package catala

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file interpreter.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
(* This file is part of the Catala compiler, a specification language for tax
   and social benefits computation rules. Copyright (C) 2020 Inria, contributor:
   Denis Merigoux <denis.merigoux@inria.fr>, Emile Rolley
   <emile.rolley@tuta.io>, Alain Delaët <alain.delaet--tixeuil@inria.Fr>, Louis
   Gesbert <louis.gesbert@inria.fr>

   Licensed under the Apache License, Version 2.0 (the "License"); you may not
   use this file except in compliance with the License. You may obtain a copy of
   the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
   WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
   License for the specific language governing permissions and limitations under
   the License. *)

(** Reference interpreter for the default calculus *)

open Catala_utils
open Definitions
open Op
module Runtime = Runtime_ocaml.Runtime

(** {1 Helpers} *)

let is_empty_error : type a. (a, 'm) gexpr -> bool =
 fun e -> match Mark.remove e with EEmpty -> true | _ -> false

(* TODO: we should provide a generic way to print logs, that work across the
   different backends: python, ocaml, javascript, and interpreter *)

let indent_str = ref ""

(** {1 Evaluation} *)
let print_log lang entry infos pos e =
  if Global.options.trace then
    match entry with
    | VarDef _ ->
      Message.log "%s%a %a: @{<green>%s@}" !indent_str Print.log_entry entry
        Print.uid_list infos
        (Message.unformat (fun ppf ->
             (if Global.options.debug then Print.expr ~debug:true ()
              else Print.UserFacing.expr lang)
               ppf e))
    | PosRecordIfTrueBool -> (
      match pos <> Pos.no_pos, Mark.remove e with
      | true, ELit (LBool true) ->
        Message.log "%s@[<v>%a@{<green>Definition applied@}:@,%a@]" !indent_str
          Print.log_entry entry Pos.format_loc_text pos
      | _ -> ())
    | BeginCall ->
      Message.log "%s%a %a" !indent_str Print.log_entry entry Print.uid_list
        infos;
      indent_str := !indent_str ^ "  "
    | EndCall ->
      indent_str := String.sub !indent_str 0 (String.length !indent_str - 2);
      Message.log "%s%a %a" !indent_str Print.log_entry entry Print.uid_list
        infos

(* Todo: this should be handled early when resolving overloads. Here we have
   proper structural equality, but the OCaml backend for example uses the
   builtin equality function instead of this. *)
let handle_eq pos evaluate_operator m lang e1 e2 =
  let eq_eval = evaluate_operator (Eq, pos) m lang in
  let open Runtime.Oper in
  match e1, e2 with
  | ELit LUnit, ELit LUnit -> true
  | ELit (LBool b1), ELit (LBool b2) -> not (o_xor b1 b2)
  | ELit (LInt x1), ELit (LInt x2) -> o_eq_int_int x1 x2
  | ELit (LRat x1), ELit (LRat x2) -> o_eq_rat_rat x1 x2
  | ELit (LMoney x1), ELit (LMoney x2) -> o_eq_mon_mon x1 x2
  | ELit (LDuration x1), ELit (LDuration x2) ->
    o_eq_dur_dur (Expr.pos_to_runtime (Expr.mark_pos m)) x1 x2
  | ELit (LDate x1), ELit (LDate x2) -> o_eq_dat_dat x1 x2
  | EArray es1, EArray es2 -> (
    try
      List.for_all2
        (fun e1 e2 ->
          match Mark.remove (eq_eval [e1; e2]) with
          | ELit (LBool b) -> b
          | _ -> assert false
          (* should not happen *))
        es1 es2
    with Invalid_argument _ -> false)
  | EStruct { fields = es1; name = s1 }, EStruct { fields = es2; name = s2 } ->
    StructName.equal s1 s2
    && StructField.Map.equal
         (fun e1 e2 ->
           match Mark.remove (eq_eval [e1; e2]) with
           | ELit (LBool b) -> b
           | _ -> assert false
           (* should not happen *))
         es1 es2
  | ( EInj { e = e1; cons = i1; name = en1 },
      EInj { e = e2; cons = i2; name = en2 } ) -> (
    try
      EnumName.equal en1 en2
      && EnumConstructor.equal i1 i2
      &&
      match Mark.remove (eq_eval [e1; e2]) with
      | ELit (LBool b) -> b
      | _ -> assert false
      (* should not happen *)
    with Invalid_argument _ -> false)
  | _, _ -> false (* comparing anything else return false *)

(* Call-by-value: the arguments are expected to be already evaluated here *)
let rec evaluate_operator
    evaluate_expr
    ((op, opos) : < overloaded : no ; .. > operator Mark.pos)
    m
    lang
    args =
  let pos = Expr.mark_pos m in
  let rpos () = Expr.pos_to_runtime opos in
  let div_pos () =
    (* Division by 0 errors point to their 2nd operand *)
    Expr.pos_to_runtime
    @@ match args with _ :: denom :: _ -> Expr.pos denom | _ -> opos
  in
  let err () =
    Message.error
      ~extra_pos:
        ([
           ( Format.asprintf "Operator (value %a):"
               (Print.operator ~debug:true)
               op,
             opos );
         ]
        @ List.mapi
            (fun i arg ->
              ( Format.asprintf "Argument n°%d, value %a" (i + 1)
                  (Print.UserFacing.expr lang)
                  arg,
                Expr.pos arg ))
            args)
      "Operator %a applied to the wrong@ arguments@ (should not happen if the \
       term was well-typed)"
      (Print.operator ~debug:true)
      op
  in
  let open Runtime.Oper in
  Mark.add m
  @@
  match op, args with
  | Length, [(EArray es, _)] ->
    ELit (LInt (Runtime.integer_of_int (List.length es)))
  | Log (entry, infos), [e'] ->
    print_log lang entry infos pos e';
    Mark.remove e'
  | (FromClosureEnv | ToClosureEnv), [e'] ->
    (* [FromClosureEnv] and [ToClosureEnv] are just there to bypass the need for
       existential types when typing code after closure conversion. There are
       effectively no-ops. *)
    Mark.remove e'
  | (ToClosureEnv | FromClosureEnv), _ -> err ()
  | Eq, [(e1, _); (e2, _)] ->
    ELit (LBool (handle_eq opos (evaluate_operator evaluate_expr) m lang e1 e2))
  | Map, [f; (EArray es, _)] ->
    EArray
      (List.map
         (fun e' ->
           evaluate_expr
             (Mark.copy e'
                (EApp { f; args = [e']; tys = [Expr.maybe_ty (Mark.get e')] })))
         es)
  | Map2, [f; (EArray es1, _); (EArray es2, _)] ->
    EArray
      (List.map2
         (fun e1 e2 ->
           evaluate_expr
             (Mark.add m
                (EApp
                   {
                     f;
                     args = [e1; e2];
                     tys =
                       [
                         Expr.maybe_ty (Mark.get e1); Expr.maybe_ty (Mark.get e2);
                       ];
                   })))
         es1 es2)
  | Reduce, [_; default; (EArray [], _)] -> Mark.remove default
  | Reduce, [f; _; (EArray (x0 :: xn), _)] ->
    Mark.remove
      (List.fold_left
         (fun acc x ->
           evaluate_expr
             (Mark.copy f
                (EApp
                   {
                     f;
                     args = [acc; x];
                     tys =
                       [
                         Expr.maybe_ty (Mark.get acc); Expr.maybe_ty (Mark.get x);
                       ];
                   })))
         x0 xn)
  | Concat, [(EArray es1, _); (EArray es2, _)] -> EArray (es1 @ es2)
  | Filter, [f; (EArray es, _)] ->
    EArray
      (List.filter
         (fun e' ->
           match
             evaluate_expr
               (Mark.copy e'
                  (EApp { f; args = [e']; tys = [Expr.maybe_ty (Mark.get e')] }))
           with
           | ELit (LBool b), _ -> b
           | _ ->
             Message.error
               ~pos:(Expr.pos (List.nth args 0))
               "%a" Format.pp_print_text
               "This predicate evaluated to something else than a boolean \
                (should not happen if the term was well-typed)")
         es)
  | Fold, [f; init; (EArray es, _)] ->
    Mark.remove
      (List.fold_left
         (fun acc e' ->
           evaluate_expr
             (Mark.copy e'
                (EApp
                   {
                     f;
                     args = [acc; e'];
                     tys =
                       [
                         Expr.maybe_ty (Mark.get acc);
                         Expr.maybe_ty (Mark.get e');
                       ];
                   })))
         init es)
  | (Length | Log _ | Eq | Map | Map2 | Concat | Filter | Fold | Reduce), _ ->
    err ()
  | Not, [(ELit (LBool b), _)] -> ELit (LBool (o_not b))
  | GetDay, [(ELit (LDate d), _)] -> ELit (LInt (o_getDay d))
  | GetMonth, [(ELit (LDate d), _)] -> ELit (LInt (o_getMonth d))
  | GetYear, [(ELit (LDate d), _)] -> ELit (LInt (o_getYear d))
  | FirstDayOfMonth, [(ELit (LDate d), _)] -> ELit (LDate (o_firstDayOfMonth d))
  | LastDayOfMonth, [(ELit (LDate d), _)] -> ELit (LDate (o_lastDayOfMonth d))
  | And, [(ELit (LBool b1), _); (ELit (LBool b2), _)] ->
    ELit (LBool (o_and b1 b2))
  | Or, [(ELit (LBool b1), _); (ELit (LBool b2), _)] ->
    ELit (LBool (o_or b1 b2))
  | Xor, [(ELit (LBool b1), _); (ELit (LBool b2), _)] ->
    ELit (LBool (o_xor b1 b2))
  | ( ( Not | GetDay | GetMonth | GetYear | FirstDayOfMonth | LastDayOfMonth
      | And | Or | Xor ),
      _ ) ->
    err ()
  | Minus_int, [(ELit (LInt x), _)] -> ELit (LInt (o_minus_int x))
  | Minus_rat, [(ELit (LRat x), _)] -> ELit (LRat (o_minus_rat x))
  | Minus_mon, [(ELit (LMoney x), _)] -> ELit (LMoney (o_minus_mon x))
  | Minus_dur, [(ELit (LDuration x), _)] -> ELit (LDuration (o_minus_dur x))
  | ToRat_int, [(ELit (LInt i), _)] -> ELit (LRat (o_torat_int i))
  | ToRat_mon, [(ELit (LMoney i), _)] -> ELit (LRat (o_torat_mon i))
  | ToMoney_rat, [(ELit (LRat i), _)] -> ELit (LMoney (o_tomoney_rat i))
  | Round_mon, [(ELit (LMoney m), _)] -> ELit (LMoney (o_round_mon m))
  | Round_rat, [(ELit (LRat m), _)] -> ELit (LRat (o_round_rat m))
  | Add_int_int, [(ELit (LInt x), _); (ELit (LInt y), _)] ->
    ELit (LInt (o_add_int_int x y))
  | Add_rat_rat, [(ELit (LRat x), _); (ELit (LRat y), _)] ->
    ELit (LRat (o_add_rat_rat x y))
  | Add_mon_mon, [(ELit (LMoney x), _); (ELit (LMoney y), _)] ->
    ELit (LMoney (o_add_mon_mon x y))
  | Add_dat_dur r, [(ELit (LDate x), _); (ELit (LDuration y), _)] ->
    ELit (LDate (o_add_dat_dur r x y))
  | Add_dur_dur, [(ELit (LDuration x), _); (ELit (LDuration y), _)] ->
    ELit (LDuration (o_add_dur_dur x y))
  | Sub_int_int, [(ELit (LInt x), _); (ELit (LInt y), _)] ->
    ELit (LInt (o_sub_int_int x y))
  | Sub_rat_rat, [(ELit (LRat x), _); (ELit (LRat y), _)] ->
    ELit (LRat (o_sub_rat_rat x y))
  | Sub_mon_mon, [(ELit (LMoney x), _); (ELit (LMoney y), _)] ->
    ELit (LMoney (o_sub_mon_mon x y))
  | Sub_dat_dat, [(ELit (LDate x), _); (ELit (LDate y), _)] ->
    ELit (LDuration (o_sub_dat_dat x y))
  | Sub_dat_dur, [(ELit (LDate x), _); (ELit (LDuration y), _)] ->
    ELit (LDate (o_sub_dat_dur x y))
  | Sub_dur_dur, [(ELit (LDuration x), _); (ELit (LDuration y), _)] ->
    ELit (LDuration (o_sub_dur_dur x y))
  | Mult_int_int, [(ELit (LInt x), _); (ELit (LInt y), _)] ->
    ELit (LInt (o_mult_int_int x y))
  | Mult_rat_rat, [(ELit (LRat x), _); (ELit (LRat y), _)] ->
    ELit (LRat (o_mult_rat_rat x y))
  | Mult_mon_rat, [(ELit (LMoney x), _); (ELit (LRat y), _)] ->
    ELit (LMoney (o_mult_mon_rat x y))
  | Mult_dur_int, [(ELit (LDuration x), _); (ELit (LInt y), _)] ->
    ELit (LDuration (o_mult_dur_int x y))
  | Div_int_int, [(ELit (LInt x), _); (ELit (LInt y), _)] ->
    ELit (LRat (o_div_int_int (div_pos ()) x y))
  | Div_rat_rat, [(ELit (LRat x), _); (ELit (LRat y), _)] ->
    ELit (LRat (o_div_rat_rat (div_pos ()) x y))
  | Div_mon_mon, [(ELit (LMoney x), _); (ELit (LMoney y), _)] ->
    ELit (LRat (o_div_mon_mon (div_pos ()) x y))
  | Div_mon_rat, [(ELit (LMoney x), _); (ELit (LRat y), _)] ->
    ELit (LMoney (o_div_mon_rat (div_pos ()) x y))
  | Div_dur_dur, [(ELit (LDuration x), _); (ELit (LDuration y), _)] ->
    ELit (LRat (o_div_dur_dur (div_pos ()) x y))
  | Lt_int_int, [(ELit (LInt x), _); (ELit (LInt y), _)] ->
    ELit (LBool (o_lt_int_int x y))
  | Lt_rat_rat, [(ELit (LRat x), _); (ELit (LRat y), _)] ->
    ELit (LBool (o_lt_rat_rat x y))
  | Lt_mon_mon, [(ELit (LMoney x), _); (ELit (LMoney y), _)] ->
    ELit (LBool (o_lt_mon_mon x y))
  | Lt_dat_dat, [(ELit (LDate x), _); (ELit (LDate y), _)] ->
    ELit (LBool (o_lt_dat_dat x y))
  | Lt_dur_dur, [(ELit (LDuration x), _); (ELit (LDuration y), _)] ->
    ELit (LBool (o_lt_dur_dur (rpos ()) x y))
  | Lte_int_int, [(ELit (LInt x), _); (ELit (LInt y), _)] ->
    ELit (LBool (o_lte_int_int x y))
  | Lte_rat_rat, [(ELit (LRat x), _); (ELit (LRat y), _)] ->
    ELit (LBool (o_lte_rat_rat x y))
  | Lte_mon_mon, [(ELit (LMoney x), _); (ELit (LMoney y), _)] ->
    ELit (LBool (o_lte_mon_mon x y))
  | Lte_dat_dat, [(ELit (LDate x), _); (ELit (LDate y), _)] ->
    ELit (LBool (o_lte_dat_dat x y))
  | Lte_dur_dur, [(ELit (LDuration x), _); (ELit (LDuration y), _)] ->
    ELit (LBool (o_lte_dur_dur (rpos ()) x y))
  | Gt_int_int, [(ELit (LInt x), _); (ELit (LInt y), _)] ->
    ELit (LBool (o_gt_int_int x y))
  | Gt_rat_rat, [(ELit (LRat x), _); (ELit (LRat y), _)] ->
    ELit (LBool (o_gt_rat_rat x y))
  | Gt_mon_mon, [(ELit (LMoney x), _); (ELit (LMoney y), _)] ->
    ELit (LBool (o_gt_mon_mon x y))
  | Gt_dat_dat, [(ELit (LDate x), _); (ELit (LDate y), _)] ->
    ELit (LBool (o_gt_dat_dat x y))
  | Gt_dur_dur, [(ELit (LDuration x), _); (ELit (LDuration y), _)] ->
    ELit (LBool (o_gt_dur_dur (rpos ()) x y))
  | Gte_int_int, [(ELit (LInt x), _); (ELit (LInt y), _)] ->
    ELit (LBool (o_gte_int_int x y))
  | Gte_rat_rat, [(ELit (LRat x), _); (ELit (LRat y), _)] ->
    ELit (LBool (o_gte_rat_rat x y))
  | Gte_mon_mon, [(ELit (LMoney x), _); (ELit (LMoney y), _)] ->
    ELit (LBool (o_gte_mon_mon x y))
  | Gte_dat_dat, [(ELit (LDate x), _); (ELit (LDate y), _)] ->
    ELit (LBool (o_gte_dat_dat x y))
  | Gte_dur_dur, [(ELit (LDuration x), _); (ELit (LDuration y), _)] ->
    ELit (LBool (o_gte_dur_dur (rpos ()) x y))
  | Eq_int_int, [(ELit (LInt x), _); (ELit (LInt y), _)] ->
    ELit (LBool (o_eq_int_int x y))
  | Eq_rat_rat, [(ELit (LRat x), _); (ELit (LRat y), _)] ->
    ELit (LBool (o_eq_rat_rat x y))
  | Eq_mon_mon, [(ELit (LMoney x), _); (ELit (LMoney y), _)] ->
    ELit (LBool (o_eq_mon_mon x y))
  | Eq_dat_dat, [(ELit (LDate x), _); (ELit (LDate y), _)] ->
    ELit (LBool (o_eq_dat_dat x y))
  | Eq_dur_dur, [(ELit (LDuration x), _); (ELit (LDuration y), _)] ->
    ELit (LBool (o_eq_dur_dur (rpos ()) x y))
  | HandleDefault, [(EArray excepts, _); just; cons] -> (
    (* This case is for lcalc with exceptions: we rely OCaml exception handling
       here *)
    match
      List.filter_map
        (fun e ->
          try Some (evaluate_expr (Expr.unthunk_term_nobox e))
          with Runtime.Empty -> None)
        excepts
    with
    | [] -> (
      let just = evaluate_expr (Expr.unthunk_term_nobox just) in
      match Mark.remove just with
      | ELit (LBool true) ->
        Mark.remove (evaluate_expr (Expr.unthunk_term_nobox cons))
      | ELit (LBool false) -> raise Runtime.Empty
      | _ ->
        Message.error ~pos
          "Default justification has not been reduced to a boolean at@ \
           evaluation@ (should not happen if the term was well-typed@\n\
           %a@."
          Expr.format just)
    | [e] -> Mark.remove e
    | es ->
      raise
        Runtime.(
          Error
            (Conflict, List.map (fun e -> Expr.pos_to_runtime (Expr.pos e)) es))
    )
  | HandleDefaultOpt, [(EArray exps, _); justification; conclusion] -> (
    let valid_exceptions =
      ListLabels.filter exps ~f:(function
        | EInj { name; cons; _ }, _ when EnumName.equal name Expr.option_enum ->
          EnumConstructor.equal cons Expr.some_constr
        | _ -> err ())
    in
    match valid_exceptions with
    | [] -> (
      let e = evaluate_expr (Expr.unthunk_term_nobox justification) in
      match Mark.remove e with
      | ELit (LBool true) ->
        Mark.remove (evaluate_expr (Expr.unthunk_term_nobox conclusion))
      | ELit (LBool false) ->
        EInj
          {
            name = Expr.option_enum;
            cons = Expr.none_constr;
            e = Mark.copy justification (ELit LUnit);
          }
      | EInj { name; cons; e }
        when EnumName.equal name Expr.option_enum
             && EnumConstructor.equal cons Expr.none_constr ->
        EInj
          {
            name = Expr.option_enum;
            cons = Expr.none_constr;
            e = Mark.copy e (ELit LUnit);
          }
      | _ -> err ())
    | [((EInj { cons; name; _ } as e), _)]
      when EnumName.equal name Expr.option_enum
           && EnumConstructor.equal cons Expr.some_constr ->
      e
    | [_] -> err ()
    | excs ->
      raise
        Runtime.(
          Error (Conflict, List.map Expr.(fun e -> pos_to_runtime (pos e)) excs))
    )
  | ( ( Minus_int | Minus_rat | Minus_mon | Minus_dur | ToRat_int | ToRat_mon
      | ToMoney_rat | Round_rat | Round_mon | Add_int_int | Add_rat_rat
      | Add_mon_mon | Add_dat_dur _ | Add_dur_dur | Sub_int_int | Sub_rat_rat
      | Sub_mon_mon | Sub_dat_dat | Sub_dat_dur | Sub_dur_dur | Mult_int_int
      | Mult_rat_rat | Mult_mon_rat | Mult_dur_int | Div_int_int | Div_rat_rat
      | Div_mon_mon | Div_mon_rat | Div_dur_dur | Lt_int_int | Lt_rat_rat
      | Lt_mon_mon | Lt_dat_dat | Lt_dur_dur | Lte_int_int | Lte_rat_rat
      | Lte_mon_mon | Lte_dat_dat | Lte_dur_dur | Gt_int_int | Gt_rat_rat
      | Gt_mon_mon | Gt_dat_dat | Gt_dur_dur | Gte_int_int | Gte_rat_rat
      | Gte_mon_mon | Gte_dat_dat | Gte_dur_dur | Eq_int_int | Eq_rat_rat
      | Eq_mon_mon | Eq_dat_dat | Eq_dur_dur | HandleDefault | HandleDefaultOpt
        ),
      _ ) ->
    err ()

(* /S\ dark magic here. This relies both on internals of [Lcalc.to_ocaml] *and*
   of the OCaml runtime *)
let rec runtime_to_val :
    type d e.
    (decl_ctx ->
    ((d, e, _) interpr_kind, 'm) gexpr ->
    ((d, e, _) interpr_kind, 'm) gexpr) ->
    decl_ctx ->
    'm mark ->
    typ ->
    Obj.t ->
    (((d, e, yes) interpr_kind as 'a), 'm) gexpr =
 fun eval_expr ctx m ty o ->
  let m = Expr.map_ty (fun _ -> ty) m in
  match Mark.remove ty with
  | TLit TBool -> ELit (LBool (Obj.obj o)), m
  | TLit TUnit -> ELit LUnit, m
  | TLit TInt -> ELit (LInt (Obj.obj o)), m
  | TLit TRat -> ELit (LRat (Obj.obj o)), m
  | TLit TMoney -> ELit (LMoney (Obj.obj o)), m
  | TLit TDate -> ELit (LDate (Obj.obj o)), m
  | TLit TDuration -> ELit (LDuration (Obj.obj o)), m
  | TTuple ts ->
    ( ETuple
        (List.map2
           (runtime_to_val eval_expr ctx m)
           ts
           (Array.to_list (Obj.obj o))),
      m )
  | TStruct name ->
    StructName.Map.find name ctx.ctx_structs
    |> StructField.Map.to_seq
    |> Seq.map2
         (fun o (fld, ty) -> fld, runtime_to_val eval_expr ctx m ty o)
         (Array.to_seq (Obj.obj o))
    |> StructField.Map.of_seq
    |> fun fields -> EStruct { name; fields }, m
  | TEnum name ->
    (* we only use non-constant constructors of arity 1, which allows us to
       always use the tag directly (ordered as declared in the constr map), and
       the field 0 *)
    let cons_map = EnumName.Map.find name ctx.ctx_enums in
    let cons, ty =
      List.nth
        (EnumConstructor.Map.bindings cons_map)
        (Obj.tag o - Obj.first_non_constant_constructor_tag)
    in
    let e = runtime_to_val eval_expr ctx m ty (Obj.field o 0) in
    EInj { name; cons; e }, m
  | TOption ty -> (
    match Obj.tag o - Obj.first_non_constant_constructor_tag with
    | 0 ->
      let e =
        runtime_to_val eval_expr ctx m (TLit TUnit, Pos.no_pos) (Obj.field o 0)
      in
      EInj { name = Expr.option_enum; cons = Expr.none_constr; e }, m
    | 1 ->
      let e = runtime_to_val eval_expr ctx m ty (Obj.field o 0) in
      EInj { name = Expr.option_enum; cons = Expr.some_constr; e }, m
    | _ -> assert false)
  | TClosureEnv -> assert false
  | TArray ty ->
    ( EArray
        (List.map
           (runtime_to_val eval_expr ctx m ty)
           (Array.to_list (Obj.obj o))),
      m )
  | TArrow (targs, tret) -> ECustom { obj = o; targs; tret }, m
  | TDefault ty -> runtime_to_val eval_expr ctx m ty o
  | TAny -> assert false

and val_to_runtime :
    type d e.
    (decl_ctx ->
    ((d, e, _) interpr_kind, 'm) gexpr ->
    ((d, e, _) interpr_kind, 'm) gexpr) ->
    decl_ctx ->
    typ ->
    ((d, e, _) interpr_kind, 'm) gexpr ->
    Obj.t =
 fun eval_expr ctx ty v ->
  match Mark.remove ty, Mark.remove v with
  | _, EEmpty -> raise Runtime.Empty
  | TLit TBool, ELit (LBool b) -> Obj.repr b
  | TLit TUnit, ELit LUnit -> Obj.repr ()
  | TLit TInt, ELit (LInt i) -> Obj.repr i
  | TLit TRat, ELit (LRat r) -> Obj.repr r
  | TLit TMoney, ELit (LMoney m) -> Obj.repr m
  | TLit TDate, ELit (LDate t) -> Obj.repr t
  | TLit TDuration, ELit (LDuration d) -> Obj.repr d
  | TTuple ts, ETuple es ->
    List.map2 (val_to_runtime eval_expr ctx) ts es |> Array.of_list |> Obj.repr
  | TStruct name1, EStruct { name; fields } ->
    assert (StructName.equal name name1);
    let fld_tys = StructName.Map.find name ctx.ctx_structs in
    Seq.map2
      (fun (_, ty) (_, v) -> val_to_runtime eval_expr ctx ty v)
      (StructField.Map.to_seq fld_tys)
      (StructField.Map.to_seq fields)
    |> Array.of_seq
    |> Obj.repr
  | TEnum name1, EInj { name; cons; e } ->
    assert (EnumName.equal name name1);
    let cons_map = EnumName.Map.find name ctx.ctx_enums in
    let rec find_tag n = function
      | [] -> assert false
      | (c, ty) :: _ when EnumConstructor.equal c cons -> n, ty
      | _ :: r -> find_tag (n + 1) r
    in
    let tag, ty =
      find_tag Obj.first_non_constant_constructor_tag
        (EnumConstructor.Map.bindings cons_map)
    in
    let field = val_to_runtime eval_expr ctx ty e in
    let o = Obj.with_tag tag (Obj.repr (Some ())) in
    Obj.set_field o 0 field;
    o
  | TOption ty, EInj { name; cons; e } ->
    assert (EnumName.equal name Expr.option_enum);
    let tag, ty =
      (* None is before Some because the constructors have been defined in this
         order in [expr.ml], and the ident maps preserve definition ordering *)
      if EnumConstructor.equal cons Expr.none_constr then
        Obj.first_non_constant_constructor_tag, (TLit TUnit, Pos.no_pos)
      else if EnumConstructor.equal cons Expr.some_constr then
        Obj.first_non_constant_constructor_tag + 1, ty
      else assert false
    in
    let field = val_to_runtime eval_expr ctx ty e in
    let o = Obj.with_tag tag (Obj.repr (Some ())) in
    Obj.set_field o 0 field;
    o
  | TArray ty, EArray es ->
    Array.of_list (List.map (val_to_runtime eval_expr ctx ty) es) |> Obj.repr
  | TArrow (targs, tret), _ ->
    let m = Mark.get v in
    (* we want stg like [fun args -> val_to_runtime (eval_expr ctx (EApp (v,
       args)))] but in curried form *)
    let rec curry acc = function
      | [] ->
        let args = List.rev acc in
        let tys = List.map (fun a -> Expr.maybe_ty (Mark.get a)) args in
        val_to_runtime eval_expr ctx tret
          (eval_expr ctx (EApp { f = v; args; tys }, m))
      | targ :: targs ->
        Obj.repr (fun x ->
            curry (runtime_to_val eval_expr ctx m targ x :: acc) targs)
    in
    curry [] targs
  | TDefault ty, _ -> val_to_runtime eval_expr ctx ty v
  | _ ->
    Message.error ~internal:true
      "Could not convert value of type %a@ to@ runtime:@ %a" (Print.typ ctx) ty
      Expr.format v

let rec evaluate_expr :
    type d e.
    decl_ctx ->
    Global.backend_lang ->
    ((d, e, yes) interpr_kind, 't) gexpr ->
    ((d, e, yes) interpr_kind, 't) gexpr =
 fun ctx lang e ->
  let m = Mark.get e in
  let pos = Expr.mark_pos m in
  match Mark.remove e with
  | EVar _ ->
    Message.error ~pos "%a" Format.pp_print_text
      "free variable found at evaluation (should not happen if term was \
       well-typed)"
  | EExternal { name } ->
    let path =
      match Mark.remove name with
      | External_value td -> TopdefName.path td
      | External_scope s -> ScopeName.path s
    in
    let ty =
      try
        match Mark.remove name with
        | External_value name -> TopdefName.Map.find name ctx.ctx_topdefs
        | External_scope name ->
          let scope_info = ScopeName.Map.find name ctx.ctx_scopes in
          ( TArrow
              ( [TStruct scope_info.in_struct_name, pos],
                (TStruct scope_info.out_struct_name, pos) ),
            pos )
      with TopdefName.Map.Not_found _ | ScopeName.Map.Not_found _ ->
        Message.error ~pos "Reference to %a@ could@ not@ be@ resolved"
          Print.external_ref name
    in
    let runtime_path =
      ( List.map ModuleName.to_string path,
        match Mark.remove name with
        | External_value name -> Mark.remove (TopdefName.get_info name)
        | External_scope name -> Mark.remove (ScopeName.get_info name) )
      (* we have the guarantee that the two cases won't collide because they
         have different capitalisation rules inherited from the input *)
    in
    let o = Runtime.lookup_value runtime_path in
    runtime_to_val (fun ctx -> evaluate_expr ctx lang) ctx m ty o
  | EApp { f = e1; args; _ } -> (
    let e1 = evaluate_expr ctx lang e1 in
    let args = List.map (evaluate_expr ctx lang) args in
    match Mark.remove e1 with
    | EAbs { binder; _ } ->
      if Bindlib.mbinder_arity binder = List.length args then
        evaluate_expr ctx lang
          (Bindlib.msubst binder (Array.of_list (List.map Mark.remove args)))
      else
        Message.error ~pos "wrong function call, expected %d arguments, got %d"
          (Bindlib.mbinder_arity binder)
          (List.length args)
    | ECustom { obj; targs; tret } ->
      (* Applies the arguments one by one to the curried form *)
      let o =
        List.fold_left2
          (fun fobj targ arg ->
            (Obj.obj fobj : Obj.t -> Obj.t)
              (val_to_runtime (fun ctx -> evaluate_expr ctx lang) ctx targ arg))
          obj targs args
      in
      runtime_to_val (fun ctx -> evaluate_expr ctx lang) ctx m tret o
    | _ ->
      Message.error ~pos ~internal:true "%a" Format.pp_print_text
        "function has not been reduced to a lambda at evaluation (should not \
         happen if the term was well-typed")
  | EAppOp { op; args; _ } ->
    let args = List.map (evaluate_expr ctx lang) args in
    evaluate_operator (evaluate_expr ctx lang) op m lang args
  | EAbs _ | ELit _ | ECustom _ | EEmpty -> e (* these are values *)
  | EStruct { fields = es; name } ->
    let fields, es = List.split (StructField.Map.bindings es) in
    let es = List.map (evaluate_expr ctx lang) es in
    Mark.add m
      (EStruct
         {
           fields =
             StructField.Map.of_seq
               (Seq.zip (List.to_seq fields) (List.to_seq es));
           name;
         })
  | EStructAccess { e; name = s; field } -> (
    let e = evaluate_expr ctx lang e in
    match Mark.remove e with
    | EStruct { fields = es; name } -> (
      if not (StructName.equal s name) then
        Message.error
          ~extra_pos:["", pos; "", Expr.pos e]
          "%a" Format.pp_print_text
          "Error during struct access: not the same structs (should not happen \
           if the term was well-typed)";
      match StructField.Map.find_opt field es with
      | Some e' -> e'
      | None ->
        Message.error ~pos:(Expr.pos e)
          "Invalid field access %a@ in@ struct@ %a@ (should not happen if the \
           term was well-typed)"
          StructField.format field StructName.format s)
    | _ ->
      Message.error ~pos:(Expr.pos e)
        "The expression %a@ should@ be@ a@ struct@ %a@ but@ is@ not@ (should \
         not happen if the term was well-typed)"
        (Print.UserFacing.expr lang)
        e StructName.format s)
  | ETuple es -> Mark.add m (ETuple (List.map (evaluate_expr ctx lang) es))
  | ETupleAccess { e = e1; index; size } -> (
    match evaluate_expr ctx lang e1 with
    | ETuple es, _ when List.length es = size -> List.nth es index
    | e ->
      Message.error ~pos:(Expr.pos e)
        "The expression %a@ was@ expected@ to@ be@ a@ tuple@ of@ size@ %d@ \
         (should not happen if the term was well-typed)"
        (Print.UserFacing.expr lang)
        e size)
  | EInj { e; name; cons } ->
    let e = evaluate_expr ctx lang e in
    Mark.add m (EInj { e; name; cons })
  | EMatch { e; cases; name } -> (
    let e = evaluate_expr ctx lang e in
    match Mark.remove e with
    | EInj { e = e1; cons; name = name' } ->
      if not (EnumName.equal name name') then
        Message.error
          ~extra_pos:["", Expr.pos e; "", Expr.pos e1]
          "%a" Format.pp_print_text
          "Error during match: two different enums found (should not happen if \
           the term was well-typed)";
      let es_n =
        match EnumConstructor.Map.find_opt cons cases with
        | Some es_n -> es_n
        | None ->
          Message.error ~pos:(Expr.pos e) "%a" Format.pp_print_text
            "sum type index error (should not happen if the term was \
             well-typed)"
      in
      let ty =
        EnumConstructor.Map.find cons (EnumName.Map.find name ctx.ctx_enums)
      in
      let new_e = Mark.add m (EApp { f = es_n; args = [e1]; tys = [ty] }) in
      evaluate_expr ctx lang new_e
    | _ ->
      Message.error ~pos:(Expr.pos e)
        "Expected a term having a sum type as an argument to a match (should \
         not happen if the term was well-typed")
  | EIfThenElse { cond; etrue; efalse } -> (
    let cond = evaluate_expr ctx lang cond in
    match Mark.remove cond with
    | ELit (LBool true) -> evaluate_expr ctx lang etrue
    | ELit (LBool false) -> evaluate_expr ctx lang efalse
    | _ ->
      Message.error ~pos:(Expr.pos cond) "%a" Format.pp_print_text
        "Expected a boolean literal for the result of this condition (should \
         not happen if the term was well-typed)")
  | EArray es ->
    let es = List.map (evaluate_expr ctx lang) es in
    Mark.add m (EArray es)
  | EAssert e' -> (
    let e = evaluate_expr ctx lang e' in
    match Mark.remove e with
    | ELit (LBool true) -> Mark.add m (ELit LUnit)
    | ELit (LBool false) ->
      Message.warning "Assertion failed:@ %a"
        (Print.UserFacing.expr lang)
        (partially_evaluate_expr_for_assertion_failure_message ctx lang
           (Expr.skip_wrappers e'));
      raise Runtime.(Error (AssertionFailed, [Expr.pos_to_runtime pos]))
    | _ ->
      Message.error ~pos:(Expr.pos e') "%a" Format.pp_print_text
        "Expected a boolean literal for the result of this assertion (should \
         not happen if the term was well-typed)")
  | EFatalError err -> raise (Runtime.Error (err, [Expr.pos_to_runtime pos]))
  | EErrorOnEmpty e' -> (
    match evaluate_expr ctx lang e' with
    | EEmpty, _ -> raise Runtime.(Error (NoValue, [Expr.pos_to_runtime pos]))
    | exception Runtime.Empty ->
      raise Runtime.(Error (NoValue, [Expr.pos_to_runtime pos]))
    | e -> e)
  | EDefault { excepts; just; cons } -> (
    let excepts = List.map (evaluate_expr ctx lang) excepts in
    let empty_count = List.length (List.filter is_empty_error excepts) in
    match List.length excepts - empty_count with
    | 0 -> (
      let just = evaluate_expr ctx lang just in
      match Mark.remove just with
      | ELit (LBool true) -> evaluate_expr ctx lang cons
      | ELit (LBool false) -> Mark.copy e EEmpty
      | _ ->
        Message.error ~pos:(Expr.pos e) "%a" Format.pp_print_text
          "Default justification has not been reduced to a boolean at \
           evaluation (should not happen if the term was well-typed")
    | 1 -> List.find (fun sub -> not (is_empty_error sub)) excepts
    | _ ->
      let poslist =
        List.filter_map
          (fun ex ->
            if is_empty_error ex then None
            else Some Expr.(pos_to_runtime (pos ex)))
          excepts
      in
      raise Runtime.(Error (Conflict, poslist)))
  | EPureDefault e -> evaluate_expr ctx lang e
  | ERaiseEmpty -> raise Runtime.Empty
  | ECatchEmpty { body; handler } -> (
    try evaluate_expr ctx lang body
    with Runtime.Empty -> evaluate_expr ctx lang handler)
  | _ -> .

and partially_evaluate_expr_for_assertion_failure_message :
    type d e.
    decl_ctx ->
    Global.backend_lang ->
    ((d, e, yes) interpr_kind, 't) gexpr ->
    ((d, e, yes) interpr_kind, 't) gexpr =
 fun ctx lang e ->
  (* Here we want to print an expression that explains why an assertion has
     failed. Since assertions have type [bool] and are usually constructed with
     comparisons and logical operators, we leave those unevaluated at the top of
     the AST while evaluating everything below. This makes for a good error
     message. *)
  match Mark.remove e with
  | EAppOp
      {
        args = [e1; e2];
        tys;
        op =
          ( ( And | Or | Xor | Eq | Lt_int_int | Lt_rat_rat | Lt_mon_mon
            | Lt_dat_dat | Lt_dur_dur | Lte_int_int | Lte_rat_rat | Lte_mon_mon
            | Lte_dat_dat | Lte_dur_dur | Gt_int_int | Gt_rat_rat | Gt_mon_mon
            | Gt_dat_dat | Gt_dur_dur | Gte_int_int | Gte_rat_rat | Gte_mon_mon
            | Gte_dat_dat | Gte_dur_dur | Eq_int_int | Eq_rat_rat | Eq_mon_mon
            | Eq_dur_dur | Eq_dat_dat ),
            _ ) as op;
      } ->
    ( EAppOp
        {
          op;
          tys;
          args =
            [
              partially_evaluate_expr_for_assertion_failure_message ctx lang e1;
              partially_evaluate_expr_for_assertion_failure_message ctx lang e2;
            ];
        },
      Mark.get e )
  | _ -> evaluate_expr ctx lang e

let evaluate_expr_safe :
    type d e.
    decl_ctx ->
    Global.backend_lang ->
    ((d, e, yes) interpr_kind, 't) gexpr ->
    ((d, e, yes) interpr_kind, 't) gexpr =
 fun ctx lang e ->
  try evaluate_expr ctx lang e
  with Runtime.Error (err, rpos) ->
    Message.error
      ~extra_pos:(List.map (fun rp -> "", Expr.runtime_to_pos rp) rpos)
      "During evaluation: %a." Format.pp_print_text
      (Runtime.error_message err)

(* Typing shenanigan to add custom terms to the AST type. *)
let addcustom e =
  let rec f :
      type c d e.
      ((d, e, c) interpr_kind, 't) gexpr ->
      ((d, e, yes) interpr_kind, 't) gexpr boxed = function
    | (ECustom _, _) as e -> Expr.map ~f e
    | EAppOp { op; tys; args }, m ->
      Expr.eappop ~tys ~args:(List.map f args) ~op:(Operator.translate op) m
    | (EDefault _, _) as e -> Expr.map ~f e
    | (EPureDefault _, _) as e -> Expr.map ~f e
    | (EEmpty, _) as e -> Expr.map ~f e
    | (EErrorOnEmpty _, _) as e -> Expr.map ~f e
    | (ECatchEmpty _, _) as e -> Expr.map ~f e
    | (ERaiseEmpty, _) as e -> Expr.map ~f e
    | ( ( EAssert _ | EFatalError _ | ELit _ | EApp _ | EArray _ | EVar _
        | EExternal _ | EAbs _ | EIfThenElse _ | ETuple _ | ETupleAccess _
        | EInj _ | EStruct _ | EStructAccess _ | EMatch _ ),
        _ ) as e ->
      Expr.map ~f e
    | _ -> .
  in
  let open struct
    external id :
      (('d, 'e, 'c) interpr_kind, 't) gexpr ->
      (('d, 'e, yes) interpr_kind, 't) gexpr = "%identity"
  end in
  if false then Expr.unbox (f e)
    (* We keep the implementation as a typing proof, but bypass the AST
       traversal for performance. Note that it's not completely 1-1 since the
       traversal would do a reboxing of all bound variables *)
  else id e

let delcustom e =
  let rec f :
      type c d e.
      ((d, e, c) interpr_kind, 't) gexpr ->
      ((d, e, no) interpr_kind, 't) gexpr boxed = function
    | ECustom _, _ -> invalid_arg "Custom term remaining in evaluated term"
    | EAppOp { op; args; tys }, m ->
      Expr.eappop ~tys ~args:(List.map f args) ~op:(Operator.translate op) m
    | (EDefault _, _) as e -> Expr.map ~f e
    | (EPureDefault _, _) as e -> Expr.map ~f e
    | (EEmpty, _) as e -> Expr.map ~f e
    | (EErrorOnEmpty _, _) as e -> Expr.map ~f e
    | (ECatchEmpty _, _) as e -> Expr.map ~f e
    | (ERaiseEmpty, _) as e -> Expr.map ~f e
    | ( ( EAssert _ | EFatalError _ | ELit _ | EApp _ | EArray _ | EVar _
        | EExternal _ | EAbs _ | EIfThenElse _ | ETuple _ | ETupleAccess _
        | EInj _ | EStruct _ | EStructAccess _ | EMatch _ ),
        _ ) as e ->
      Expr.map ~f e
    | _ -> .
  in
  (* /!\ don't be tempted to use the same trick here, the function does one
     thing: validate at runtime that the term does not contain [ECustom]
     nodes. *)
  Expr.unbox (f e)

let interpret_program_lcalc p s : (Uid.MarkedString.info * ('a, 'm) gexpr) list
    =
  let e = Expr.unbox @@ Program.to_expr p s in
  let ctx = p.decl_ctx in
  match evaluate_expr_safe ctx p.lang (addcustom e) with
  | (EAbs { tys = [((TStruct s_in, _) as _targs)]; _ }, mark_e) as e -> begin
    (* At this point, the interpreter seeks to execute the scope but does not
       have a way to retrieve input values from the command line. [taus] contain
       the types of the scope arguments. For [context] arguments, we can provide
       an empty thunked term. But for [input] arguments of another type, we
       cannot provide anything so we have to fail. *)
    let taus = StructName.Map.find s_in ctx.ctx_structs in
    let application_term =
      let pos = Expr.mark_pos mark_e in
      StructField.Map.map
        (fun ty ->
          match Mark.remove ty with
          | TArrow (ty_in, (TOption _, _)) ->
            (* Context args may return an option if avoid_exceptions is on *)
            Expr.make_abs
              (Array.of_list @@ List.map (fun _ -> Var.make "_") ty_in)
              (Expr.einj ~e:(Expr.elit LUnit mark_e) ~cons:Expr.none_constr
                 ~name:Expr.option_enum mark_e
                : (_, _) boxed_gexpr)
              ty_in pos
          | TArrow (ty_in, ty_out) ->
            (* Or a default term (translated into a plain one if it is off) *)
            (* Note: this might catch non-context args, but since the
               compilation to lcalc strips the default around [ty_out] we can't
               tell with just this info. *)
            Expr.make_abs
              (Array.of_list @@ List.map (fun _ -> Var.make "_") ty_in)
              (Expr.eraiseempty (Expr.with_ty mark_e ty_out))
              ty_in (Expr.mark_pos mark_e)
          | TTuple ((TArrow (ty_in, (TOption _, _)), _) :: _) ->
            (* ... or a closure if closure conversion is enabled *)
            Expr.make_tuple
              [
                Expr.make_abs
                  (Array.of_list @@ List.map (fun _ -> Var.make "_") ty_in)
                  (Expr.einj ~e:(Expr.elit LUnit mark_e) ~cons:Expr.none_constr
                     ~name:Expr.option_enum mark_e)
                  ty_in (Expr.mark_pos mark_e);
                Expr.eappop
                  ~op:(Operator.ToClosureEnv, pos)
                  ~args:[Expr.etuple [] mark_e]
                  ~tys:[TClosureEnv, pos]
                  mark_e;
              ]
              mark_e
          | _ ->
            Message.error ~pos:(Mark.get ty)
              "This scope needs an input argument of type@ %a@ %a"
              Print.typ_debug ty Format.pp_print_text
              "to be executed. But the Catala built-in interpreter does not \
               have a way to retrieve input values from the command line, so \
               it cannot execute this scope. Please create another scope that \
               provides the input arguments to this one and execute it \
               instead.")
        taus
    in
    let to_interpret =
      Expr.make_app (Expr.box e)
        [
          Expr.estruct ~name:s_in ~fields:application_term
            (Expr.map_ty (fun (_, pos) -> TStruct s_in, pos) mark_e);
        ]
        [TStruct s_in, Expr.pos e]
        (Expr.pos e)
    in
    match
      Mark.remove (evaluate_expr_safe ctx p.lang (Expr.unbox to_interpret))
    with
    | EStruct { fields; _ } ->
      List.map
        (fun (fld, e) -> StructField.get_info fld, e)
        (StructField.Map.bindings fields)
    | exception Runtime.Error (err, rpos) ->
      Message.error
        ~extra_pos:(List.map (fun rp -> "", Expr.runtime_to_pos rp) rpos)
        "%a" Format.pp_print_text
        (Runtime.error_message err)
    | _ ->
      Message.error ~pos:(Expr.pos e) ~internal:true "%a" Format.pp_print_text
        "The interpretation of the program doesn't yield a struct \
         corresponding to the scope variables"
  end
  | _ ->
    Message.error ~pos:(Expr.pos e) "%a" Format.pp_print_text
      "The interpreter can only interpret terms starting with functions having \
       thunked arguments"

(** {1 API} *)
let interpret_program_dcalc p s : (Uid.MarkedString.info * ('a, 'm) gexpr) list
    =
  let ctx = p.decl_ctx in
  let e = Expr.unbox (Program.to_expr p s) in
  match evaluate_expr_safe p.decl_ctx p.lang (addcustom e) with
  | (EAbs { tys = [((TStruct s_in, _) as _targs)]; _ }, mark_e) as e -> begin
    (* At this point, the interpreter seeks to execute the scope but does not
       have a way to retrieve input values from the command line. [taus] contain
       the types of the scope arguments. For [context] arguments, we can provide
       an empty thunked term. But for [input] arguments of another type, we
       cannot provide anything so we have to fail. *)
    let taus = StructName.Map.find s_in ctx.ctx_structs in
    let application_term =
      StructField.Map.map
        (fun ty ->
          match Mark.remove ty with
          | TArrow (ty_in, ty_out) ->
            Expr.make_abs
              (Array.of_list @@ List.map (fun _ -> Var.make "_") ty_in)
              (Bindlib.box EEmpty, Expr.with_ty mark_e ty_out)
              ty_in (Expr.mark_pos mark_e)
          | _ ->
            Message.error ~pos:(Mark.get ty) "%a" Format.pp_print_text
              "This scope needs input arguments to be executed. But the Catala \
               built-in interpreter does not have a way to retrieve input \
               values from the command line, so it cannot execute this scope. \
               Please create another scope that provides the input arguments \
               to this one and execute it instead.")
        taus
    in
    let to_interpret =
      Expr.make_app (Expr.box e)
        [
          Expr.estruct ~name:s_in ~fields:application_term
            (Expr.map_ty (fun (_, pos) -> TStruct s_in, pos) mark_e);
        ]
        [TStruct s_in, Expr.pos e]
        (Expr.pos e)
    in
    match
      Mark.remove (evaluate_expr_safe ctx p.lang (Expr.unbox to_interpret))
    with
    | EStruct { fields; _ } ->
      List.map
        (fun (fld, e) -> StructField.get_info fld, e)
        (StructField.Map.bindings fields)
    | _ ->
      Message.error ~pos:(Expr.pos e) "%a" Format.pp_print_text
        "The interpretation of a program should always yield a struct \
         corresponding to the scope variables"
  end
  | _ ->
    Message.error ~pos:(Expr.pos e) "%a" Format.pp_print_text
      "The interpreter can only interpret terms starting with functions having \
       thunked arguments"

(* Evaluation may introduce intermediate custom terms ([ECustom], pointers to
   external functions), straying away from the DCalc and LCalc ASTS. [addcustom]
   and [delcustom] are needed to expand and shrink the type of the terms to
   reflect that. *)
let evaluate_expr ctx lang e = evaluate_expr ctx lang (addcustom e)

let load_runtime_modules prg =
  let load m =
    let obj_file =
      Dynlink.adapt_filename
        File.(Pos.get_file (Mark.get (ModuleName.get_info m)) -.- "cmo")
    in
    if not (Sys.file_exists obj_file) then
      Message.error
        ~pos_msg:(fun ppf -> Format.pp_print_string ppf "Module defined here")
        ~pos:(Mark.get (ModuleName.get_info m))
        "Compiled OCaml object %a@ not@ found.@ Make sure it has been suitably \
         compiled."
        File.format obj_file
    else
      try Dynlink.loadfile obj_file
      with Dynlink.Error dl_err ->
        Message.error "Error loading compiled module from %a:@;<1 2>@[<hov>%a@]"
          File.format obj_file Format.pp_print_text
          (Dynlink.error_message dl_err)
  in
  let modules_list_topo = Program.modules_to_list prg.decl_ctx.ctx_modules in
  if modules_list_topo <> [] then
    Message.debug "Loading shared modules... %a"
      (Format.pp_print_list ~pp_sep:Format.pp_print_space ModuleName.format)
      modules_list_topo;
  List.iter load modules_list_topo
OCaml

Innovation. Community. Security.