrees to explore, along with their high_idx_ offsets *)
  let q : (int * 'a t) Queue.t = Queue.create () in
  Queue.push (0, m) q;
  while not (Queue.is_empty q) do
    let high, m = Queue.pop q in
    A.iteri (fun i x -> f (combine_idx high i) x) m.leaves;
    A.iteri (fun i sub -> Queue.push (combine_idx i high, sub) q) m.subs
  done

let iteri_rev ~f (m : 'a t) : unit =
  (* like {!iteri} but last element comes first *)
  let rec aux high m =
    A.iteri_rev (fun i sub -> aux (combine_idx i high) sub) m.subs;
    (* only now, explore current leaves *)
    A.iteri_rev (fun i x -> f (combine_idx high i) x) m.leaves
  in
  aux 0 m

let foldi ~f ~x m =
  let acc = ref x in
  iteri m ~f:(fun i x -> acc := f !acc i x);
  !acc

let foldi_rev ~f ~x m =
  let acc = ref x in
  iteri_rev m ~f:(fun i x -> acc := f !acc i x);
  !acc

let iter ~f m = iteri ~f:(fun _ x -> f x) m
let fold ~f ~x m = foldi ~f:(fun acc _ x -> f acc x) ~x m
let fold_rev ~f ~x m = foldi_rev ~f:(fun acc _ x -> f acc x) ~x m

let rec map f m : _ t =
  { subs = A.map (map f) m.subs; leaves = A.map f m.leaves; size = m.size }

let append a b =
  if is_empty b then
    a
  else
    fold ~f:(fun v x -> push x v) ~x:a b

let add_list v l = List.fold_left (fun v x -> push x v) v l
let of_list l = add_list empty l
let to_list m = fold_rev m ~f:(fun acc x -> x :: acc) ~x:[]

let add_iter v seq =
  let v = ref v in
  seq (fun x -> v := push x !v);
  !v

let of_iter s = add_iter empty s
let to_iter m yield = iteri ~f:(fun _ v -> yield v) m

let rec add_gen m g =
  match g () with
  | None -> m
  | Some x -> add_gen (push x m) g

let of_gen g = add_gen empty g

(* traverse the tree by increasing hash order, where the order compares
   hashes lexicographically by A.length_log-wide chunks of bits,
   least-significant chunks first *)
let to_gen m =
  let q_cur : 'a Queue.t = Queue.create () in
  let q_sub : 'a t Queue.t = Queue.create () in
  Queue.push m q_sub;
  let rec next () =
    if not (Queue.is_empty q_cur) then
      Some (Queue.pop q_cur)
    else if not (Queue.is_empty q_sub) then (
      let m = Queue.pop q_sub in
      A.iter (fun x -> Queue.push x q_cur) m.leaves;
      A.iter (fun sub -> Queue.push sub q_sub) m.subs;
      next ()
    ) else
      None
  in
  next

let choose m = to_gen m ()

let pp ppv out m =
  let first = ref true in
  iter m ~f:(fun v ->
      if !first then
        first := false
      else
        Format.fprintf out ";@ ";
      ppv out v)
OCaml

Innovation. Community. Security.