package catala

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file closure_conversion.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
(* This file is part of the Catala compiler, a specification language for tax
   and social benefits computation rules. Copyright (C) 2022 Inria, contributor:
   Denis Merigoux <denis.merigoux@inria.fr>

   Licensed under the Apache License, Version 2.0 (the "License"); you may not
   use this file except in compliance with the License. You may obtain a copy of
   the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
   WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
   License for the specific language governing permissions and limitations under
   the License. *)

open Catala_utils
open Shared_ast
open Ast
module D = Dcalc.Ast

type 'm ctx = {
  name_context : string;
  globally_bound_vars : ('m expr, typ) Var.Map.t;
}

let tys_as_tanys tys = List.map (fun x -> Mark.map (fun _ -> TAny) x) tys

(** {1 Transforming closures}*)

(** Returns the expression with closed closures and the set of free variables
    inside this new expression. Implementation guided by
    http://gallium.inria.fr/~fpottier/mpri/cours04.pdf#page=10
    (environment-passing closure conversion). *)
let rec transform_closures_expr :
    type m. m ctx -> m expr -> m expr Var.Set.t * m expr boxed =
 fun ctx e ->
  let m = Mark.get e in
  match Mark.remove e with
  | EStruct _ | EStructAccess _ | ETuple _ | ETupleAccess _ | EInj _ | EArray _
  | ELit _ | EExternal _ | EAssert _ | EFatalError _ | EIfThenElse _
  | ERaiseEmpty | ECatchEmpty _ ->
    Expr.map_gather ~acc:Var.Set.empty ~join:Var.Set.union
      ~f:(transform_closures_expr ctx)
      e
  | EVar v -> (
    match Var.Map.find_opt v ctx.globally_bound_vars with
    | None -> Var.Set.singleton v, (Bindlib.box_var v, m)
    | Some (TArrow (targs, tret), _) ->
      (* Here we eta-expand the argument to make sure function pointers are
         correctly casted as closures *)
      let args = Array.init (List.length targs) (fun _ -> Var.make "eta_arg") in
      let arg_vars =
        List.map2
          (fun v ty -> Expr.evar v (Expr.with_ty m ty))
          (Array.to_list args) targs
      in
      let e =
        Expr.eabs
          (Expr.bind args
             (Expr.eapp ~f:(Expr.rebox e) ~args:arg_vars ~tys:targs
                (Expr.with_ty m tret)))
          targs m
      in
      let boxed =
        let ctx =
          (* We hide the type of the toplevel definition so that the function
             doesn't loop *)
          {
            ctx with
            globally_bound_vars =
              Var.Map.add v (TAny, Pos.no_pos) ctx.globally_bound_vars;
          }
        in
        Bindlib.box_apply (transform_closures_expr ctx) (Expr.Box.lift e)
      in
      Bindlib.unbox boxed
    | Some _ -> Var.Set.empty, (Bindlib.box_var v, m))
  | EMatch { e; cases; name } ->
    let free_vars, new_e = (transform_closures_expr ctx) e in
    (* We do not close the clotures inside the arms of the match expression,
       since they get a special treatment at compilation to Scalc. *)
    let free_vars, new_cases =
      EnumConstructor.Map.fold
        (fun cons e1 (free_vars, new_cases) ->
          match Mark.remove e1 with
          | EAbs { binder; tys } ->
            let vars, body = Bindlib.unmbind binder in
            let new_free_vars, new_body = (transform_closures_expr ctx) body in
            let new_free_vars =
              Array.fold_left
                (fun acc v -> Var.Set.remove v acc)
                new_free_vars vars
            in
            let new_binder = Expr.bind vars new_body in
            ( Var.Set.union free_vars
                (Var.Set.diff new_free_vars
                   (Var.Set.of_list (Array.to_list vars))),
              EnumConstructor.Map.add cons
                (Expr.eabs new_binder tys (Mark.get e1))
                new_cases )
          | _ -> failwith "should not happen")
        cases
        (free_vars, EnumConstructor.Map.empty)
    in
    free_vars, Expr.ematch ~e:new_e ~name ~cases:new_cases m
  | EApp { f = EAbs { binder; tys }, e1_pos; args; _ } ->
    (* let-binding, we should not close these *)
    let vars, body = Bindlib.unmbind binder in
    let free_vars, new_body = (transform_closures_expr ctx) body in
    let free_vars =
      Array.fold_left (fun acc v -> Var.Set.remove v acc) free_vars vars
    in
    let new_binder = Expr.bind vars new_body in
    let free_vars, new_args =
      List.fold_right
        (fun arg (free_vars, new_args) ->
          let new_free_vars, new_arg = (transform_closures_expr ctx) arg in
          Var.Set.union free_vars new_free_vars, new_arg :: new_args)
        args (free_vars, [])
    in
    ( free_vars,
      Expr.eapp
        ~f:(Expr.eabs new_binder (tys_as_tanys tys) e1_pos)
        ~args:new_args ~tys m )
  | EAbs { binder; tys } ->
    (* λ x.t *)
    let binder_mark = Expr.with_ty m (TAny, Expr.mark_pos m) in
    let binder_pos = Expr.mark_pos binder_mark in
    (* Converting the closure. *)
    let vars, body = Bindlib.unmbind binder in
    (* t *)
    let body_vars, new_body = (transform_closures_expr ctx) body in
    (* [[t]] *)
    let extra_vars =
      Var.Set.diff body_vars (Var.Set.of_list (Array.to_list vars))
    in
    let extra_vars_list = Var.Set.elements extra_vars in
    (* x1, ..., xn *)
    let code_var = Var.make ctx.name_context in
    (* code *)
    let closure_env_arg_var = Var.make "env" in
    let closure_env_var = Var.make "env" in
    let any_ty = TAny, binder_pos in
    (* let env = from_closure_env env in let arg0 = env.0 in ... *)
    let new_closure_body =
      Expr.make_let_in closure_env_var any_ty
        (Expr.eappop
           ~op:(Operator.FromClosureEnv, binder_pos)
           ~tys:[TClosureEnv, binder_pos]
           ~args:[Expr.evar closure_env_arg_var binder_mark]
           binder_mark)
        (Expr.make_multiple_let_in
           (Array.of_list extra_vars_list)
           (List.map (fun _ -> any_ty) extra_vars_list)
           (List.mapi
              (fun i _ ->
                Expr.make_tupleaccess
                  (Expr.evar closure_env_var binder_mark)
                  i
                  (List.length extra_vars_list)
                  binder_pos)
              extra_vars_list)
           new_body binder_pos)
        binder_pos
    in
    (* fun env arg0 ... -> new_closure_body *)
    let new_closure =
      Expr.make_abs
        (Array.concat [Array.make 1 closure_env_arg_var; vars])
        new_closure_body
        ((TClosureEnv, binder_pos) :: tys)
        (Expr.pos e)
    in
    ( extra_vars,
      Expr.make_let_in code_var
        (TAny, Expr.pos e)
        new_closure
        (Expr.make_tuple
           ((Bindlib.box_var code_var, binder_mark)
           :: [
                Expr.eappop
                  ~op:(Operator.ToClosureEnv, binder_pos)
                  ~tys:[TAny, Expr.pos e]
                  ~args:
                    [
                      (if extra_vars_list = [] then Expr.elit LUnit binder_mark
                       else
                         Expr.etuple
                           (List.map
                              (fun extra_var ->
                                Bindlib.box_var extra_var, binder_mark)
                              extra_vars_list)
                           m);
                    ]
                  (Mark.get e);
              ])
           m)
        (Expr.pos e) )
  | EAppOp
      {
        op = ((HandleDefaultOpt | Fold | Map | Filter | Reduce), _) as op;
        tys;
        args;
      } ->
    (* Special case for some operators: its arguments shall remain thunks (which
       are closures) because if you want to extract it as a function you need
       these closures to preserve evaluation order, but backends that don't
       support closures will simply extract these operators in a inlined way and
       skip the thunks. *)
    let free_vars, new_args =
      List.fold_right
        (fun (arg : (lcalc, m) gexpr) (free_vars, new_args) ->
          let m_arg = Mark.get arg in
          match Mark.remove arg with
          | EAbs { binder; tys } ->
            let vars, arg = Bindlib.unmbind binder in
            let new_free_vars, new_arg = (transform_closures_expr ctx) arg in
            let new_arg =
              Expr.make_abs vars new_arg tys (Expr.mark_pos m_arg)
            in
            Var.Set.union free_vars new_free_vars, new_arg :: new_args
          | _ ->
            let new_free_vars, new_arg = transform_closures_expr ctx arg in
            Var.Set.union free_vars new_free_vars, new_arg :: new_args)
        args (Var.Set.empty, [])
    in
    free_vars, Expr.eappop ~op ~tys ~args:new_args (Mark.get e)
  | EAppOp _ ->
    (* This corresponds to an operator call, which we don't want to transform *)
    Expr.map_gather ~acc:Var.Set.empty ~join:Var.Set.union
      ~f:(transform_closures_expr ctx)
      e
  | EApp { f = EVar v, f_m; args; tys }
    when Var.Map.mem v ctx.globally_bound_vars ->
    (* This corresponds to a scope or toplevel function call, which we don't
       want to transform *)
    let free_vars, new_args =
      List.fold_right
        (fun arg (free_vars, new_args) ->
          let new_free_vars, new_arg = (transform_closures_expr ctx) arg in
          Var.Set.union free_vars new_free_vars, new_arg :: new_args)
        args (Var.Set.empty, [])
    in
    free_vars, Expr.eapp ~f:(Expr.evar v f_m) ~args:new_args ~tys m
  | EApp { f = e1; args; tys } ->
    let free_vars, new_e1 = (transform_closures_expr ctx) e1 in
    let code_env_var = Var.make "code_and_env" in
    let code_env_expr =
      let pos = Expr.pos e1 in
      Expr.evar code_env_var
        (Expr.with_ty (Mark.get e1)
           ( TTuple
               [
                 ( TArrow ((TClosureEnv, pos) :: tys, (TAny, Expr.pos e)),
                   Expr.pos e );
                 TClosureEnv, pos;
               ],
             pos ))
    in
    let env_var = Var.make "env" in
    let code_var = Var.make "code" in
    let free_vars, new_args =
      List.fold_right
        (fun arg (free_vars, new_args) ->
          let new_free_vars, new_arg = (transform_closures_expr ctx) arg in
          Var.Set.union free_vars new_free_vars, new_arg :: new_args)
        args (free_vars, [])
    in
    let call_expr =
      let m1 = Mark.get e1 in
      let pos = Expr.mark_pos m in
      let env_arg_ty = TClosureEnv, Expr.pos e1 in
      let fun_ty = TArrow (env_arg_ty :: tys, (TAny, Expr.pos e)), Expr.pos e in
      Expr.make_multiple_let_in [| code_var; env_var |] [fun_ty; env_arg_ty]
        [
          Expr.make_tupleaccess code_env_expr 0 2 pos;
          Expr.make_tupleaccess code_env_expr 1 2 pos;
        ]
        (Expr.eapp
           ~f:(Bindlib.box_var code_var, m1)
           ~args:((Bindlib.box_var env_var, m1) :: new_args)
           ~tys:(env_arg_ty :: tys) m)
        (Expr.pos e)
    in
    ( free_vars,
      Expr.make_let_in code_env_var
        (TAny, Expr.pos e)
        new_e1 call_expr (Expr.pos e) )
  | _ -> .

let transform_closures_scope_let ctx scope_body_expr =
  BoundList.map
    ~f:(fun var_next scope_let ->
      let _free_vars, new_scope_let_expr =
        (transform_closures_expr
           { ctx with name_context = Bindlib.name_of var_next })
          scope_let.scope_let_expr
      in
      ( var_next,
        Bindlib.box_apply
          (fun scope_let_expr ->
            {
              scope_let with
              scope_let_expr;
              scope_let_typ = Mark.copy scope_let.scope_let_typ TAny;
            })
          (Expr.Box.lift new_scope_let_expr) ))
    ~last:(fun res ->
      let _free_vars, new_scope_let_expr = (transform_closures_expr ctx) res in
      (* INVARIANT here: the result expr of a scope is simply a struct
         containing all output variables so nothing should be converted here, so
         no need to take into account free variables. *)
      Expr.Box.lift new_scope_let_expr)
    scope_body_expr

let transform_closures_program (p : 'm program) : 'm program Bindlib.box =
  let (), new_code_items =
    BoundList.fold_map
      ~f:(fun toplevel_vars var code_item ->
        match code_item with
        | ScopeDef (name, body) ->
          let scope_input_var, scope_body_expr =
            Bindlib.unbind body.scope_body_expr
          in
          let ctx =
            {
              name_context = Mark.remove (ScopeName.get_info name);
              globally_bound_vars = toplevel_vars;
            }
          in
          let new_scope_lets =
            transform_closures_scope_let ctx scope_body_expr
          in
          let new_scope_body_expr =
            Bindlib.bind_var scope_input_var new_scope_lets
          in
          let ty =
            let pos = Mark.get (ScopeName.get_info name) in
            ( TArrow
                ( [TStruct body.scope_body_input_struct, pos],
                  (TStruct body.scope_body_output_struct, pos) ),
              pos )
          in
          ( Var.Map.add var ty toplevel_vars,
            var,
            Bindlib.box_apply
              (fun scope_body_expr ->
                ScopeDef (name, { body with scope_body_expr }))
              new_scope_body_expr )
        | Topdef (name, ty, (EAbs { binder; tys }, m)) ->
          let v, expr = Bindlib.unmbind binder in
          let ctx =
            {
              name_context = Mark.remove (TopdefName.get_info name);
              globally_bound_vars = toplevel_vars;
            }
          in
          let _free_vars, new_expr = transform_closures_expr ctx expr in
          let new_binder = Expr.bind v new_expr in
          ( Var.Map.add var ty toplevel_vars,
            var,
            Bindlib.box_apply
              (fun e -> Topdef (name, ty, e))
              (Expr.Box.lift (Expr.eabs new_binder tys m)) )
        | Topdef (name, ty, expr) ->
          let ctx =
            {
              name_context = Mark.remove (TopdefName.get_info name);
              globally_bound_vars = toplevel_vars;
            }
          in
          let _free_vars, new_expr = transform_closures_expr ctx expr in
          ( Var.Map.add var ty toplevel_vars,
            var,
            Bindlib.box_apply
              (fun e -> Topdef (name, (TAny, Mark.get ty), e))
              (Expr.Box.lift new_expr) ))
      ~last:(fun _ () -> (), Bindlib.box ())
      ~init:Var.Map.empty p.code_items
  in
  (* Now we need to further tweak [decl_ctx] because some of the user-defined
     types can have closures in them and these closured might have changed type.
     So we reset them to [TAny] and leave the typechecker to figure it out. This
     will not yield any type unification conflicts because of the special type
     [TClosureEnv]. Indeed, consider the following closure: [let f = if ... then
     fun v -> x + v else fun v -> v]. To be typed correctly once converted, this
     closure needs an existential type, this is what [TClosureEnv] is for. This
     kind of situation is difficult to produce using the Catala surface
     language: it can only happen if you store a closure which is the output of
     a scope inside a user-defined data structure, and if you do it in two
     different places in the code with two closures that don't have the same
     capture footprint. See
     [tests/tests_func/good/scope_call_func_struct_closure.catala_en]. *)
  let new_decl_ctx =
    let rec replace_fun_typs t =
      match Mark.remove t with
      | TArrow (t1, t2) ->
        ( TTuple
            [
              ( TArrow
                  ( (TClosureEnv, Pos.no_pos) :: List.map replace_fun_typs t1,
                    replace_fun_typs t2 ),
                Pos.no_pos );
              TClosureEnv, Pos.no_pos;
            ],
          Mark.get t )
      | TDefault t' -> TDefault (replace_fun_typs t'), Mark.get t
      | TOption t' -> TOption (replace_fun_typs t'), Mark.get t
      | TAny | TClosureEnv | TLit _ | TEnum _ | TStruct _ -> t
      | TArray ts -> TArray (replace_fun_typs ts), Mark.get t
      | TTuple ts -> TTuple (List.map replace_fun_typs ts), Mark.get t
    in
    {
      p.decl_ctx with
      ctx_structs =
        StructName.Map.map
          (StructField.Map.map replace_fun_typs)
          p.decl_ctx.ctx_structs;
      ctx_enums =
        EnumName.Map.map
          (EnumConstructor.Map.map replace_fun_typs)
          p.decl_ctx.ctx_enums;
      (* Toplevel definitions may not contain scope calls or take functions as
         arguments at the moment, which ensures that their interfaces aren't
         changed by the conversion *)
    }
  in
  Bindlib.box_apply
    (fun new_code_items ->
      {
        code_items = new_code_items;
        decl_ctx = new_decl_ctx;
        module_name = p.module_name;
        lang = p.lang;
      })
    new_code_items

(** {1 Hoisting closures}*)

type 'm hoisted_closure = {
  name : 'm expr Var.t;
  ty : typ;
  closure : (lcalc, 'm) boxed_gexpr (* Starts with [EAbs]. *);
}

let rec hoist_closures_expr :
    type m. string -> m expr -> m hoisted_closure list * m expr boxed =
 fun name_context e ->
  let m = Mark.get e in
  match Mark.remove e with
  | EMatch { e; cases; name } ->
    let collected_closures, new_e = (hoist_closures_expr name_context) e in
    (* We do not close the closures inside the arms of the match expression,
       since they get a special treatment at compilation to Scalc. *)
    let collected_closures, new_cases =
      EnumConstructor.Map.fold
        (fun cons e1 (collected_closures, new_cases) ->
          match Mark.remove e1 with
          | EAbs { binder; tys } ->
            let vars, body = Bindlib.unmbind binder in
            let new_collected_closures, new_body =
              (hoist_closures_expr name_context) body
            in
            let new_binder = Expr.bind vars new_body in
            ( collected_closures @ new_collected_closures,
              EnumConstructor.Map.add cons
                (Expr.eabs new_binder tys (Mark.get e1))
                new_cases )
          | _ -> failwith "should not happen")
        cases
        (collected_closures, EnumConstructor.Map.empty)
    in
    collected_closures, Expr.ematch ~e:new_e ~name ~cases:new_cases m
  | EApp { f = EAbs { binder; tys }, e1_pos; args; _ } ->
    (* let-binding, we should not close these *)
    let vars, body = Bindlib.unmbind binder in
    let collected_closures, new_body =
      (hoist_closures_expr name_context) body
    in
    let new_binder = Expr.bind vars new_body in
    let collected_closures, new_args =
      List.fold_right
        (fun arg (collected_closures, new_args) ->
          let new_collected_closures, new_arg =
            (hoist_closures_expr name_context) arg
          in
          collected_closures @ new_collected_closures, new_arg :: new_args)
        args (collected_closures, [])
    in
    ( collected_closures,
      Expr.eapp
        ~f:(Expr.eabs new_binder (tys_as_tanys tys) e1_pos)
        ~args:new_args ~tys m )
  | EAppOp
      {
        op = ((HandleDefaultOpt | Fold | Map | Filter | Reduce), _) as op;
        tys;
        args;
      } ->
    (* Special case for some operators: its arguments closures thunks because if
       you want to extract it as a function you need these closures to preserve
       evaluation order, but backends that don't support closures will simply
       extract these operators in a inlined way and skip the thunks. *)
    let collected_closures, new_args =
      List.fold_right
        (fun (arg : (lcalc, m) gexpr) (collected_closures, new_args) ->
          let m_arg = Mark.get arg in
          match Mark.remove arg with
          | EAbs { binder; tys } ->
            let vars, arg = Bindlib.unmbind binder in
            let new_collected_closures, new_arg =
              (hoist_closures_expr name_context) arg
            in
            let new_arg =
              Expr.make_abs vars new_arg tys (Expr.mark_pos m_arg)
            in
            new_collected_closures @ collected_closures, new_arg :: new_args
          | _ ->
            let new_collected_closures, new_arg =
              hoist_closures_expr name_context arg
            in
            new_collected_closures @ collected_closures, new_arg :: new_args)
        args ([], [])
    in
    collected_closures, Expr.eappop ~op ~args:new_args ~tys (Mark.get e)
  | EAbs { tys; _ } ->
    (* this is the closure we want to hoist*)
    let closure_var = Var.make ("closure_" ^ name_context) in
    (* TODO: This will end up as a toplevel name. However for now we assume
       toplevel names are unique, but this breaks this assertions and can lead
       to name wrangling in the backends. We need to have a better system for
       name disambiguation when for instance printing to Dcalc/Lcalc/Scalc but
       also OCaml, Python, etc. *)
    ( [
        {
          name = closure_var;
          ty = TArrow (tys, (TAny, Expr.mark_pos m)), Expr.mark_pos m;
          closure = Expr.rebox e;
        };
      ],
      Expr.make_var closure_var m )
  | EApp _ | EStruct _ | EStructAccess _ | ETuple _ | ETupleAccess _ | EInj _
  | EArray _ | ELit _ | EAssert _ | EFatalError _ | EAppOp _ | EIfThenElse _
  | ERaiseEmpty | ECatchEmpty _ | EVar _ ->
    Expr.map_gather ~acc:[] ~join:( @ ) ~f:(hoist_closures_expr name_context) e
  | EExternal _ -> failwith "unimplemented"
  | _ -> .

let hoist_closures_scope_let name_context scope_body_expr =
  BoundList.fold_right
    ~f:(fun scope_let var_next (hoisted_closures, next_scope_lets) ->
      let new_hoisted_closures, new_scope_let_expr =
        (hoist_closures_expr (Bindlib.name_of var_next))
          scope_let.scope_let_expr
      in
      ( new_hoisted_closures @ hoisted_closures,
        Bindlib.box_apply2
          (fun scope_let_next scope_let_expr ->
            Cons ({ scope_let with scope_let_expr }, scope_let_next))
          (Bindlib.bind_var var_next next_scope_lets)
          (Expr.Box.lift new_scope_let_expr) ))
    ~init:(fun res ->
      let hoisted_closures, new_scope_let_expr =
        (hoist_closures_expr name_context) res
      in
      (* INVARIANT here: the result expr of a scope is simply a struct
         containing all output variables so nothing should be converted here, so
         no need to take into account free variables. *)
      ( hoisted_closures,
        Bindlib.box_apply
          (fun res -> Last res)
          (Expr.Box.lift new_scope_let_expr) ))
    scope_body_expr

let rec hoist_closures_code_item_list
    (code_items : (lcalc, 'm) gexpr code_item_list) :
    (lcalc, 'm) gexpr code_item_list Bindlib.box =
  match code_items with
  | Last () -> Bindlib.box (Last ())
  | Cons (code_item, next_code_items) ->
    let code_item_var, next_code_items = Bindlib.unbind next_code_items in
    let hoisted_closures, new_code_item =
      match code_item with
      | ScopeDef (name, body) ->
        let scope_input_var, scope_body_expr =
          Bindlib.unbind body.scope_body_expr
        in
        let new_hoisted_closures, new_scope_lets =
          hoist_closures_scope_let
            (fst (ScopeName.get_info name))
            scope_body_expr
        in
        let new_scope_body_expr =
          Bindlib.bind_var scope_input_var new_scope_lets
        in
        ( new_hoisted_closures,
          Bindlib.box_apply
            (fun scope_body_expr ->
              ScopeDef (name, { body with scope_body_expr }))
            new_scope_body_expr )
      | Topdef (name, ty, (EAbs { binder; tys }, m)) ->
        let v, expr = Bindlib.unmbind binder in
        let new_hoisted_closures, new_expr =
          hoist_closures_expr (Mark.remove (TopdefName.get_info name)) expr
        in
        let new_binder = Expr.bind v new_expr in
        ( new_hoisted_closures,
          Bindlib.box_apply
            (fun e -> Topdef (name, ty, e))
            (Expr.Box.lift (Expr.eabs new_binder tys m)) )
      | Topdef (name, ty, expr) ->
        let new_hoisted_closures, new_expr =
          hoist_closures_expr (Mark.remove (TopdefName.get_info name)) expr
        in
        ( new_hoisted_closures,
          Bindlib.box_apply
            (fun e -> Topdef (name, (TAny, Mark.get ty), e))
            (Expr.Box.lift new_expr) )
    in
    let next_code_items = hoist_closures_code_item_list next_code_items in
    let next_code_items =
      Bindlib.box_apply2
        (fun next_code_items new_code_item ->
          Cons (new_code_item, next_code_items))
        (Bindlib.bind_var code_item_var next_code_items)
        new_code_item
    in
    let next_code_items =
      List.fold_left
        (fun (next_code_items : (lcalc, 'm) gexpr code_item_list Bindlib.box)
             (hoisted_closure : 'm hoisted_closure) ->
          let next_code_items =
            Bindlib.bind_var hoisted_closure.name next_code_items
          in
          let closure, closure_mark = hoisted_closure.closure in
          Bindlib.box_apply2
            (fun next_code_items closure ->
              Cons
                ( Topdef
                    ( TopdefName.fresh []
                        ( Bindlib.name_of hoisted_closure.name,
                          Expr.mark_pos closure_mark ),
                      hoisted_closure.ty,
                      (closure, closure_mark) ),
                  next_code_items ))
            next_code_items closure)
        next_code_items hoisted_closures
    in
    next_code_items

let hoist_closures_program (p : 'm program) : 'm program Bindlib.box =
  let new_code_items = hoist_closures_code_item_list p.code_items in
  (*TODO: we need to insert the hoisted closures just before the scopes they
    belong to, because some of them call sub-scopes and putting them all at the
    beginning breaks dependency ordering. *)
  Bindlib.box_apply
    (fun new_code_items -> { p with code_items = new_code_items })
    new_code_items

(** {1 Closure conversion}*)

let closure_conversion (p : 'm program) : untyped program =
  let new_p = transform_closures_program p in
  let new_p = hoist_closures_program (Bindlib.unbox new_p) in
  (* FIXME: either fix the types of the marks, or remove the types annotations
     during the main processing (rather than requiring a new traversal) *)
  Program.untype (Bindlib.unbox new_p)
OCaml

Innovation. Community. Security.