Source file conditions.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
open Catala_utils
open Shared_ast
open Dcalc
open Ast
(** {1 Helpers and type definitions}*)
type vc_return = typed expr
(** The return type of VC generators is the VC expression *)
type ctx = {
current_scope_name : ScopeName.t;
decl : decl_ctx;
input_vars : typed expr Var.t list;
scope_variables_typs : (typed expr, typ) Var.Map.t;
}
let rec conjunction_exprs (exprs : typed expr list) (mark : typed mark) :
typed expr =
match exprs with
| [] -> ELit (LBool true), mark
| hd :: tl ->
( EAppOp
{
op = And;
tys = [TLit TBool, Expr.pos hd; TLit TBool, Expr.pos hd];
args = [hd; conjunction_exprs tl mark];
},
mark )
let conjunction (args : vc_return list) (mark : typed mark) : vc_return =
let acc, list =
match args with hd :: tl -> hd, tl | [] -> (ELit (LBool true), mark), []
in
List.fold_left
(fun acc arg ->
( EAppOp
{
op = And;
tys = [TLit TBool, Expr.pos acc; TLit TBool, Expr.pos arg];
args = [arg; acc];
},
mark ))
acc list
let negation (arg : vc_return) (mark : typed mark) : vc_return =
EAppOp { op = Not; tys = [TLit TBool, Expr.pos arg]; args = [arg] }, mark
let disjunction (args : vc_return list) (mark : typed mark) : vc_return =
let acc, list =
match args with hd :: tl -> hd, tl | [] -> (ELit (LBool false), mark), []
in
List.fold_left
(fun (acc : vc_return) arg ->
( EAppOp
{
op = Or;
tys = [TLit TBool, Expr.pos acc; TLit TBool, Expr.pos arg];
args = [arg; acc];
},
mark ))
acc list
(** [half_product [a1,...,an] [b1,...,bm] returns [(a1,b1),...(a1,bn),...(an,b1),...(an,bm)]] *)
let half_product (l1 : 'a list) (l2 : 'b list) : ('a * 'b) list =
l1
|> List.mapi (fun i ei ->
List.filteri (fun j _ -> i < j) l2 |> List.map (fun ej -> ei, ej))
|> List.concat
(** This code skims through the topmost layers of the terms like this:
[log (error_on_empty < reentrant_variable () | true :- e1 >)] for scope
variables, or [fun () -> e1] for subscope variables. But what we really want
to analyze is only [e1], so we match this outermost structure explicitely
and have a clean verification condition generator that only runs on [e1] *)
let match_and_ignore_outer_reentrant_default (ctx : ctx) (e : typed expr) :
typed expr =
match Mark.remove e with
| EErrorOnEmpty
( EDefault
{
excepts = [(EApp { f = EVar x, _; args = [(ELit LUnit, _)]; _ }, _)];
just = ELit (LBool true), _;
cons;
},
_ )
when List.exists (fun x' -> Var.equal x x') ctx.input_vars ->
cons
| EAbs { binder; tys = [(TLit TUnit, _)] } ->
let _, body = Bindlib.unmbind binder in
body
| EAbs { binder; _ } -> (
let _, body = Bindlib.unmbind binder in
match Mark.remove body with
| EErrorOnEmpty e -> e
| _ ->
Message.raise_spanned_error (Expr.pos e)
"Internal error: this expression does not have the structure expected \
by the VC generator:\n\
%a"
(Print.expr ()) e)
| EErrorOnEmpty d ->
d
| _ -> e
(** {1 Verification conditions generator}*)
(** [generate_vc_must_not_return_empty e] returns the dcalc boolean expression
[b] such that if [b] is true, then [e] will never return an empty error. It
also returns a map of all the types of locally free variables inside the
expression. *)
let rec generate_vc_must_not_return_empty (ctx : ctx) (e : typed expr) :
vc_return =
match Mark.remove e with
| EAbs { binder; _ } ->
let _vars, body = Bindlib.unmbind binder in
(generate_vc_must_not_return_empty ctx) body
| EDefault { excepts; just; cons } ->
disjunction
(List.map (generate_vc_must_not_return_empty ctx) excepts
@ [
conjunction
[
generate_vc_must_not_return_empty ctx just;
(let vc_just_expr = generate_vc_must_not_return_empty ctx cons in
( EIfThenElse
{
cond = just;
etrue = vc_just_expr;
efalse = ELit (LBool false), Mark.get e;
},
Mark.get e ));
]
(Mark.get e);
])
(Mark.get e)
| EEmptyError -> Mark.copy e (ELit (LBool false))
| EVar _
| ELit _ ->
Mark.copy e (ELit (LBool true))
| EApp { f; args; _ } ->
conjunction
(generate_vc_must_not_return_empty ctx f
:: List.flatten
(List.map
(fun arg ->
match Mark.remove arg with
| EStruct { fields; _ } ->
List.map
(fun field ->
match Mark.remove field with
| EAbs { binder; tys = [(TLit TUnit, _)] } -> (
let _vars, body = Bindlib.unmbind binder in
match Mark.remove body with
| EEmptyError -> Mark.copy field (ELit (LBool true))
| _ ->
generate_vc_must_not_return_empty ctx field)
| _ -> generate_vc_must_not_return_empty ctx field)
(StructField.Map.values fields)
| _ -> [generate_vc_must_not_return_empty ctx arg])
args))
(Mark.get e)
| _ ->
conjunction
(Expr.shallow_fold
(fun e acc -> generate_vc_must_not_return_empty ctx e :: acc)
e [])
(Mark.get e)
(** [generate_vc_must_not_return_conflict e] returns the dcalc boolean
expression [b] such that if [b] is true, then [e] will never return a
conflict error. It also returns a map of all the types of locally free
variables inside the expression. *)
let rec generate_vc_must_not_return_conflict (ctx : ctx) (e : typed expr) :
vc_return =
match Mark.remove e with
| EAbs { binder; _ } ->
let _vars, body = Bindlib.unmbind binder in
(generate_vc_must_not_return_conflict ctx) body
| EVar _ | ELit _ -> Mark.copy e (ELit (LBool true))
| EDefault { excepts; just; cons } ->
let quadratic =
negation
(disjunction
(List.map
(fun (e1, e2) ->
conjunction
[
generate_vc_must_not_return_empty ctx e1;
generate_vc_must_not_return_empty ctx e2;
]
(Mark.get e))
(half_product excepts excepts))
(Mark.get e))
(Mark.get e)
in
let others =
List.map
(generate_vc_must_not_return_conflict ctx)
(just :: cons :: excepts)
in
let out = conjunction (quadratic :: others) (Mark.get e) in
out
| _ ->
conjunction
(Expr.shallow_fold
(fun e acc -> generate_vc_must_not_return_conflict ctx e :: acc)
e [])
(Mark.get e)
(** {1 Interface}*)
type verification_condition_kind = NoEmptyError | NoOverlappingExceptions
type verification_condition = {
vc_guard : typed expr;
vc_kind : verification_condition_kind;
vc_asserts : typed expr;
vc_scope : ScopeName.t;
vc_variable : typed expr Var.t Mark.pos;
}
let trivial_assert e = Mark.copy e (ELit (LBool true))
let rec generate_verification_conditions_scope_body_expr
(ctx : ctx)
(scope_body_expr : 'm expr scope_body_expr) :
ctx * verification_condition list * typed expr list =
match scope_body_expr with
| Result _ -> ctx, [], []
| ScopeLet scope_let ->
let scope_let_var, scope_let_next =
Bindlib.unbind scope_let.scope_let_next
in
let new_ctx, vc_list, assert_list =
match scope_let.scope_let_kind with
| Assertion -> (
let e =
Expr.unbox (Expr.remove_logging_calls scope_let.scope_let_expr)
in
match Mark.remove e with
| EAssert e ->
let e = match_and_ignore_outer_reentrant_default ctx e in
ctx, [], [e]
| _ ->
Message.raise_spanned_error (Expr.pos e)
"Internal error: this assertion does not have the structure \
expected by the VC generator:\n\
%a"
(Print.expr ()) e)
| DestructuringInputStruct ->
{ ctx with input_vars = scope_let_var :: ctx.input_vars }, [], []
| ScopeVarDefinition | SubScopeVarDefinition ->
let e =
Expr.unbox (Expr.remove_logging_calls scope_let.scope_let_expr)
in
let e = match_and_ignore_outer_reentrant_default ctx e in
let vc_confl = generate_vc_must_not_return_conflict ctx e in
let vc_confl =
if Globals.optimize () then
Expr.unbox
(Shared_ast.Optimizations.optimize_expr ctx.decl vc_confl)
else vc_confl
in
let vc_list =
[
{
vc_guard = Mark.copy e (Mark.remove vc_confl);
vc_kind = NoOverlappingExceptions;
vc_asserts = trivial_assert e;
vc_scope = ctx.current_scope_name;
vc_variable = scope_let_var, scope_let.scope_let_pos;
};
]
in
let vc_list =
match scope_let.scope_let_kind with
| ScopeVarDefinition ->
let vc_empty = generate_vc_must_not_return_empty ctx e in
let vc_empty =
if Globals.optimize () then
Expr.unbox
(Shared_ast.Optimizations.optimize_expr ctx.decl vc_empty)
else vc_empty
in
{
vc_guard = Mark.copy e (Mark.remove vc_empty);
vc_kind = NoEmptyError;
vc_asserts = trivial_assert e;
vc_scope = ctx.current_scope_name;
vc_variable = scope_let_var, scope_let.scope_let_pos;
}
:: vc_list
| _ -> vc_list
in
ctx, vc_list, []
| _ -> ctx, [], []
in
let new_ctx, new_vcs, new_asserts =
generate_verification_conditions_scope_body_expr
{
new_ctx with
scope_variables_typs =
Var.Map.add scope_let_var scope_let.scope_let_typ
new_ctx.scope_variables_typs;
}
scope_let_next
in
new_ctx, vc_list @ new_vcs, assert_list @ new_asserts
let generate_verification_conditions_code_items
(decl_ctx : decl_ctx)
(code_items : 'm expr code_item_list)
(s : ScopeName.t option) : verification_condition list =
Scope.fold_left
~f:(fun vcs item _ ->
match item with
| Topdef _ -> []
| ScopeDef (name, body) ->
let is_selected_scope =
match s with
| Some s when ScopeName.equal s name -> true
| None -> true
| _ -> false
in
let new_vcs =
if is_selected_scope then
let _scope_input_var, scope_body_expr =
Bindlib.unbind body.scope_body_expr
in
let ctx =
{
current_scope_name = name;
decl = decl_ctx;
input_vars = [];
scope_variables_typs =
Var.Map.empty
;
}
in
let _, vcs, asserts =
generate_verification_conditions_scope_body_expr ctx
scope_body_expr
in
let combined_assert =
conjunction_exprs asserts
(Typed
{ pos = Pos.no_pos; ty = Mark.add Pos.no_pos (TLit TBool) })
in
List.map (fun vc -> { vc with vc_asserts = combined_assert }) vcs
else []
in
new_vcs @ vcs)
~init:[] code_items
let generate_verification_conditions (p : 'm program) (s : ScopeName.t option) :
verification_condition list =
let vcs =
generate_verification_conditions_code_items p.decl_ctx p.code_items s
in
List.sort
(fun vc1 vc2 ->
let to_str vc =
Format.asprintf "%s.%s"
(Format.asprintf "%a" ScopeName.format vc.vc_scope)
(Bindlib.name_of (Mark.remove vc.vc_variable))
in
String.compare (to_str vc1) (to_str vc2))
vcs