Source file definitions.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
(** This module defines generic types for types, literals and expressions shared
through several of the different ASTs. *)
open Catala_utils
module Runtime = Runtime_ocaml.Runtime
module ModuleName = Uid.Module
module ScopeName =
Uid.Gen_qualified
(struct
let style = Ocolor_types.(Fg (C4 hi_magenta))
end)
()
module TopdefName =
Uid.Gen_qualified
(struct
let style = Ocolor_types.(Fg (C4 hi_green))
end)
()
module StructName =
Uid.Gen_qualified
(struct
let style = Ocolor_types.(Fg (C4 cyan))
end)
()
module StructField =
Uid.Gen
(struct
let style = Ocolor_types.(Fg (C4 magenta))
end)
()
module EnumName =
Uid.Gen_qualified
(struct
let style = Ocolor_types.(Fg (C4 cyan))
end)
()
module EnumConstructor =
Uid.Gen
(struct
let style = Ocolor_types.(Fg (C4 magenta))
end)
()
(** Only used by surface *)
module RuleName =
Uid.Gen
(struct
let style = Ocolor_types.(Fg (C4 hi_white))
end)
()
module LabelName =
Uid.Gen
(struct
let style = Ocolor_types.(Fg (C4 hi_cyan))
end)
()
(** Used for unresolved structs/maps in desugared *)
module Ident = String
(** Only used by desugared/scopelang *)
module ScopeVar =
Uid.Gen
(struct
let style = Ocolor_types.(Fg (C4 hi_white))
end)
()
module SubScopeName =
Uid.Gen
(struct
let style = Ocolor_types.(Fg (C4 hi_magenta))
end)
()
type scope_var_or_subscope =
| ScopeVar of ScopeVar.t
| SubScope of SubScopeName.t * ScopeName.t
module StateName =
Uid.Gen
(struct
let style = Ocolor_types.(Fg (C4 hi_cyan))
end)
()
(** {1 Abstract syntax tree} *)
(** Define a common base type for the expressions in most passes of the compiler *)
(** {2 Phantom types used to select relevant cases on the generic AST}
we instantiate them with a polymorphic variant to take advantage of
sub-typing. The values aren't actually used. *)
(** These types allow to select the features present in any given expression
type *)
type yes = Yes
type no =
| No
(** Phantom types used in the definitions below. We don't make them
abstract, because the typer needs to know that their intersection is
empty. *)
type desugared =
< monomorphic : yes
; polymorphic : yes
; overloaded : yes
; resolved : no
; syntacticNames : yes
; scopeVarStates : yes
; scopeVarSimpl : no
; explicitScopes : yes
; assertions : no
; defaultTerms : yes
; exceptions : no
; custom : no >
type scopelang =
< monomorphic : yes
; polymorphic : yes
; overloaded : no
; resolved : yes
; syntacticNames : no
; scopeVarStates : no
; scopeVarSimpl : yes
; explicitScopes : yes
; assertions : no
; defaultTerms : yes
; exceptions : no
; custom : no >
type dcalc =
< monomorphic : yes
; polymorphic : yes
; overloaded : no
; resolved : yes
; syntacticNames : no
; scopeVarStates : no
; scopeVarSimpl : no
; explicitScopes : no
; assertions : yes
; defaultTerms : yes
; exceptions : no
; custom : no >
type lcalc =
< monomorphic : yes
; polymorphic : yes
; overloaded : no
; resolved : yes
; syntacticNames : no
; scopeVarStates : no
; scopeVarSimpl : no
; explicitScopes : no
; assertions : yes
; defaultTerms : no
; exceptions : yes
; custom : no >
type 'a any = < .. > as 'a
(** ['a any] is 'a, but adds the constraint that it should be restricted to
valid AST kinds *)
type dcalc_lcalc_features =
< monomorphic : yes
; polymorphic : yes
; overloaded : no
; resolved : yes
; syntacticNames : no
; scopeVarStates : no
; scopeVarSimpl : no
; explicitScopes : no
; assertions : yes >
(** Features that are common to Dcalc and Lcalc *)
type ('a, 'b) dcalc_lcalc =
< dcalc_lcalc_features ; defaultTerms : 'a ; exceptions : 'b ; custom : no >
(** This type regroups Dcalc and Lcalc ASTs. *)
type ('a, 'b, 'c) interpr_kind =
< dcalc_lcalc_features ; defaultTerms : 'a ; exceptions : 'b ; custom : 'c >
(** This type corresponds to the types handled by the interpreter: it regroups
Dcalc and Lcalc ASTs and may have custom terms *)
(** {2 Types} *)
type typ_lit = TBool | TUnit | TInt | TRat | TMoney | TDate | TDuration
type typ = naked_typ Mark.pos
and naked_typ =
| TLit of typ_lit
| TTuple of typ list
| TStruct of StructName.t
| TEnum of EnumName.t
| TOption of typ
| TArrow of typ list * typ
| TArray of typ
| TDefault of typ
| TAny
| TClosureEnv (** Hides an existential type needed for closure conversion *)
(** {2 Constants and operators} *)
type date = Runtime.date
type date_rounding = Runtime.date_rounding
type duration = Runtime.duration
type var_def_log = {
log_typ : naked_typ;
log_io_input : Runtime.io_input;
log_io_output : bool;
}
type log_entry =
| VarDef of var_def_log
(** During code generation, we need to know the type of the variable being
logged for embedding as well as its I/O properties. *)
| BeginCall
| EndCall
| PosRecordIfTrueBool
module Op = struct
(** Classification of operators on how they should be typed *)
type monomorphic = < monomorphic : yes >
(** Operands and return types of the operator are fixed *)
type polymorphic = < polymorphic : yes >
(** The operator is truly polymorphic: it's the same runtime function that may
work on multiple types. We require that resolving the argument types from
right to left trivially resolves all type variables declared in the
operator type. *)
type overloaded = < overloaded : yes >
(** The operator is ambiguous and requires the types of its arguments to be
known before it can be typed, using a pre-defined table *)
type resolved = < resolved : yes >
(** Explicit monomorphic versions of the overloaded operators *)
type _ t =
| Not : < monomorphic ; .. > t
| GetDay : < monomorphic ; .. > t
| GetMonth : < monomorphic ; .. > t
| GetYear : < monomorphic ; .. > t
| FirstDayOfMonth : < monomorphic ; .. > t
| LastDayOfMonth : < monomorphic ; .. > t
| Length : < polymorphic ; .. > t
| Log : log_entry * Uid.MarkedString.info list -> < polymorphic ; .. > t
| ToClosureEnv : < polymorphic ; .. > t
| FromClosureEnv : < polymorphic ; .. > t
| Minus : < overloaded ; .. > t
| Minus_int : < resolved ; .. > t
| Minus_rat : < resolved ; .. > t
| Minus_mon : < resolved ; .. > t
| Minus_dur : < resolved ; .. > t
| ToRat : < overloaded ; .. > t
| ToRat_int : < resolved ; .. > t
| ToRat_mon : < resolved ; .. > t
| ToMoney : < overloaded ; .. > t
| ToMoney_rat : < resolved ; .. > t
| Round : < overloaded ; .. > t
| Round_rat : < resolved ; .. > t
| Round_mon : < resolved ; .. > t
| And : < monomorphic ; .. > t
| Or : < monomorphic ; .. > t
| Xor : < monomorphic ; .. > t
| Eq : < polymorphic ; .. > t
| Map : < polymorphic ; .. > t
| Concat : < polymorphic ; .. > t
| Filter : < polymorphic ; .. > t
| Add : < overloaded ; .. > t
| Add_int_int : < resolved ; .. > t
| Add_rat_rat : < resolved ; .. > t
| Add_mon_mon : < resolved ; .. > t
| Add_dat_dur : date_rounding -> < resolved ; .. > t
| Add_dur_dur : < resolved ; .. > t
| Sub : < overloaded ; .. > t
| Sub_int_int : < resolved ; .. > t
| Sub_rat_rat : < resolved ; .. > t
| Sub_mon_mon : < resolved ; .. > t
| Sub_dat_dat : < resolved ; .. > t
| Sub_dat_dur : < resolved ; .. > t
| Sub_dur_dur : < resolved ; .. > t
| Mult : < overloaded ; .. > t
| Mult_int_int : < resolved ; .. > t
| Mult_rat_rat : < resolved ; .. > t
| Mult_mon_rat : < resolved ; .. > t
| Mult_dur_int : < resolved ; .. > t
| Div : < overloaded ; .. > t
| Div_int_int : < resolved ; .. > t
| Div_rat_rat : < resolved ; .. > t
| Div_mon_rat : < resolved ; .. > t
| Div_mon_mon : < resolved ; .. > t
| Div_dur_dur : < resolved ; .. > t
| Lt : < overloaded ; .. > t
| Lt_int_int : < resolved ; .. > t
| Lt_rat_rat : < resolved ; .. > t
| Lt_mon_mon : < resolved ; .. > t
| Lt_dat_dat : < resolved ; .. > t
| Lt_dur_dur : < resolved ; .. > t
| Lte : < overloaded ; .. > t
| Lte_int_int : < resolved ; .. > t
| Lte_rat_rat : < resolved ; .. > t
| Lte_mon_mon : < resolved ; .. > t
| Lte_dat_dat : < resolved ; .. > t
| Lte_dur_dur : < resolved ; .. > t
| Gt : < overloaded ; .. > t
| Gt_int_int : < resolved ; .. > t
| Gt_rat_rat : < resolved ; .. > t
| Gt_mon_mon : < resolved ; .. > t
| Gt_dat_dat : < resolved ; .. > t
| Gt_dur_dur : < resolved ; .. > t
| Gte : < overloaded ; .. > t
| Gte_int_int : < resolved ; .. > t
| Gte_rat_rat : < resolved ; .. > t
| Gte_mon_mon : < resolved ; .. > t
| Gte_dat_dat : < resolved ; .. > t
| Gte_dur_dur : < resolved ; .. > t
| Eq_int_int : < resolved ; .. > t
| Eq_rat_rat : < resolved ; .. > t
| Eq_mon_mon : < resolved ; .. > t
| Eq_dur_dur : < resolved ; .. > t
| Eq_dat_dat : < resolved ; .. > t
| Reduce : < polymorphic ; .. > t
| Fold : < polymorphic ; .. > t
| HandleDefault : < polymorphic ; .. > t
| HandleDefaultOpt : < polymorphic ; .. > t
end
type 'a operator = 'a Op.t
type except = ConflictError | EmptyError | NoValueProvided | Crash
(** {2 Markings} *)
type untyped = { pos : Pos.t } [@@caml.unboxed]
type typed = { pos : Pos.t; ty : typ }
type 'a custom = { pos : Pos.t; custom : 'a }
(** Using empty markings will ensure terms can't be constructed: used for
example in interfaces to ensure that they don't contain any expressions *)
type nil = |
(** The generic type of AST markings. Using a GADT allows functions to be
polymorphic in the marking, but still do transformations on types when
appropriate. The [Custom] case can be used within passes that need to store
specific information, e.g. typing *)
type _ mark =
| Untyped : untyped -> untyped mark
| Typed : typed -> typed mark
| Custom : 'a custom -> 'a custom mark
type ('a, 'm) marked = ('a, 'm mark) Mark.ed
(** Type of values marked with the above standard mark GADT *)
(** {2 Generic expressions} *)
(** Define a common base type for the expressions in most passes of the compiler *)
(** Literals are the same throughout compilation except for the [LEmptyError]
case which is eliminated midway through. *)
type lit =
| LBool of bool
| LInt of Runtime.integer
| LRat of Runtime.decimal
| LMoney of Runtime.money
| LUnit
| LDate of date
| LDuration of duration
(** External references are resolved to strings that point to functions or
constants in the end, but we need to keep different references for typing *)
type external_ref =
| External_value of TopdefName.t
| External_scope of ScopeName.t
(** Locations are handled differently in [desugared] and [scopelang] *)
type 'a glocation =
| DesugaredScopeVar : {
name : ScopeVar.t Mark.pos;
state : StateName.t option;
}
-> < scopeVarStates : yes ; .. > glocation
| ScopelangScopeVar : {
name : ScopeVar.t Mark.pos;
}
-> < scopeVarSimpl : yes ; .. > glocation
| SubScopeVar : {
scope : ScopeName.t;
alias : SubScopeName.t Mark.pos;
var : ScopeVar.t Mark.pos;
}
-> < explicitScopes : yes ; .. > glocation
| ToplevelVar : {
name : TopdefName.t Mark.pos;
}
-> < explicitScopes : yes ; .. > glocation
type ('a, 'm) gexpr = (('a, 'm) naked_gexpr, 'm) marked
and ('a, 'm) naked_gexpr = ('a, 'a, 'm) base_gexpr
(** General expressions: groups all expression cases of the different ASTs, and
uses a GADT to eliminate irrelevant cases for each one. The ['t] annotations
are also totally unconstrained at this point. The dcalc exprs, for ex ample,
are then defined with [type naked_expr = dcalc naked_gexpr] plus the
annotations.
A few tips on using this GADT:
- To write a function that handles cases from different ASTs, explicit the
type variables: [fun (type a) (x: a naked_gexpr) -> ...]
- For recursive functions, you may need to additionally explicit the
generalisation of the variable: [let rec f: type a . a naked_gexpr -> ...]
- Always think of using the pre-defined map/fold functions in [Expr] rather
than completely defining your recursion manually.
The first argument of the base_gexpr type caracterises the "deep" type of
the AST, while the second is the shallow type. They are always equal for
well-formed AST types, but differentiating them ephemerally allows us to do
well-typed recursive transformations on the AST that change its type *)
and ('a, 'b, 'm) base_gexpr =
| ELit : lit -> ('a, < .. >, 'm) base_gexpr
| EApp : {
f : ('a, 'm) gexpr;
args : ('a, 'm) gexpr list;
(** length may be 1 even if arity > 1 in desugared. scopelang performs
detuplification, so length = arity afterwards *)
tys : typ list; (** Set to [[]] before disambiguation *)
}
-> ('a, < .. >, 'm) base_gexpr
| EAppOp : {
op : 'b operator;
args : ('a, 'm) gexpr list;
tys : typ list;
}
-> ('a, (< .. > as 'b), 'm) base_gexpr
| EArray : ('a, 'm) gexpr list -> ('a, < .. >, 'm) base_gexpr
| EVar : ('a, 'm) naked_gexpr Bindlib.var -> ('a, _, 'm) base_gexpr
| EAbs : {
binder : (('a, 'a, 'm) base_gexpr, ('a, 'm) gexpr) Bindlib.mbinder;
tys : typ list;
}
-> ('a, < .. >, 'm) base_gexpr
| EIfThenElse : {
cond : ('a, 'm) gexpr;
etrue : ('a, 'm) gexpr;
efalse : ('a, 'm) gexpr;
}
-> ('a, < .. >, 'm) base_gexpr
| EStruct : {
name : StructName.t;
fields : ('a, 'm) gexpr StructField.Map.t;
}
-> ('a, < .. >, 'm) base_gexpr
| EInj : {
name : EnumName.t;
e : ('a, 'm) gexpr;
cons : EnumConstructor.t;
}
-> ('a, < .. >, 'm) base_gexpr
| EMatch : {
name : EnumName.t;
e : ('a, 'm) gexpr;
cases : ('a, 'm) gexpr EnumConstructor.Map.t;
}
-> ('a, < .. >, 'm) base_gexpr
| ETuple : ('a, 'm) gexpr list -> ('a, < .. >, 'm) base_gexpr
| ETupleAccess : {
e : ('a, 'm) gexpr;
index : int;
size : int;
}
-> ('a, < .. >, 'm) base_gexpr
| ELocation : 'b glocation -> ('a, (< .. > as 'b), 'm) base_gexpr
| EScopeCall : {
scope : ScopeName.t;
args : ('a, 'm) gexpr ScopeVar.Map.t;
}
-> ('a, < explicitScopes : yes ; .. >, 'm) base_gexpr
| EDStructAccess : {
name_opt : StructName.t option;
e : ('a, 'm) gexpr;
field : Ident.t;
}
-> ('a, < syntacticNames : yes ; .. >, 'm) base_gexpr
(** [desugared] has ambiguous struct fields *)
| EStructAccess : {
name : StructName.t;
e : ('a, 'm) gexpr;
field : StructField.t;
}
-> ('a, < .. >, 'm) base_gexpr
(** Resolved struct/enums, after name resolution in [desugared] *)
| EExternal : {
name : external_ref Mark.pos;
}
-> ('a, < explicitScopes : no ; .. >, 't) base_gexpr
| EAssert : ('a, 'm) gexpr -> ('a, < assertions : yes ; .. >, 'm) base_gexpr
| EDefault : {
excepts : ('a, 'm) gexpr list;
just : ('a, 'm) gexpr;
cons : ('a, 'm) gexpr;
}
-> ('a, < defaultTerms : yes ; .. >, 'm) base_gexpr
| EPureDefault :
('a, 'm) gexpr
-> ('a, < defaultTerms : yes ; .. >, 'm) base_gexpr
(** "return" of a pure term, so that it can be typed as [default] *)
| EEmptyError : ('a, < defaultTerms : yes ; .. >, 'm) base_gexpr
| EErrorOnEmpty :
('a, 'm) gexpr
-> ('a, < defaultTerms : yes ; .. >, 'm) base_gexpr
| ERaise : except -> ('a, < exceptions : yes ; .. >, 'm) base_gexpr
| ECatch : {
body : ('a, 'm) gexpr;
exn : except;
handler : ('a, 'm) gexpr;
}
-> ('a, < exceptions : yes ; .. >, 'm) base_gexpr
| ECustom : {
obj : Obj.t;
targs : typ list;
tret : typ;
}
-> ('a, < custom : yes ; .. >, 't) base_gexpr
(** A function of the given type, as a runtime OCaml object. The specified
types for arguments and result must be the Catala types corresponding
to the runtime types of the function. *)
(** Useful for errors and printing, for example *)
type any_expr = AnyExpr : ('a, _) gexpr -> any_expr
type ('a, 'm) boxed_gexpr = (('a, 'm) naked_gexpr Bindlib.box, 'm) marked
(** The annotation is lifted outside of the box for expressions *)
type 'e boxed = ('a, 'm) boxed_gexpr constraint 'e = ('a, 'm) gexpr
(** [('a, 'm) gexpr boxed] is [('a, 'm) boxed_gexpr]. The difference with
[('a, 'm) gexpr Bindlib.box] is that the annotations is outside of the box,
and can therefore be accessed without the need to resolve the box *)
type ('e, 'b) binder = (('a, 'm) naked_gexpr, 'b) Bindlib.binder
constraint 'e = ('a, 'm) gexpr
(** The expressions use the {{:https://lepigre.fr/ocaml-bindlib/} Bindlib}
library, based on higher-order abstract syntax *)
type ('e, 'b) mbinder = (('a, 'm) naked_gexpr, 'b) Bindlib.mbinder
constraint 'e = ('a, 'm) gexpr
(** {2 Higher-level program structure} *)
(** Constructs scopes and programs on top of expressions. The ['e] type
parameter throughout is expected to match instances of the [gexpr] type
defined above. Markings are constrained to the [mark] GADT defined above.
Note that this structure is at the moment only relevant for [dcalc] and
[lcalc], as [scopelang] has its own scope structure, as the name implies. *)
(** This kind annotation signals that the let-binding respects a structural
invariant. These invariants concern the shape of the expression in the
let-binding, and are documented below. *)
type scope_let_kind =
| DestructuringInputStruct (** [let x = input.field]*)
| ScopeVarDefinition (** [let x = error_on_empty e]*)
| SubScopeVarDefinition
(** [let s.x = fun _ -> e] or [let s.x = error_on_empty e] for input-only
subscope variables. *)
| CallingSubScope (** [let result = s ({ x = s.x; y = s.x; ...}) ]*)
| DestructuringSubScopeResults (** [let s.x = result.x ]**)
| Assertion (** [let () = assert e]*)
type 'e scope_let = {
scope_let_kind : scope_let_kind;
scope_let_typ : typ;
scope_let_expr : 'e;
scope_let_next : ('e, 'e scope_body_expr) binder;
scope_let_pos : Pos.t;
}
constraint 'e = ('a any, _) gexpr
(** This type is parametrized by the expression type so it can be reused in
later intermediate representations. *)
(** A scope let-binding has all the information necessary to make a proper
let-binding expression, plus an annotation for the kind of the let-binding
that comes from the compilation of a {!module: Scopelang.Ast} statement. *)
and 'e scope_body_expr =
| Result of 'e
| ScopeLet of 'e scope_let
constraint 'e = ('a any, _) gexpr
type 'e scope_body = {
scope_body_input_struct : StructName.t;
scope_body_output_struct : StructName.t;
scope_body_expr : ('e, 'e scope_body_expr) binder;
}
constraint 'e = ('a any, _) gexpr
(** Instead of being a single expression, we give a little more ad-hoc structure
to the scope body by decomposing it in an ordered list of let-bindings, and
a result expression that uses the let-binded variables. The first binder is
the argument of type [scope_body_input_struct]. *)
type 'e code_item =
| ScopeDef of ScopeName.t * 'e scope_body
| Topdef of TopdefName.t * typ * 'e
(** A chained list, but with a binder for each element into the next:
[x := let a
= e1 in e2] is thus [Cons (e1, {a. Cons (e2, {x. Nil})})] *)
type 'e code_item_list =
| Nil
| Cons of 'e code_item * ('e, 'e code_item_list) binder
type struct_ctx = typ StructField.Map.t StructName.Map.t
type enum_ctx = typ EnumConstructor.Map.t EnumName.Map.t
type scope_info = {
in_struct_name : StructName.t;
out_struct_name : StructName.t;
out_struct_fields : StructField.t ScopeVar.Map.t;
}
(** In practice, this is a DAG: beware of repeated names *)
type module_tree = M of module_tree ModuleName.Map.t [@@caml.unboxed]
type decl_ctx = {
ctx_enums : enum_ctx;
ctx_structs : struct_ctx;
ctx_scopes : scope_info ScopeName.Map.t;
ctx_topdefs : typ TopdefName.Map.t;
ctx_struct_fields : StructField.t StructName.Map.t Ident.Map.t;
(** needed for disambiguation (desugared -> scope) *)
ctx_enum_constrs : EnumConstructor.t EnumName.Map.t Ident.Map.t;
ctx_scope_index : ScopeName.t Ident.Map.t;
(** only used to lookup scopes (in the root module) specified from the cli *)
ctx_modules : module_tree;
}
type 'e program = {
decl_ctx : decl_ctx;
code_items : 'e code_item_list;
lang : Cli.backend_lang;
module_name : ModuleName.t option;
}