package catala

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file explain.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
(* This file is part of the Catala compiler, a specification language for tax
   and social benefits computation rules. Copyright (C) 2023 Inria, contributor:
   Louis Gesbert <louis.gesbert@inria.fr>.

   Licensed under the Apache License, Version 2.0 (the "License"); you may not
   use this file except in compliance with the License. You may obtain a copy of
   the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
   WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
   License for the specific language governing permissions and limitations under
   the License. *)

open Catala_utils
open Shared_ast

type flags = {
  with_conditions : bool;
  with_cleanup : bool;
  merge_level : int;
  format : [ `Dot | `Convert of string ];
  show : string option;
  output : Global.raw_file option;
  base_src_url : string;
}

(* -- Definition of the lazy interpreter -- *)

let log fmt = Format.ifprintf Format.err_formatter (fmt ^^ "@\n")
let error e = Message.error ~pos:(Expr.pos e)
let noassert = true

module Env = struct
  type t = Env of (expr, elt) Var.Map.t
  and elt = { base : expr * t; mutable reduced : expr * t }
  and expr = (dcalc, annot custom) gexpr
  and annot = { conditions : (expr * t) list }

  let find v (Env t) = Var.Map.find v t

  (* let get_bas v t = let v, env = find v t in v, !env *)
  let add v e e_env (Env t) =
    Env (Var.Map.add v { base = e, e_env; reduced = e, e_env } t)

  let empty = Env Var.Map.empty

  let join (Env t1) (Env t2) =
    Env
      (Var.Map.union
         (fun _ x1 x2 ->
           (* assert (x1 == x2); *)
           Some x2)
         t1 t2)

  let print ppf (Env t) =
    Format.pp_print_list ~pp_sep:Format.pp_print_space
      (fun ppf v -> Print.var_debug ppf v)
      ppf (Var.Map.keys t)
end

type expr = Env.expr
type annot = Env.annot = { conditions : (expr * Env.t) list }

type laziness_level = {
  eval_struct : bool;
      (* if true, evaluate members of structures, tuples, etc. *)
  eval_op : bool;
      (* if false, evaluate the operands but keep e.g. `3 + 4` as is *)
  eval_match : bool;
  eval_default : bool;
  (* if false, stop evaluating as soon as you can discriminate with
     `EEmptyError` *)
  eval_vars : expr Var.t -> bool;
      (* if false, variables are only resolved when they point to another
         unchanged variable *)
}

let value_level =
  {
    eval_struct = false;
    eval_op = true;
    eval_match = true;
    eval_default = true;
    eval_vars = (fun _ -> true);
  }

let add_condition ~condition e =
  Mark.map_mark
    (fun (Custom { pos; custom = { conditions } }) ->
      Custom { pos; custom = { conditions = condition :: conditions } })
    e

let add_conditions ~conditions e =
  Mark.map_mark
    (fun (Custom { pos; custom = { conditions = c } }) ->
      Custom { pos; custom = { conditions = conditions @ c } })
    e

let neg_op = function
  | Op.Xor ->
    Some Op.Eq
    (* Alright, we are cheating here since the type is wider, but the
       transformation preserves the semantics *)
  | Op.Lt_int_int -> Some Op.Gte_int_int
  | Op.Lt_rat_rat -> Some Op.Gte_rat_rat
  | Op.Lt_mon_mon -> Some Op.Gte_mon_mon
  | Op.Lt_dat_dat -> Some Op.Gte_dat_dat
  | Op.Lt_dur_dur -> Some Op.Gte_dur_dur
  | Op.Lte_int_int -> Some Op.Gt_int_int
  | Op.Lte_rat_rat -> Some Op.Gt_rat_rat
  | Op.Lte_mon_mon -> Some Op.Gt_mon_mon
  | Op.Lte_dat_dat -> Some Op.Gt_dat_dat
  | Op.Lte_dur_dur -> Some Op.Gt_dur_dur
  | Op.Gt_int_int -> Some Op.Lte_int_int
  | Op.Gt_rat_rat -> Some Op.Lte_rat_rat
  | Op.Gt_mon_mon -> Some Op.Lte_mon_mon
  | Op.Gt_dat_dat -> Some Op.Lte_dat_dat
  | Op.Gt_dur_dur -> Some Op.Lte_dur_dur
  | Op.Gte_int_int -> Some Op.Lt_int_int
  | Op.Gte_rat_rat -> Some Op.Lt_rat_rat
  | Op.Gte_mon_mon -> Some Op.Lt_mon_mon
  | Op.Gte_dat_dat -> Some Op.Lt_dat_dat
  | Op.Gte_dur_dur -> Some Op.Lt_dur_dur
  | _ -> None

let rec bool_negation pos e =
  match Expr.skip_wrappers e with
  | ELit (LBool true), m -> ELit (LBool false), m
  | ELit (LBool false), m -> ELit (LBool true), m
  | EAppOp { op = Op.Not, _; args = [(e, _)] }, m -> e, m
  | (EAppOp { op = op, opos; tys; args = [e1; e2] }, m) as e -> (
    match op with
    | Op.And ->
      ( EAppOp
          {
            op = Op.Or, opos;
            tys;
            args = [bool_negation pos e1; bool_negation pos e2];
          },
        m )
    | Op.Or ->
      ( EAppOp
          {
            op = Op.And, opos;
            tys;
            args = [bool_negation pos e1; bool_negation pos e2];
          },
        m )
    | op -> (
      match neg_op op with
      | Some op -> EAppOp { op = op, opos; tys; args = [e1; e2] }, m
      | None ->
        ( EAppOp
            {
              op = Op.Not, opos;
              tys = [TLit TBool, Expr.mark_pos m];
              args = [e];
            },
          m )))
  | (_, m) as e ->
    ( EAppOp
        { op = Op.Not, pos; tys = [TLit TBool, Expr.mark_pos m]; args = [e] },
      m )

let rec lazy_eval : decl_ctx -> Env.t -> laziness_level -> expr -> expr * Env.t
    =
 fun ctx env llevel e0 ->
  let eval_to_value ?(eval_default = true) env e =
    lazy_eval ctx env { value_level with eval_default } e
  in
  match e0 with
  | EVar v, _ ->
    if (not llevel.eval_default) || not (llevel.eval_vars v) then e0, env
    else
      (* Variables reducing to EEmpty should not propagate to parent EDefault
         (?) *)
      let env_elt =
        try Env.find v env
        with Var.Map.Not_found _ ->
          error e0 "Variable %a undefined [@[<hv>%a@]]" Print.var_debug v
            Env.print env
      in
      let e, env1 = env_elt.reduced in
      let r, env1 = lazy_eval ctx env1 llevel e in
      env_elt.reduced <- r, env1;
      r, Env.join env env1
  | EAppOp { op = op, opos; args; tys }, m -> (
    if
      (not llevel.eval_default)
      && not (List.equal Expr.equal args [ELit LUnit, m])
      (* Applications to () encode thunked default terms *)
    then e0, env
    else
      match op with
      | (Op.Map | Op.Filter | Op.Reduce | Op.Fold | Op.Length) as op -> (
        (* when not llevel.eval_op *)
        (* Distribute collection operations to the terms rather than use their
           runtime implementations *)
        let arr = List.hd (List.rev args) in
        (* All these ops have the array as last arg *)
        let aty = List.hd (List.rev tys) in
        match eval_to_value env arr with
        | (EArray elts, _), env ->
          let eapp f e = EApp { f; args = [e]; tys = [] }, m in
          let empty_condition () =
            (* Is the expression [length(arr) = 0] *)
            let pos = Expr.mark_pos m in
            ( EAppOp
                {
                  op = Op.Eq_int_int, opos;
                  tys = [TLit TInt, pos; TLit TInt, pos];
                  args =
                    [
                      ( EAppOp
                          { op = Op.Length, opos; tys = [aty]; args = [arr] },
                        m );
                      ELit (LInt (Runtime.integer_of_int 0)), m;
                    ];
                },
              m )
          in
          let e, env =
            match op, args, elts with
            | (Op.Map | Op.Filter), _, [] ->
              let e = EArray [], m in
              add_condition ~condition:(empty_condition (), env) e, env
            | (Op.Reduce | Op.Fold), [_; dft; _], [] ->
              add_condition ~condition:(empty_condition (), env) dft, env
            | Op.Map, [f; _], elts -> (EArray (List.map (eapp f) elts), m), env
            | Op.Filter, [f; _], elts ->
              let rev_elts, env =
                List.fold_left
                  (fun (elts, env) e ->
                    let cond = eapp f e in
                    match lazy_eval ctx env value_level cond with
                    | (ELit (LBool true), _), _ ->
                      add_condition ~condition:(cond, env) e :: elts, env
                    | (ELit (LBool false), _), _ -> elts, env
                    | _ -> assert false)
                  ([], env) elts
              in
              (EArray (List.rev rev_elts), m), env
            (* Note: no annots for removed terms, even if the result is empty *)
            | Op.Reduce, [f; _; _], elt0 :: elts ->
              let e =
                List.fold_left
                  (fun acc elt -> EApp { f; args = [acc; elt]; tys = [] }, m)
                  elt0 elts
              in
              e, env
            | Op.Fold, [f; base; _], elts ->
              let e =
                List.fold_left
                  (fun acc elt -> EApp { f; args = [acc; elt]; tys = [] }, m)
                  base elts
              in
              e, env
            | Op.Length, [_], elts ->
              (ELit (LInt (Runtime.integer_of_int (List.length elts))), m), env
            | _ -> assert false
          in
          (* We did a transformation (removing the outer operator), but further
             evaluation may be needed to guarantee that [llevel] is reached *)
          lazy_eval ctx env { llevel with eval_match = true } e
        | _ -> (EAppOp { op = op, opos; args; tys }, m), env)
      | _ ->
        let env, args =
          List.fold_left_map
            (fun env e ->
              let e, env = lazy_eval ctx env llevel e in
              env, e)
            env args
        in
        if not llevel.eval_op then (EAppOp { op = op, opos; args; tys }, m), env
        else
          let renv = ref env in
          (* Dirty workaround returning env and conds from evaluate_operator *)
          let eval e =
            let e, env = lazy_eval ctx !renv llevel e in
            renv := env;
            e
          in
          let e =
            Interpreter.evaluate_operator eval (op, opos) m Global.En
              (* Default language to English but this should not raise any error
                 messages so we don't care. *)
              args
          in
          e, !renv)
  (* fixme: this forwards eempty *)
  | EApp { f; args }, m -> (
    if
      (not llevel.eval_default)
      && not (List.equal Expr.equal args [ELit LUnit, m])
      (* Applications to () encode thunked default terms *)
    then e0, env
    else
      match eval_to_value env f with
      | (EAbs { binder; _ }, _), env ->
        let vars, body = Bindlib.unmbind binder in
        log "@[<v 2>@[<hov 4>{";
        let env =
          Seq.fold_left2
            (fun env1 var e ->
              log "@[<hov 2>LET %a = %a@]@ " Print.var_debug var Expr.format e;
              Env.add var e env env1)
            env (Array.to_seq vars) (List.to_seq args)
        in
        log "@]@[<hov 4>IN [%a]@]" (Print.expr ~debug:true ()) body;
        let e, env = lazy_eval ctx env llevel body in
        log "@]}";
        e, env
      | e, _ -> error e "Invalid apply on %a" Expr.format e)
  | (EAbs _ | ELit _ | EEmpty), _ -> e0, env (* these are values *)
  | (EStruct _ | ETuple _ | EInj _ | EArray _), _ ->
    if not llevel.eval_struct then e0, env
    else
      let env, e =
        Expr.map_gather ~acc:env ~join:Env.join
          ~f:(fun e ->
            let e, env = lazy_eval ctx env llevel e in
            env, Expr.box e)
          e0
      in
      Expr.unbox e, env
  | EStructAccess { e; name; field }, _ -> (
    if not llevel.eval_default then e0, env
    else
      match eval_to_value env e with
      | (EStruct { name = n; fields }, _), env when StructName.equal name n ->
        let e, env =
          lazy_eval ctx env llevel (StructField.Map.find field fields)
        in
        e, env
      | _ -> e0, env)
  | ETupleAccess { e; index; size }, _ -> (
    if not llevel.eval_default then e0, env
    else
      match eval_to_value env e with
      | (ETuple es, _), env when List.length es = size ->
        lazy_eval ctx env llevel (List.nth es index)
      | e, _ -> error e "Invalid tuple access on %a" Expr.format e)
  | EMatch { e; name; cases }, _ -> (
    if not llevel.eval_match then e0, env
    else
      match eval_to_value env e with
      | (EInj { name = n; cons; e = e1 }, m), env when EnumName.equal name n ->
        let condition = e, env in
        (* FIXME: condition should be "e TEST_MATCH n" but we don't have a
           concise expression to express that *)
        let e1, env =
          lazy_eval ctx env llevel
            ( EApp
                {
                  f = EnumConstructor.Map.find cons cases;
                  args = [e1];
                  tys = [];
                },
              m )
        in
        add_condition ~condition e1, env
      | e, _ -> error e "Invalid match argument %a" Expr.format e)
  | EDefault { excepts; just; cons }, m -> (
    let excs =
      List.filter_map
        (fun e ->
          match eval_to_value env e ~eval_default:false with
          | (EEmpty, _), _ -> None
          | e -> Some e)
        excepts
    in
    match excs with
    | [] -> (
      match eval_to_value env just with
      | (ELit (LBool true), _), _ ->
        let condition = just, env in
        let e, env = lazy_eval ctx env llevel cons in
        add_condition ~condition e, env
      | (ELit (LBool false), _), _ -> (EEmpty, m), env
      (* Note: conditions for empty are skipped *)
      | e, _ -> error e "Invalid exception justification %a" Expr.format e)
    | [(e, env)] ->
      log "@[<hov 5>EVAL %a@]" Expr.format e;
      lazy_eval ctx env llevel e
    | _ :: _ :: _ ->
      Message.error ~pos:(Expr.mark_pos m)
        ~extra_pos:(List.map (fun (e, _) -> "", Expr.pos e) excs)
        "Conflicting exceptions")
  | EPureDefault e, _ -> lazy_eval ctx env llevel e
  | EIfThenElse { cond; etrue; efalse }, m -> (
    match eval_to_value env cond with
    | (ELit (LBool true), _), _ ->
      let condition = cond, env in
      let e, env = lazy_eval ctx env llevel etrue in
      add_condition ~condition e, env
    | (ELit (LBool false), m), _ -> (
      let condition = bool_negation (Expr.mark_pos m) cond, env in
      let e, env = lazy_eval ctx env llevel efalse in
      match efalse with
      (* The negated condition is not added for nested [else if] to reduce
         verbosity *)
      | EIfThenElse _, _ -> e, env
      | _ -> add_condition ~condition e, env)
    | e, _ -> error e "Invalid condition %a" Expr.format e)
  | EErrorOnEmpty e, _ -> (
    match eval_to_value env e ~eval_default:false with
    | ((EEmpty, _) as e'), _ ->
      (* This does _not_ match the eager semantics ! *)
      error e' "This value is undefined %a" Expr.format e
    | e, env -> lazy_eval ctx env llevel e)
  | EAssert e, m -> (
    if noassert then (ELit LUnit, m), env
    else
      match eval_to_value env e with
      | (ELit (LBool true), m), env -> (ELit LUnit, m), env
      | (ELit (LBool false), _), _ ->
        error e "Assert failure (%a)" Expr.format e error e
          "Assert failure (%a)" Expr.format e
      | _ -> error e "Invalid assertion condition %a" Expr.format e)
  | EFatalError err, _ ->
    error e0 "%a" Format.pp_print_text (Runtime.error_message err)
  | EExternal _, _ -> assert false (* todo *)
  | _ -> .

let result_level base_vars =
  {
    value_level with
    eval_struct = true;
    eval_op = false;
    eval_vars = (fun v -> not (Var.Set.mem v base_vars));
  }

let interpret_program (prg : ('dcalc, 'm) gexpr program) (scope : ScopeName.t) :
    ('t, 'm) gexpr * Env.t =
  let ctx = prg.decl_ctx in
  let (all_env, scopes), () =
    BoundList.fold_left prg.code_items ~init:(Env.empty, ScopeName.Map.empty)
      ~f:(fun (env, scopes) item v ->
        match item with
        | ScopeDef (name, body) ->
          let e = Scope.to_expr ctx body in
          let e = Expr.remove_logging_calls (Expr.unbox e) in
          ( Env.add v (Expr.unbox e) env env,
            ScopeName.Map.add name (v, body.scope_body_input_struct) scopes )
        | Topdef (_, _, e) -> Env.add v e env env, scopes)
  in
  let scope_v, _scope_arg_struct = ScopeName.Map.find scope scopes in
  let e, env = (Env.find scope_v all_env).base in
  log "=====================";
  log "%a" (Print.expr ~debug:true ()) e;
  log "=====================";
  (* let m = Mark.get e in *)
  (* let application_arg =
   *   Expr.estruct scope_arg_struct
   *     (StructField.Map.map
   *        (function
   *          | TArrow (ty_in, ty_out), _ ->
   *            Expr.make_abs
   *              [| Var.make "_" |]
   *              (Bindlib.box EEmptyError, Expr.with_ty m ty_out)
   *              ty_in (Expr.mark_pos m)
   *          | ty -> Expr.evar (Var.make "undefined_input") (Expr.with_ty m ty))
   *        (StructName.Map.find scope_arg_struct ctx.ctx_structs))
   *     m
   * in *)
  match e with
  | EAbs { binder; _ }, _ ->
    let _vars, e = Bindlib.unmbind binder in
    let rec get_vars base_vars env = function
      | EApp { f = EAbs { binder; _ }, _; args = [arg] }, _ ->
        let vars, e = Bindlib.unmbind binder in
        let var = vars.(0) in
        let base_vars =
          match Expr.skip_wrappers arg with
          | ELit _, _ -> Var.Set.add var base_vars
          | _ -> base_vars
        in
        let env = Env.add var arg env env in
        get_vars base_vars env e
      | e -> base_vars, env, e
    in
    let base_vars, env, e = get_vars Var.Set.empty env e in
    lazy_eval ctx env (result_level base_vars) e
  | _ -> assert false

let print_value_with_env ctx ppf env expr =
  let already_printed = ref Var.Set.empty in
  let rec aux env ppf expr =
    Print.expr ~debug:true () ppf expr;
    Format.pp_print_cut ppf ();
    let vars = Var.Set.diff (Expr.free_vars expr) !already_printed in
    Var.Set.iter
      (fun v ->
        let e, env = (Env.find v env).reduced in
        let e, env = lazy_eval ctx env (result_level Var.Set.empty) e in
        Format.fprintf ppf "@[<hov 2>%a %a =@ %a =@ %a@]@,@," Print.punctuation
          "»" Print.var_debug v Expr.format
          (fst (lazy_eval ctx env value_level e))
          (aux env) e)
      vars;
    already_printed := Var.Set.union !already_printed vars;
    Format.pp_print_cut ppf ()
  in
  Format.pp_open_vbox ppf 2;
  aux env ppf expr;
  Format.pp_close_box ppf ()

module V = struct
  type t = expr

  let compare a b = Expr.compare a b

  let hash = function
    | EVar v, _ -> Var.hash v
    | EAbs { tys; _ }, _ -> Hashtbl.hash tys
    | e, _ -> Hashtbl.hash e

  let equal a b = Expr.equal a b
  let format = Expr.format
end

module E = struct
  type hand_side = Lhs of string | Rhs of string
  type t = { side : hand_side option; condition : bool }

  let compare x y =
    match Bool.compare x.condition y.condition with
    | 0 ->
      Option.compare
        (fun x y ->
          match x, y with
          | Lhs s, Lhs t | Rhs s, Rhs t -> String.compare s t
          | Lhs _, Rhs _ -> -1
          | Rhs _, Lhs _ -> 1)
        x.side y.side
    | n -> n

  let default = { side = None; condition = false }
end

module G = Graph.Persistent.Digraph.AbstractLabeled (V) (E)

let op_kind = function
  | Op.Add_int_int | Add_rat_rat | Add_mon_mon | Add_dat_dur _ | Add_dur_dur
  | Sub_int_int | Sub_rat_rat | Sub_mon_mon | Sub_dat_dat | Sub_dat_dur
  | Sub_dur_dur ->
    `Sum
  | Mult_int_int | Mult_rat_rat | Mult_mon_rat | Mult_dur_int | Div_int_int
  | Div_rat_rat | Div_mon_rat | Div_mon_mon | Div_dur_dur ->
    `Product
  | Round_mon | Round_rat -> `Round
  | Map | Filter | Reduce | Fold -> `Fct
  | _ -> `Other

module GTopo = Graph.Topological.Make (G)

let to_graph ctx env expr =
  let rec aux env g e =
    (* lazy_eval ctx env (result_level base_vars) e *)
    match Expr.skip_wrappers e with
    | ( EAppOp { op = (ToRat_int | ToRat_mon | ToMoney_rat), _; args = [arg]; _ },
        _ ) ->
      aux env g arg
    (* we skip conversions *)
    | ELit l, _ ->
      let v = G.V.create e in
      G.add_vertex g v, v
    | (EVar var, _) as e ->
      let v = G.V.create e in
      let g = G.add_vertex g v in
      let child, env = (Env.find var env).base in
      let g, child_v = aux env g child in
      G.add_edge g v child_v, v
    | EAppOp { op = _; args; _ }, _ ->
      let v = G.V.create e in
      let g = G.add_vertex g v in
      let g, children = List.fold_left_map (aux env) g args in
      List.fold_left (fun g -> G.add_edge g v) g children, v
    | EInj { e; _ }, _ -> aux env g e
    | EStruct { fields; _ }, _ ->
      let v = G.V.create e in
      let g = G.add_vertex g v in
      let args = StructField.Map.values fields in
      let g, children = List.fold_left_map (aux env) g args in
      List.fold_left (fun g -> G.add_edge g v) g children, v
    | _ ->
      Format.eprintf "%a" Expr.format e;
      assert false
  in
  let base_g, _ = aux env G.empty expr in
  base_g

let rec is_const e =
  match Expr.skip_wrappers e with
  | ELit _, _ -> true
  | EInj { e; _ }, _ -> is_const e
  | EStruct { fields; _ }, _ ->
    StructField.Map.for_all (fun _ e -> is_const e) fields
  | EArray el, _ -> List.for_all is_const el
  | _ -> false

let program_to_graph
    options
    (prg : (dcalc, 'm) gexpr program)
    (scope : ScopeName.t) : G.t * expr Var.Set.t * Env.t =
  let ctx = prg.decl_ctx in
  let customize =
    Expr.map_marks ~f:(fun m ->
        Custom { pos = Expr.mark_pos m; custom = { conditions = [] } })
  in
  let (all_env, scopes), () =
    BoundList.fold_left prg.code_items ~init:(Env.empty, ScopeName.Map.empty)
      ~f:(fun (env, scopes) item v ->
        match item with
        | ScopeDef (name, body) ->
          let e = Scope.to_expr ctx body in
          let e = customize (Expr.unbox e) in
          let e = Expr.remove_logging_calls (Expr.unbox e) in
          let e = Expr.rename_vars (Expr.unbox e) in
          ( Env.add (Var.translate v) (Expr.unbox e) env env,
            ScopeName.Map.add name (v, body.scope_body_input_struct) scopes )
        | Topdef (_, _, e) ->
          Env.add (Var.translate v) (Expr.unbox (customize e)) env env, scopes)
  in
  let scope_v, _scope_arg_struct = ScopeName.Map.find scope scopes in
  let e, env = (Env.find (Var.translate scope_v) all_env).base in
  let e =
    match e with
    | EAbs { binder; _ }, _ ->
      let _vars, e = Bindlib.unmbind binder in
      e
    | _ -> assert false
  in
  let rec get_vars base_vars env = function
    | EApp { f = EAbs { binder; _ }, _; args = [arg] }, _ ->
      let vars, e = Bindlib.unmbind binder in
      let var = vars.(0) in
      let base_vars =
        if is_const arg then Var.Set.add var base_vars else base_vars
      in
      let env = Env.add var arg env env in
      get_vars base_vars env e
    | e -> base_vars, env, e
  in
  let base_vars, env, e = get_vars Var.Set.empty env e in
  let e1, env = lazy_eval ctx env (result_level base_vars) e in
  let level =
    {
      value_level with
      eval_struct = false;
      eval_op = false;
      eval_match = false;
      eval_vars = (fun v -> false);
    }
  in
  let rec aux parent (g, var_vertices, env0) e =
    let e, env0 = lazy_eval ctx env0 level e in
    let m = Mark.get e in
    let (Custom { custom = { conditions; _ }; _ }) = m in
    let g, var_vertices, env0 =
      (* add conditions *)
      if not options.with_conditions then g, var_vertices, env0
      else
        match parent with
        | None -> g, var_vertices, env0
        | Some parent ->
          List.fold_left
            (fun (g, var_vertices, env0) (econd, env) ->
              let (g, var_vertices, env), vcond =
                aux (Some parent) (g, var_vertices, env) econd
              in
              ( G.add_edge_e g
                  (G.E.create parent { side = None; condition = true } vcond),
                var_vertices,
                Env.join env0 env ))
            (g, var_vertices, env0) conditions
    in
    let e = Mark.set m (Expr.skip_wrappers e) in
    match e with
    | ( EAppOp
          { op = (ToRat_int | ToRat_mon | ToMoney_rat), _; args = [arg]; tys },
        _ ) ->
      aux parent (g, var_vertices, env0) (Mark.set m arg)
    (* we skip conversions *)
    | ELit l, _ ->
      let v = G.V.create e in
      (G.add_vertex g v, var_vertices, env0), v
    | EVar var, _ -> (
      try (g, var_vertices, env0), Var.Map.find var var_vertices
      with Var.Map.Not_found _ -> (
        try
          let child, env = (Env.find var env0).base in
          let m = Mark.get child in
          let v = G.V.create (Mark.set m e) in
          let g = G.add_vertex g v in
          let (g, var_vertices, env), child_v =
            aux (Some v) (g, var_vertices, Env.join env0 env) child
          in
          let var_vertices =
            (* Duplicates non-base constant var nodes *)
            if Var.Set.mem var base_vars then var_vertices
            else
              let rec is_lit v =
                match G.V.label v with
                | ELit _, _ -> true
                | EVar var, _ when not (Var.Set.mem var base_vars) -> (
                  match G.succ g v with [v] -> is_lit v | _ -> false)
                | _ -> false
              in
              if is_lit child_v then var_vertices
                (* This duplicates constant var nodes *)
              else Var.Map.add var v var_vertices
          in
          (G.add_edge g v child_v, var_vertices, env), v
        with Var.Map.Not_found _ ->
          Message.warning "VAR NOT FOUND: %a" Print.var var;
          let v = G.V.create e in
          let g = G.add_vertex g v in
          (g, var_vertices, env), v))
    | EAppOp { op = (Map | Filter | Reduce | Fold), _; args = _ :: args; _ }, _
      ->
      (* First argument (which is a function) is ignored *)
      let v = G.V.create e in
      let g = G.add_vertex g v in
      let (g, var_vertices, env), children =
        List.fold_left_map (aux (Some v)) (g, var_vertices, env0) args
      in
      ( (List.fold_left (fun g -> G.add_edge g v) g children, var_vertices, env),
        v )
    | EAppOp { op = op, _; args = [lhs; rhs]; _ }, _ ->
      let v = G.V.create e in
      let g = G.add_vertex g v in
      let (g, var_vertices, env), lhs =
        aux (Some v) (g, var_vertices, env0) lhs
      in
      let (g, var_vertices, env), rhs =
        aux (Some v) (g, var_vertices, env) rhs
      in
      let lhs_label, rhs_label =
        match op with
        | Add_int_int | Add_rat_rat | Add_mon_mon | Add_dat_dur _ | Add_dur_dur
          ->
          Some (E.Lhs "⊕"), Some (E.Rhs "⊕")
        | Sub_int_int | Sub_rat_rat | Sub_mon_mon | Sub_dat_dat | Sub_dat_dur
        | Sub_dur_dur ->
          Some (E.Lhs "⊕"), Some (E.Rhs "⊖")
        | Mult_int_int | Mult_rat_rat | Mult_mon_rat | Mult_dur_int ->
          Some (E.Lhs "⊗"), Some (E.Rhs "⊗")
        | Div_int_int | Div_rat_rat | Div_mon_rat | Div_mon_mon | Div_dur_dur ->
          Some (E.Lhs "⊗"), Some (E.Rhs "⊘")
        | _ -> None, None
      in
      let g =
        G.add_edge_e g
          (G.E.create v { side = lhs_label; condition = false } lhs)
      in
      let g =
        G.add_edge_e g
          (G.E.create v { side = rhs_label; condition = false } rhs)
      in
      (g, var_vertices, env), v
    | EAppOp { op = _; args; _ }, _ ->
      let v = G.V.create e in
      let g = G.add_vertex g v in
      let (g, var_vertices, env), children =
        List.fold_left_map (aux (Some v)) (g, var_vertices, env0) args
      in
      ( (List.fold_left (fun g -> G.add_edge g v) g children, var_vertices, env),
        v )
    | EInj { e; _ }, _ -> aux parent (g, var_vertices, env0) e
    | EStruct { fields; _ }, _ ->
      let v = G.V.create e in
      let g = G.add_vertex g v in
      let args = StructField.Map.values fields in
      let (g, var_vertices, env), children =
        List.fold_left_map (aux (Some v)) (g, var_vertices, env0) args
      in
      ( (List.fold_left (fun g -> G.add_edge g v) g children, var_vertices, env),
        v )
    | EArray elts, _ ->
      let v = G.V.create e in
      let g = G.add_vertex g v in
      let (g, var_vertices, env), children =
        List.fold_left_map (aux (Some v)) (g, var_vertices, env0) elts
      in
      ( (List.fold_left (fun g -> G.add_edge g v) g children, var_vertices, env),
        v )
    | EAbs _, _ ->
      (g, var_vertices, env), G.V.create e (* (testing -> ignored) *)
    | EMatch { name; e; cases }, _ -> aux parent (g, var_vertices, env0) e
    | EStructAccess { e; field; _ }, _ ->
      let v = G.V.create e in
      let g = G.add_vertex g v in
      let (g, var_vertices, env), child =
        aux (Some v) (g, var_vertices, env0) e
      in
      (G.add_edge g v child, var_vertices, env), v
    | _ ->
      Format.eprintf "%a" Expr.format e;
      assert false
  in
  let (g, vmap, env), _ = aux None (G.empty, Var.Map.empty, env) e in
  log "BASE: @[<v>%a@]"
    (Format.pp_print_list Print.var)
    (Var.Set.elements base_vars);
  g, base_vars, env

let reverse_graph g =
  G.fold_edges_e
    (fun e g ->
      G.add_edge_e (G.remove_edge_e g e)
        (G.E.create (G.E.dst e) (G.E.label e) (G.E.src e)))
    g g

let subst_by v1 e2 e =
  let rec f = function
    | EVar v, m when Var.equal v v1 -> Expr.box e2
    | e -> Expr.map ~f ~op:Fun.id e
  in
  Expr.unbox (f e)

let map_vertices f g =
  G.fold_vertex
    (fun v g ->
      let v' = G.V.create (f v) in
      let g =
        G.fold_pred_e
          (fun e g -> G.add_edge_e g (G.E.create (G.E.src e) (G.E.label e) v'))
          g v g
      in
      let g =
        G.fold_succ_e
          (fun e g -> G.add_edge_e g (G.E.create v' (G.E.label e) (G.E.dst e)))
          g v g
      in
      G.remove_vertex g v)
    g g

let rec graph_cleanup options g base_vars =
  (* let _g =
   *   let module GCtr = Graph.Contraction.Make (G) in
   *   GCtr.contract
   *     (fun e ->
   *       G.E.label e = None
   *       &&
   *       match G.V.label (G.E.src e), G.V.label (G.E.dst e) with
   *       | (EVar _, _), (EVar _, _) -> true
   *       | ( (EApp { f = EOp { op = op1; _ }, _; args = [_; _] }, _),
   *           (EApp { f = EOp { op = op2; _ }, _; args = [_; _] }, _) ) -> (
   *         match op_kind op1, op_kind op2 with
   *         | `Sum, `Sum -> true
   *         | `Prod, `Prod -> true
   *         | _ -> false)
   *       | _ -> false)
   *     g
   * in *)
  let module GTop = Graph.Topological.Make (G) in
  let module VMap = Map.Make (struct
    include G.V

    let format ppf v = V.format ppf (G.V.label v)
  end) in
  let g, vmap =
    (* Remove separate nodes for variable literal values *)
    G.fold_vertex
      (fun v (g, vmap) ->
        match G.V.label v with
        (* | (ELit _, _), [EVar _, _] -> G.remove_vertex g v *)
        | ELit _, m ->
          ( G.remove_vertex g v,
            (* Forward position of the deleted literal to its parent *)
            List.fold_left
              (fun vmap v ->
                let out =
                  G.succ_e g v
                  |> List.filter (fun e -> not (G.E.label e).condition)
                in
                match out with [_] -> VMap.add v m vmap | _ -> vmap)
              vmap (G.pred g v) )
        | _, _ -> g, vmap)
      g (g, VMap.empty)
  in
  let g =
    map_vertices
      (fun v ->
        match VMap.find_opt v vmap with
        | Some m -> Mark.set m (G.V.label v)
        | None -> G.V.label v)
      g
  in
  let g =
    (* Merge intermediate operations *)
    let g = reverse_graph g in
    GTop.fold (* Variables -> result order *)
      (fun v g ->
        let succ = G.succ g v in
        match G.V.label v, succ, List.map G.V.label succ with
        | (EAppOp _, _), [v2], [(EAppOp _, _)] ->
          let g =
            List.fold_left
              (fun g e ->
                G.add_edge_e g (G.E.create (G.E.src e) (G.E.label e) v2))
              g (G.pred_e g v)
          in
          G.remove_vertex g v
        | _ -> g)
      g g
    |> reverse_graph
  in
  let g, substs =
    (* Remove intermediate variables *)
    GTop.fold (* Result -> variables order *)
      (fun v (g, substs) ->
        let succ_e = G.succ_e g v in
        if List.exists (fun ed -> (G.E.label ed).condition) succ_e then
          g, substs
        else
          let succ = List.map G.E.dst succ_e in
          match G.V.label v, succ, List.map G.V.label succ with
          | (EVar var1, m1), [v2], [(EVar var2, m2)]
            when not (Var.Set.mem var1 base_vars) ->
            let g =
              List.fold_left
                (fun g e ->
                  G.add_edge_e g (G.E.create (G.E.src e) (G.E.label e) v2))
                g (G.pred_e g v)
            in
            ( G.remove_vertex g v,
              fun e -> subst_by var1 (EVar var2, m2) (substs e) )
          | (EVar var1, m1), [v2], [((EApp _, _) as e2)]
            when not (Var.Set.mem var1 base_vars) -> (
            let pred_e = G.pred_e g v in
            match pred_e, List.map (fun e -> G.V.label (G.E.src e)) pred_e with
            | [pred_e], [(EApp _, _)]
              when G.E.src pred_e |> G.out_degree g <= options.merge_level ->
              (* Arbitrary heuristics: don't merge if the child node already has
                 > level parents *)
              let g =
                G.add_edge_e g
                  (G.E.create (G.E.src pred_e) (G.E.label pred_e) v2)
              in
              G.remove_vertex g v, fun e -> subst_by var1 e2 (substs e)
            | _ -> g, substs)
          | _ -> g, substs)
      g (g, G.V.label)
  in
  let g = map_vertices substs g in
  let g =
    (* Merge intermediate operations (again) *)
    let g = reverse_graph g in
    GTop.fold (* Variables -> result order *)
      (fun v g ->
        let succ = G.succ g v in
        match G.V.label v, succ, List.map G.V.label succ with
        | (EAppOp _, _), [v2], [(EAppOp _, _)] ->
          let g =
            List.fold_left
              (fun g e ->
                G.add_edge_e g (G.E.create (G.E.src e) (G.E.label e) v2))
              g (G.pred_e g v)
          in
          G.remove_vertex g v
        | _ -> g)
      g g
    |> reverse_graph
  in
  let g =
    let module EMap = Map.Make (struct
      type t = expr

      let compare = Expr.compare
      let format = Expr.format
    end) in
    (* Merge duplicate nodes *)
    let emap =
      G.fold_vertex
        (fun v expr_map ->
          let e = G.V.label v in
          EMap.update e
            (function None -> Some [v] | Some l -> Some (v :: l))
            expr_map)
        g EMap.empty
    in
    EMap.fold
      (fun expr vs g ->
        match vs with
        | [] | [_] -> g
        | v0 :: vn ->
          let e_in =
            List.map (G.pred_e g) vs
            |> List.flatten
            |> List.map (fun e -> G.E.create (G.E.src e) (G.E.label e) v0)
            |> List.sort_uniq G.E.compare
          in
          let e_out =
            List.map (G.succ_e g) vs
            |> List.flatten
            |> List.map (fun e -> G.E.create v0 (G.E.label e) (G.E.dst e))
            |> List.sort_uniq G.E.compare
          in
          let g = List.fold_left G.remove_vertex g vn in
          let g = List.fold_left G.remove_edge_e g (G.succ_e g v0) in
          let g = List.fold_left G.remove_edge_e g (G.pred_e g v0) in
          let g = List.fold_left G.add_edge_e g e_in in
          let g = List.fold_left G.add_edge_e g e_out in
          g)
      emap g
  in
  g

let expr_to_dot_label0 :
    type a.
    Global.backend_lang ->
    decl_ctx ->
    Env.t ->
    Format.formatter ->
    (a, 't) gexpr ->
    unit =
 fun lang ctx env ->
  let xlang ~en ?(pl = en) ~fr () =
    match lang with Global.Fr -> fr | Global.En -> en | Global.Pl -> pl
  in
  let rec aux_value : type a t. Format.formatter -> (a, t) gexpr -> unit =
   fun ppf e -> Print.UserFacing.value ~fallback lang ppf e
  and fallback : type a t. Format.formatter -> (a, t) gexpr -> unit =
   fun ppf e ->
    let module E = Print.ExprGen (struct
      let var ppf v = String.format ppf (Bindlib.name_of v)
      let lit = Print.UserFacing.lit lang

      let operator : type x. Format.formatter -> x operator -> unit =
       fun ppf o ->
        let open Op in
        let str =
          match o with
          | Eq_int_int | Eq_rat_rat | Eq_mon_mon | Eq_dur_dur | Eq_dat_dat | Eq
            ->
            "="
          | Minus_int | Minus_rat | Minus_mon | Minus_dur | Minus -> "-"
          | ToRat_int | ToRat_mon | ToRat -> ""
          | ToMoney_rat | ToMoney -> ""
          | Add_int_int | Add_rat_rat | Add_mon_mon | Add_dat_dur _
          | Add_dur_dur | Add ->
            "+"
          | Sub_int_int | Sub_rat_rat | Sub_mon_mon | Sub_dat_dat | Sub_dat_dur
          | Sub_dur_dur | Sub ->
            "-"
          | Mult_int_int | Mult_rat_rat | Mult_mon_rat | Mult_dur_int | Mult ->
            "×"
          | Div_int_int | Div_rat_rat | Div_mon_mon | Div_mon_rat | Div_dur_dur
          | Div ->
            "/"
          | Lt_int_int | Lt_rat_rat | Lt_mon_mon | Lt_dur_dur | Lt_dat_dat | Lt
            ->
            "<"
          | Lte_int_int | Lte_rat_rat | Lte_mon_mon | Lte_dur_dur | Lte_dat_dat
          | Lte ->
            "<="
          | Gt_int_int | Gt_rat_rat | Gt_mon_mon | Gt_dur_dur | Gt_dat_dat | Gt
            ->
            ">"
          | Gte_int_int | Gte_rat_rat | Gte_mon_mon | Gte_dur_dur | Gte_dat_dat
          | Gte ->
            ">="
          | Concat -> "++"
          | Not -> xlang () ~en:"not" ~fr:"non"
          | Length -> xlang () ~en:"length" ~fr:"nombre"
          | GetDay -> xlang () ~en:"day_of_month" ~fr:"jour_du_mois"
          | GetMonth -> xlang () ~en:"month" ~fr:"mois"
          | GetYear -> xlang () ~en:"year" ~fr:"année"
          | FirstDayOfMonth ->
            xlang () ~en:"first_day_of_month" ~fr:"premier_jour_du_mois"
          | LastDayOfMonth ->
            xlang () ~en:"last_day_of_month" ~fr:"dernier_jour_du_mois"
          | Round_rat | Round_mon | Round -> xlang () ~en:"round" ~fr:"arrondi"
          | Log _ -> xlang () ~en:"Log" ~fr:"Journal"
          | And -> xlang () ~en:"and" ~fr:"et"
          | Or -> xlang () ~en:"or" ~fr:"ou"
          | Xor -> xlang () ~en:"xor" ~fr:"ou bien"
          | Map -> xlang () ~en:"on_every" ~fr:"pour_chaque"
          | Map2 -> xlang () ~en:"on_every_2" ~fr:"pour_chaque_2"
          | Reduce -> xlang () ~en:"reduce" ~fr:"réunion"
          | Filter -> xlang () ~en:"filter" ~fr:"filtre"
          | Fold -> xlang () ~en:"fold" ~fr:"pliage"
          | HandleDefault -> ""
          | HandleDefaultOpt -> ""
          | ToClosureEnv -> ""
          | FromClosureEnv -> ""
        in
        Format.pp_print_string ppf str

      let pre_map = Expr.skip_wrappers

      let bypass : type a t. Format.formatter -> (a, t) gexpr -> bool =
       fun ppf e ->
        match Mark.remove e with
        | ELit _ | EArray _ | ETuple _ | EStruct _ | EInj _ | EEmpty | EAbs _
        | EExternal _ ->
          aux_value ppf e;
          true
        | EMatch { e; cases; _ } ->
          let cases =
            List.map
              (function
                | cons, (EAbs { binder; _ }, _) ->
                  cons, snd (Bindlib.unmbind binder)
                | cons, e -> cons, e)
              (EnumConstructor.Map.bindings cases)
          in
          if
            List.for_all
              (function _, (ELit (LBool _), _) -> true | _ -> false)
              cases
          then (
            let cases =
              List.filter_map
                (function c, (ELit (LBool true), _) -> Some c | _ -> None)
                cases
            in
            Format.fprintf ppf "%a @<1>%s @[<hov>%a@]" aux_value e "≅"
              (Format.pp_print_list
                 ~pp_sep:(fun ppf () ->
                   Format.fprintf ppf " %t@ " (fun ppf -> operator ppf Or))
                 EnumConstructor.format)
              cases;
            true)
          else false
        | _ -> false
    end) in
    E.expr ppf e
  in
  aux_value

let rec expr_to_dot_label lang ctx env ppf e =
  let print_expr = expr_to_dot_label lang ctx env in
  let e = Expr.skip_wrappers e in
  match e with
  | EVar v, _ ->
    let e, _ = lazy_eval ctx env value_level e in
    Format.fprintf ppf "%a = %a" String.format (Bindlib.name_of v)
      (expr_to_dot_label0 lang ctx env)
      e
  | EStruct { name; fields }, _ ->
    let pr ppf =
      Format.fprintf ppf "{ %a | { { %a } | { %a }}}" StructName.format name
        (Format.pp_print_list
           ~pp_sep:(fun ppf () -> Format.pp_print_string ppf " | ")
           (fun ppf fld ->
             StructField.format ppf fld;
             Format.pp_print_string ppf "\\l"))
        (StructField.Map.keys fields)
        (Format.pp_print_list
           ~pp_sep:(fun ppf () -> Format.pp_print_string ppf " | ")
           (fun ppf -> function
             | ((EVar _ | ELit _ | EInj { e = (EVar _ | ELit _), _; _ }), _) as
               e ->
               print_expr ppf e;
               Format.pp_print_string ppf "\\l"
             | _ -> Format.pp_print_string ppf "…\\l"))
        (StructField.Map.values fields)
    in
    Format.pp_print_string ppf (Message.unformat pr)
  | EArray elts, _ ->
    let pr ppf =
      Format.fprintf ppf "{ %a }"
        (Format.pp_print_list
           ~pp_sep:(fun ppf () -> Format.pp_print_string ppf " | ")
           (fun ppf -> function
             | ((EVar _ | ELit _), _) as e -> print_expr ppf e
             | _ -> Format.pp_print_string ppf "…"))
        elts
    in
    Format.pp_print_string ppf (Message.unformat pr)
  | e -> Format.fprintf ppf "%a@," (expr_to_dot_label0 lang ctx env) e

let to_dot lang ppf ctx env base_vars g ~base_src_url =
  let module GPr = Graph.Graphviz.Dot (struct
    include G

    let print_expr env ctx lang ppf e =
      let out_funs = Format.pp_get_formatter_out_functions ppf () in
      Format.pp_set_formatter_out_functions ppf
        {
          out_funs with
          Format.out_newline = (fun () -> out_funs.out_string "\\l" 0 2);
        };
      expr_to_dot_label env ctx lang ppf e;
      Format.pp_print_flush ppf ();
      Format.pp_set_formatter_out_functions ppf out_funs

    let graph_attributes _ = [ (* `Rankdir `LeftToRight *) ]
    let default_vertex_attributes _ = []

    let vertex_label v =
      let print_expr = print_expr lang ctx env in
      match G.V.label v with
      | (EVar v, _) as e ->
        Format.asprintf "%a = %a" String.format (Bindlib.name_of v) print_expr
          (fst (lazy_eval ctx env value_level e))
      | e -> Format.asprintf "%a" print_expr e

    let vertex_name v = Printf.sprintf "x%03d" (G.V.hash v)

    let vertex_attributes v =
      let e = V.label v in
      let pos = Expr.pos e in
      let loc_text =
        Re.replace_string
          Re.(compile (char '\n'))
          ~by:"&#10;"
          (String.concat "\n» " (List.rev (Pos.get_law_info pos)) ^ "\n")
      in
      `Label (vertex_label v (* ^ "\n" ^ loc_text *))
      :: `Comment loc_text
         (* :: `Url
          *      ("http://localhost:8080/fr/examples/housing-benefits#"
          *      ^ Re.(
          *          replace_string
          *            (compile
          *               (seq [char '/'; rep1 (diff any (char '/')); str "/../"]))
          *            ~by:"/" (Pos.get_file pos))
          *      ^ "-"
          *      ^ string_of_int (Pos.get_start_line pos)) *)
      :: `Url
           (base_src_url
           ^ "/"
           ^ Pos.get_file pos
           ^ "#L"
           ^ string_of_int (Pos.get_start_line pos))
      :: `Fontname "DejaVu Sans Mono"
      ::
      (match G.V.label v with
      | EVar var, _ ->
        if Var.Set.mem var base_vars then
          [`Style `Filled; `Fillcolor 0xffaa55; `Shape `Box]
        else if
          List.exists (fun e -> not (G.E.label e).condition) (G.succ_e g v)
        then
          (* non-constants *)
          [`Style `Filled; `Fillcolor 0xffee99; `Shape `Box]
        else (* Constants *)
          [`Style `Filled; `Fillcolor 0x77aaff; `Shape `Note]
      | EStruct _, _ | EArray _, _ -> [`Shape `Record]
      | EAppOp { op = op, _; _ }, _ -> (
        match op_kind op with
        | `Sum | `Product | _ -> [`Shape `Box] (* | _ -> [] *))
      | _ -> [])

    let get_subgraph v =
      match G.V.label v with
      | EVar var, _ -> (
        if Var.Set.mem var base_vars then
          Some
            {
              Graph.Graphviz.DotAttributes.sg_name = "inputs";
              sg_attributes = [];
              sg_parent = None;
            }
        else
          match List.map G.V.label (G.succ g v) with
          (* | [] | [ELit _, _] ->
           *   Some
           *     {
           *       Graph.Graphviz.DotAttributes.sg_name = "constants";
           *       sg_attributes = [`Shape `Box];
           *       sg_parent = None;
           *     } *)
          | _ -> None)
      | _ -> None

    let default_edge_attributes _ = []

    let edge_attributes e =
      match E.label e with
      | { condition = true; _ } ->
        [`Style `Dashed; `Penwidth 5.; `Color 0xff7700; `Arrowhead `Odot]
      | { side = Some (Lhs s | Rhs s); _ } ->
        [ (* `Label s; `Color 0xbb7700 *) ]
      | _ -> []
  end) in
  GPr.fprint_graph ppf (reverse_graph g)

(* -- Plugin registration -- *)

let options =
  let open Cmdliner in
  let conditions =
    Arg.(
      value
      & flag
      & info ["conditions"]
          ~doc:
            "Include boolean conditions used to choose the specific formula \
             nodes (with dashed lines) in the resulting graph. Without this, \
             only the nodes contributing to the actual calculation are shown.")
  in
  let no_cleanup =
    Arg.(
      value
      & flag
      & info ["no-cleanup"]
          ~doc:
            "Disable automatic cleanup of intermediate computation nodes. Very \
             verbose but sometimes useful for debugging.")
  in
  let merge_level =
    Arg.(
      value
      & opt int 2
      & info ["merge-level"]
          ~doc:
            "Determines an internal threshold to the heuristics for merging \
             intermediate nodes with as many parents. Higher means more \
             aggressive merges.")
  in
  let format =
    let mkinfo s =
      ( `Convert s,
        Arg.info [s]
          ~doc:
            (Printf.sprintf
               "Outputs a compiled $(b,.%s) file instead of a $(b,.dot) file \
                (requires $(i,graphviz) to be installed)."
               s) )
    in
    Arg.(
      value
      & vflag `Dot
          [
            ( `Dot,
              info ["dot"]
                ~doc:"Output the graph in dot format (this is the default)" );
            mkinfo "svg";
            mkinfo "png";
            mkinfo "pdf";
          ])
  in
  let show =
    Arg.(
      value
      & opt ~vopt:(Some "xdot") (some string) None
      & info ["show"]
          ~doc:"Opens the resulting graph in the given command immediately.")
  in
  let base_src_url =
    Arg.(
      value
      & opt string "https://github.com/CatalaLang/catala/blob/master"
      & info ["url-base"] ~docv:"URL"
          ~doc:
            "Base URL that can be used to browse the Catala code. Nodes will \
             link to $(i,URL)/relative/filename.catala_xx#LNN where NN is the \
             line number in the file")
  in
  let f with_conditions no_cleanup merge_level format show output base_src_url =
    {
      with_conditions;
      with_cleanup = not no_cleanup;
      merge_level;
      format;
      show;
      output;
      base_src_url;
    }
  in
  Term.(
    const f
    $ conditions
    $ no_cleanup
    $ merge_level
    $ format
    $ show
    $ Cli.Flags.output
    $ base_src_url)

let run includes optimize ex_scope explain_options global_options =
  let prg, _ =
    Driver.Passes.dcalc global_options ~includes ~optimize
      ~check_invariants:false ~typed:Expr.typed
  in
  Interpreter.load_runtime_modules prg;
  let scope = Driver.Commands.get_scope_uid prg.decl_ctx ex_scope in
  (* let result_expr, env = interpret_program prg scope in *)
  let g, base_vars, env = program_to_graph explain_options prg scope in
  log "Base variables detected: @[<hov>%a@]"
    (Format.pp_print_list Print.var)
    (Var.Set.elements base_vars);
  let g =
    if explain_options.with_cleanup then
      graph_cleanup explain_options g base_vars
    else g
  in
  let lang =
    Cli.file_lang (Global.input_src_file global_options.Global.input_src)
  in
  let dot_content =
    to_dot lang Format.str_formatter prg.decl_ctx env base_vars g
      ~base_src_url:explain_options.base_src_url;
    Format.flush_str_formatter ()
    |> Re.(replace_string (compile (seq [bow; str "comment="])) ~by:"tooltip=")
  in
  let with_dot_file =
    match explain_options with
    | { format = `Convert _; _ } | { show = Some _; output = None; _ } ->
      File.with_temp_file "catala-explain" "dot" ~contents:dot_content
    | { output; _ } ->
      let _, with_out = Driver.Commands.get_output global_options output in
      with_out (fun oc -> output_string oc dot_content);
      fun f ->
        f
          (Option.value ~default:"-"
             (Option.map Global.options.path_rewrite output))
  in
  with_dot_file
  @@ fun dotfile ->
  (match explain_options.format with
  | `Convert fmt ->
    let _, with_out =
      Driver.Commands.get_output global_options explain_options.output
    in
    with_out (fun oc ->
        output_string oc (File.process_out "dot" ["-T" ^ fmt; dotfile]))
  | `Dot -> ());
  match explain_options.show with
  | None -> ()
  | Some cmd ->
    raise (Cli.Exit_with (Sys.command (cmd ^ " " ^ Filename.quote dotfile)))

let term =
  let open Cmdliner.Term in
  const run
  $ Cli.Flags.include_dirs
  $ Cli.Flags.optimize
  $ Cli.Flags.ex_scope
  $ options

let () =
  Driver.Plugin.register "explain" term
    ~doc:
      "Generates a graph of the formulas that are used for a given execution \
       of a scope"
    ~man:
      [
        `P
          "This command requires a given scope with no inputs (i.e. a test \
           scope). A partial/lazy evaluation will recursively take place to \
           explain intermediate formulas that take place in the computation, \
           from the inputs (specified in the test scope) to the final outputs. \
           The output is a graph, in .dot format (graphviz) by default (see \
           $(b,--svg) and $(b,--show) for other options)";
      ]
OCaml

Innovation. Community. Security.