package catala
Compiler and library for the literate programming language for tax code specification
Install
Dune Dependency
Authors
Maintainers
Sources
0.8.0.tar.gz
md5=1408a1cce45c7d5990b981e83e7589c2
sha512=eb3b923aa1f743378b4a05e30f50be5d180dc862a716270d747a90e469017f42fa5fc41352f02fbbf59cd2560f91c4f1b32cf38d80085b105d9387b0aed2039d
doc/src/catala.shared_ast/typing.ml.html
Source file typing.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816
(* This file is part of the Catala compiler, a specification language for tax and social benefits computation rules. Copyright (C) 2020 Inria, contributor: Denis Merigoux <denis.merigoux@inria.fr> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** Typing for the default calculus. Because of the error terms, we perform type inference using the classical W algorithm with union-find unification. *) open Catala_utils module A = Definitions module Any = Uid.Make (struct type info = unit let to_string _ = "any" let format fmt () = Format.fprintf fmt "any" let equal _ _ = true let compare _ _ = 0 end) () type unionfind_typ = naked_typ Marked.pos UnionFind.elem (** We do not reuse {!type: Shared_ast.typ} because we have to include a new [TAny] variant. Indeed, error terms can have any type and this has to be captured by the type sytem. *) and naked_typ = | TLit of A.typ_lit | TArrow of unionfind_typ list * unionfind_typ | TTuple of unionfind_typ list | TStruct of A.StructName.t | TEnum of A.EnumName.t | TOption of unionfind_typ | TArray of unionfind_typ | TAny of Any.t let rec typ_to_ast ?(unsafe = false) (ty : unionfind_typ) : A.typ = let typ_to_ast = typ_to_ast ~unsafe in let ty, pos = UnionFind.get (UnionFind.find ty) in match ty with | TLit l -> A.TLit l, pos | TTuple ts -> A.TTuple (List.map typ_to_ast ts), pos | TStruct s -> A.TStruct s, pos | TEnum e -> A.TEnum e, pos | TOption t -> A.TOption (typ_to_ast t), pos | TArrow (t1, t2) -> A.TArrow (List.map typ_to_ast t1, typ_to_ast t2), pos | TArray t1 -> A.TArray (typ_to_ast t1), pos | TAny _ -> if unsafe then A.TAny, pos else (* No polymorphism in Catala: type inference should return full types without wildcards, and this function is used to recover the types after typing. *) Errors.raise_spanned_error pos "Internal error: typing at this point could not be resolved" (* Checks that there are no type variables remaining *) let rec all_resolved ty = match Marked.unmark (UnionFind.get (UnionFind.find ty)) with | TAny _ -> false | TLit _ | TStruct _ | TEnum _ -> true | TOption t1 | TArray t1 -> all_resolved t1 | TArrow (t1, t2) -> List.for_all all_resolved t1 && all_resolved t2 | TTuple ts -> List.for_all all_resolved ts let rec ast_to_typ (ty : A.typ) : unionfind_typ = let ty' = match Marked.unmark ty with | A.TLit l -> TLit l | A.TArrow (t1, t2) -> TArrow (List.map ast_to_typ t1, ast_to_typ t2) | A.TTuple ts -> TTuple (List.map ast_to_typ ts) | A.TStruct s -> TStruct s | A.TEnum e -> TEnum e | A.TOption t -> TOption (ast_to_typ t) | A.TArray t -> TArray (ast_to_typ t) | A.TAny -> TAny (Any.fresh ()) in UnionFind.make (Marked.same_mark_as ty' ty) (** {1 Types and unification} *) let typ_needs_parens (t : unionfind_typ) : bool = let t = UnionFind.get (UnionFind.find t) in match Marked.unmark t with TArrow _ | TArray _ -> true | _ -> false let rec format_typ (ctx : A.decl_ctx) (fmt : Format.formatter) (naked_typ : unionfind_typ) : unit = let format_typ = format_typ ctx in let format_typ_with_parens (fmt : Format.formatter) (t : unionfind_typ) = if typ_needs_parens t then Format.fprintf fmt "(%a)" format_typ t else Format.fprintf fmt "%a" format_typ t in let naked_typ = UnionFind.get (UnionFind.find naked_typ) in match Marked.unmark naked_typ with | TLit l -> Format.fprintf fmt "%a" Print.tlit l | TTuple ts -> Format.fprintf fmt "@[<hov 2>(%a)@]" (Format.pp_print_list ~pp_sep:(fun fmt () -> Format.fprintf fmt "@ *@ ") (fun fmt t -> Format.fprintf fmt "%a" format_typ t)) ts | TStruct s -> Format.fprintf fmt "%a" A.StructName.format_t s | TEnum e -> Format.fprintf fmt "%a" A.EnumName.format_t e | TOption t -> Format.fprintf fmt "@[<hov 2>%a@ %s@]" format_typ_with_parens t "eoption" | TArrow ([t1], t2) -> Format.fprintf fmt "@[<hov 2>%a@ →@ %a@]" format_typ_with_parens t1 format_typ t2 | TArrow (t1, t2) -> Format.fprintf fmt "@[<hov 2>(%a)@ →@ %a@]" (Format.pp_print_list ~pp_sep:(fun fmt () -> Format.fprintf fmt ",@ ") format_typ_with_parens) t1 format_typ t2 | TArray t1 -> ( match Marked.unmark (UnionFind.get (UnionFind.find t1)) with | TAny _ when not !Cli.debug_flag -> Format.pp_print_string fmt "collection" | _ -> Format.fprintf fmt "@[collection@ %a@]" format_typ t1) | TAny v -> if !Cli.debug_flag then Format.fprintf fmt "<a%d>" (Any.hash v) else Format.pp_print_string fmt "<any>" exception Type_error of A.any_expr * unionfind_typ * unionfind_typ type mark = { pos : Pos.t; uf : unionfind_typ } (** Raises an error if unification cannot be performed. The position annotation of the second [unionfind_typ] argument is propagated (unless it is [TAny]). *) let rec unify (ctx : A.decl_ctx) (e : ('a, 'm A.mark) A.gexpr) (* used for error context *) (t1 : unionfind_typ) (t2 : unionfind_typ) : unit = let unify = unify ctx in (* Cli.debug_format "Unifying %a and %a" (format_typ ctx) t1 (format_typ ctx) t2; *) let t1_repr = UnionFind.get (UnionFind.find t1) in let t2_repr = UnionFind.get (UnionFind.find t2) in let raise_type_error () = raise (Type_error (A.AnyExpr e, t1, t2)) in let () = match Marked.unmark t1_repr, Marked.unmark t2_repr with | TLit tl1, TLit tl2 -> if tl1 <> tl2 then raise_type_error () | TArrow (t11, t12), TArrow (t21, t22) -> ( unify e t12 t22; try List.iter2 (unify e) t11 t21 with Invalid_argument _ -> raise_type_error ()) | TTuple ts1, TTuple ts2 -> ( try List.iter2 (unify e) ts1 ts2 with Invalid_argument _ -> raise_type_error ()) | TStruct s1, TStruct s2 -> if not (A.StructName.equal s1 s2) then raise_type_error () | TEnum e1, TEnum e2 -> if not (A.EnumName.equal e1 e2) then raise_type_error () | TOption t1, TOption t2 -> unify e t1 t2 | TArray t1', TArray t2' -> unify e t1' t2' | TAny _, _ | _, TAny _ -> () | ( ( TLit _ | TArrow _ | TTuple _ | TStruct _ | TEnum _ | TOption _ | TArray _ ), _ ) -> raise_type_error () in ignore @@ UnionFind.merge (fun t1 t2 -> match Marked.unmark t2 with TAny _ -> t1 | _ -> t2) t1 t2 let handle_type_error ctx e t1 t2 = (* TODO: if we get weird error messages, then it means that we should use the persistent version of the union-find data structure. *) let pos = match e with | A.AnyExpr e -> ( match Marked.get_mark e with Untyped { pos } | Typed { pos; _ } -> pos) in let t1_repr = UnionFind.get (UnionFind.find t1) in let t2_repr = UnionFind.get (UnionFind.find t2) in let t1_pos = Marked.get_mark t1_repr in let t2_pos = Marked.get_mark t2_repr in let unformat_typ typ = let buf = Buffer.create 59 in let ppf = Format.formatter_of_buffer buf in (* set infinite width to disable line cuts *) Format.pp_set_margin ppf max_int; format_typ ctx ppf typ; Format.pp_print_flush ppf (); Buffer.contents buf in let t1_s fmt () = Cli.format_with_style [ANSITerminal.yellow] fmt (unformat_typ t1) in let t2_s fmt () = Cli.format_with_style [ANSITerminal.yellow] fmt (unformat_typ t2) in Errors.raise_multispanned_error [ ( Some (Format.asprintf "Error coming from typechecking the following expression:"), pos ); Some (Format.asprintf "Type %a coming from expression:" t1_s ()), t1_pos; Some (Format.asprintf "Type %a coming from expression:" t2_s ()), t2_pos; ] "Error during typechecking, incompatible types:\n%a %a\n%a %a" (Cli.format_with_style [ANSITerminal.blue; ANSITerminal.Bold]) "-->" t1_s () (Cli.format_with_style [ANSITerminal.blue; ANSITerminal.Bold]) "-->" t2_s () let lit_type (type a) (lit : a A.glit) : naked_typ = match lit with | LBool _ -> TLit TBool | LInt _ -> TLit TInt | LRat _ -> TLit TRat | LMoney _ -> TLit TMoney | LDate _ -> TLit TDate | LDuration _ -> TLit TDuration | LUnit -> TLit TUnit | LEmptyError -> TAny (Any.fresh ()) (** [op_type] and [resolve_overload] are a bit similar, and work on disjoint sets of operators. However, their assumptions are different so we keep the functions separate. In particular [resolve_overloads] requires its argument types to be known in advance. *) let polymorphic_op_type (op : ('a, Operator.polymorphic) A.operator Marked.pos) : unionfind_typ = let open Operator in let pos = Marked.get_mark op in let any = lazy (UnionFind.make (TAny (Any.fresh ()), pos)) in let any2 = lazy (UnionFind.make (TAny (Any.fresh ()), pos)) in let bt = lazy (UnionFind.make (TLit TBool, pos)) in let it = lazy (UnionFind.make (TLit TInt, pos)) in let array a = lazy (UnionFind.make (TArray (Lazy.force a), pos)) in let ( @-> ) x y = lazy (UnionFind.make (TArrow (List.map Lazy.force x, Lazy.force y), pos)) in let ty = match Marked.unmark op with | Fold -> [[any2; any] @-> any2; any2; array any] @-> any2 | Eq -> [any; any] @-> bt | Map -> [[any] @-> any2; array any] @-> array any2 | Filter -> [[any] @-> bt; array any] @-> array any | Reduce -> [[any; any] @-> any; any; array any] @-> any | Concat -> [array any; array any] @-> array any | Log (PosRecordIfTrueBool, _) -> [bt] @-> bt | Log _ -> [any] @-> any | Length -> [array any] @-> it in Lazy.force ty let resolve_overload_ret_type (ctx : A.decl_ctx) e (op : ('a A.any, Operator.overloaded) A.operator) tys : unionfind_typ = let op_ty = Operator.overload_type ctx (Marked.mark (Expr.pos e) op) (List.map (typ_to_ast ~unsafe:true) tys) (* We use [unsafe] because the error is caught below *) in ast_to_typ (Type.arrow_return op_ty) (** {1 Double-directed typing} *) module Env = struct type 'e t = { vars : ('e, unionfind_typ) Var.Map.t; scope_vars : A.typ A.ScopeVar.Map.t; scopes : A.typ A.ScopeVar.Map.t A.ScopeName.Map.t; toplevel_vars : A.typ A.TopdefName.Map.t; } let empty = { vars = Var.Map.empty; scope_vars = A.ScopeVar.Map.empty; scopes = A.ScopeName.Map.empty; toplevel_vars = A.TopdefName.Map.empty; } let get t v = Var.Map.find_opt v t.vars let get_scope_var t sv = A.ScopeVar.Map.find_opt sv t.scope_vars let get_toplevel_var t v = A.TopdefName.Map.find_opt v t.toplevel_vars let get_subscope_out_var t scope var = Option.bind (A.ScopeName.Map.find_opt scope t.scopes) (fun vmap -> A.ScopeVar.Map.find_opt var vmap) let add v tau t = { t with vars = Var.Map.add v tau t.vars } let add_var v typ t = add v (ast_to_typ typ) t let add_scope_var v typ t = { t with scope_vars = A.ScopeVar.Map.add v typ t.scope_vars } let add_scope scope_name ~vars t = { t with scopes = A.ScopeName.Map.add scope_name vars t.scopes } let add_toplevel_var v typ t = { t with toplevel_vars = A.TopdefName.Map.add v typ t.toplevel_vars } let open_scope scope_name t = let scope_vars = A.ScopeVar.Map.union (fun _ _ -> assert false) t.scope_vars (A.ScopeName.Map.find scope_name t.scopes) in { t with scope_vars } end let add_pos e ty = Marked.mark (Expr.pos e) ty let ty (_, { uf; _ }) = uf (** Infers the most permissive type from an expression *) let rec typecheck_expr_bottom_up : type a m. A.decl_ctx -> (a, m A.mark) A.gexpr Env.t -> (a, m A.mark) A.gexpr -> (a, mark) A.boxed_gexpr = fun ctx env e -> typecheck_expr_top_down ctx env (UnionFind.make (add_pos e (TAny (Any.fresh ())))) e (** Checks whether the expression can be typed with the provided type *) and typecheck_expr_top_down : type a m. A.decl_ctx -> (a, m A.mark) A.gexpr Env.t -> unionfind_typ -> (a, m A.mark) A.gexpr -> (a, mark) A.boxed_gexpr = fun ctx env tau e -> (* Cli.debug_format "Propagating type %a for naked_expr %a" (format_typ ctx) tau (Expr.format ctx) e; *) let pos_e = Expr.pos e in let () = (* If there already is a type annotation on the given expr, ensure it matches *) match Marked.get_mark e with | A.Untyped _ | A.Typed { A.ty = A.TAny, _; _ } -> () | A.Typed { A.ty; _ } -> unify ctx e tau (ast_to_typ ty) in let context_mark = { uf = tau; pos = pos_e } in let uf_mark uf = (* Unify with the supplied type first, and return the mark *) unify ctx e uf tau; { uf; pos = pos_e } in let unionfind ?(pos = e) t = UnionFind.make (add_pos pos t) in let ty_mark ty = uf_mark (unionfind ty) in match Marked.unmark e with | A.ELocation loc -> let ty_opt = match loc with | DesugaredScopeVar (v, _) | ScopelangScopeVar v -> Env.get_scope_var env (Marked.unmark v) | SubScopeVar (scope, _, v) -> Env.get_subscope_out_var env scope (Marked.unmark v) | ToplevelVar v -> Env.get_toplevel_var env (Marked.unmark v) in let ty = match ty_opt with | Some ty -> ty | None -> Errors.raise_spanned_error pos_e "Reference to %a not found" (Expr.format ctx) e in Expr.elocation loc (uf_mark (ast_to_typ ty)) | A.EStruct { name; fields } -> let mark = ty_mark (TStruct name) in let str = A.StructName.Map.find name ctx.A.ctx_structs in let _check_fields : unit = let missing_fields, extra_fields = A.StructField.Map.fold (fun fld x (remaining, extra) -> if A.StructField.Map.mem fld remaining then A.StructField.Map.remove fld remaining, extra else remaining, A.StructField.Map.add fld x extra) fields (str, A.StructField.Map.empty) in let errs = List.map (fun (f, ty) -> ( Some (Format.asprintf "Missing field %a" A.StructField.format_t f), Marked.get_mark ty )) (A.StructField.Map.bindings missing_fields) @ List.map (fun (f, ef) -> let dup = A.StructField.Map.mem f str in ( Some (Format.asprintf "%s field %a" (if dup then "Duplicate" else "Unknown") A.StructField.format_t f), Expr.pos ef )) (A.StructField.Map.bindings extra_fields) in if errs <> [] then Errors.raise_multispanned_error errs "Mismatching field definitions for structure %a" A.StructName.format_t name in let fields' = A.StructField.Map.mapi (fun f_name f_e -> let f_ty = A.StructField.Map.find f_name str in typecheck_expr_top_down ctx env (ast_to_typ f_ty) f_e) fields in Expr.estruct name fields' mark | A.EDStructAccess { e = e_struct; name_opt; field } -> let t_struct = match name_opt with | Some name -> TStruct name | None -> TAny (Any.fresh ()) in let e_struct' = typecheck_expr_top_down ctx env (unionfind t_struct) e_struct in let name = match UnionFind.get (ty e_struct') with | TStruct name, _ -> name | TAny _, _ -> Printf.ksprintf failwith "Disambiguation failed before reaching field %s" field | _ -> Errors.raise_spanned_error (Expr.pos e) "This is not a structure, cannot access field %s (%a)" field (format_typ ctx) (ty e_struct') in let fld_ty = let str = try A.StructName.Map.find name ctx.A.ctx_structs with Not_found -> Errors.raise_spanned_error pos_e "No structure %a found" A.StructName.format_t name in let field = let candidate_structs = try A.IdentName.Map.find field ctx.ctx_struct_fields with Not_found -> Errors.raise_spanned_error context_mark.pos "Field %s does not belong to structure %a (no structure defines \ it)" field A.StructName.format_t name in try A.StructName.Map.find name candidate_structs with Not_found -> Errors.raise_spanned_error context_mark.pos "Field %s does not belong to structure %a, but to %a" field A.StructName.format_t name (Format.pp_print_list ~pp_sep:(fun ppf () -> Format.fprintf ppf "@ or@ ") A.StructName.format_t) (List.map fst (A.StructName.Map.bindings candidate_structs)) in A.StructField.Map.find field str in let mark = uf_mark (ast_to_typ fld_ty) in Expr.edstructaccess e_struct' field (Some name) mark | A.EStructAccess { e = e_struct; name; field } -> let fld_ty = let str = try A.StructName.Map.find name ctx.A.ctx_structs with Not_found -> Errors.raise_spanned_error pos_e "No structure %a found" A.StructName.format_t name in try A.StructField.Map.find field str with Not_found -> Errors.raise_multispanned_error [ None, pos_e; ( Some "Structure %a declared here", Marked.get_mark (A.StructName.get_info name) ); ] "Structure %a doesn't define a field %a" A.StructName.format_t name A.StructField.format_t field in let mark = uf_mark (ast_to_typ fld_ty) in let e_struct' = typecheck_expr_top_down ctx env (unionfind (TStruct name)) e_struct in Expr.estructaccess e_struct' field name mark | A.EInj { name; cons; e = e_enum } -> let mark = uf_mark (unionfind (TEnum name)) in let e_enum' = typecheck_expr_top_down ctx env (ast_to_typ (A.EnumConstructor.Map.find cons (A.EnumName.Map.find name ctx.A.ctx_enums))) e_enum in Expr.einj e_enum' cons name mark | A.EMatch { e = e1; name; cases } -> let cases_ty = A.EnumName.Map.find name ctx.A.ctx_enums in let t_ret = unionfind ~pos:e1 (TAny (Any.fresh ())) in let mark = uf_mark t_ret in let e1' = typecheck_expr_top_down ctx env (unionfind (TEnum name)) e1 in let cases' = A.EnumConstructor.Map.mapi (fun c_name e -> let c_ty = A.EnumConstructor.Map.find c_name cases_ty in (* For now our constructors are limited to zero or one argument. If there is a change to allow for multiple arguments, it might be easier to use tuples directly. *) let e_ty = unionfind ~pos:e (TArrow ([ast_to_typ c_ty], t_ret)) in typecheck_expr_top_down ctx env e_ty e) cases in Expr.ematch e1' name cases' mark | A.EScopeCall { scope; args } -> let scope_out_struct = (A.ScopeName.Map.find scope ctx.ctx_scopes).out_struct_name in let mark = uf_mark (unionfind (TStruct scope_out_struct)) in let vars = A.ScopeName.Map.find scope env.scopes in let args' = A.ScopeVar.Map.mapi (fun name -> typecheck_expr_top_down ctx env (ast_to_typ (A.ScopeVar.Map.find name vars))) args in Expr.escopecall scope args' mark | A.ERaise ex -> Expr.eraise ex context_mark | A.ECatch { body; exn; handler } -> let body' = typecheck_expr_top_down ctx env tau body in let handler' = typecheck_expr_top_down ctx env tau handler in Expr.ecatch body' exn handler' context_mark | A.EVar v -> let tau' = match Env.get env v with | Some t -> t | None -> Errors.raise_spanned_error pos_e "Variable %s not found in the current context" (Bindlib.name_of v) in Expr.evar (Var.translate v) (uf_mark tau') | A.ELit lit -> Expr.elit lit (ty_mark (lit_type lit)) | A.ETuple es -> let tys = List.map (fun _ -> unionfind (TAny (Any.fresh ()))) es in let mark = uf_mark (unionfind (TTuple tys)) in let es' = List.map2 (typecheck_expr_top_down ctx env) tys es in Expr.etuple es' mark | A.ETupleAccess { e = e1; index; size } -> if index >= size then Errors.raise_spanned_error (Expr.pos e) "Tuple access out of bounds (%d/%d)" index size; let tuple_ty = TTuple (List.init size (fun n -> if n = index then tau else unionfind ~pos:e1 (TAny (Any.fresh ())))) in let e1' = typecheck_expr_top_down ctx env (unionfind ~pos:e1 tuple_ty) e1 in Expr.etupleaccess e1' index size context_mark | A.EAbs { binder; tys = t_args } -> if Bindlib.mbinder_arity binder <> List.length t_args then Errors.raise_spanned_error (Expr.pos e) "function has %d variables but was supplied %d types" (Bindlib.mbinder_arity binder) (List.length t_args) else let tau_args = List.map ast_to_typ t_args in let t_ret = unionfind (TAny (Any.fresh ())) in let t_func = unionfind (TArrow (tau_args, t_ret)) in let mark = uf_mark t_func in assert (List.for_all all_resolved tau_args); let xs, body = Bindlib.unmbind binder in let xs' = Array.map Var.translate xs in let env = List.fold_left2 (fun env x tau_arg -> Env.add x tau_arg env) env (Array.to_list xs) tau_args in let body' = typecheck_expr_top_down ctx env t_ret body in let binder' = Bindlib.bind_mvar xs' (Expr.Box.lift body') in Expr.eabs binder' (List.map typ_to_ast tau_args) mark | A.EApp { f = (EOp { op; tys }, _) as e1; args } -> let t_args = List.map ast_to_typ tys in let t_func = unionfind (TArrow (t_args, tau)) in let e1', args' = Operator.kind_dispatch op ~polymorphic:(fun _ -> (* Type the operator first, then right-to-left: polymorphic operators are required to allow the resolution of all type variables this way *) let e1' = typecheck_expr_top_down ctx env t_func e1 in let args' = List.rev_map2 (typecheck_expr_top_down ctx env) (List.rev t_args) (List.rev args) in e1', args') ~overloaded:(fun _ -> (* Typing the arguments first is required to resolve the operator *) let args' = List.map2 (typecheck_expr_top_down ctx env) t_args args in let e1' = typecheck_expr_top_down ctx env t_func e1 in e1', args') ~monomorphic:(fun _ -> (* Here it doesn't matter but may affect the error messages *) let e1' = typecheck_expr_top_down ctx env t_func e1 in let args' = List.map2 (typecheck_expr_top_down ctx env) t_args args in e1', args') ~resolved:(fun _ -> (* This case should not fail *) let e1' = typecheck_expr_top_down ctx env t_func e1 in let args' = List.map2 (typecheck_expr_top_down ctx env) t_args args in e1', args') in Expr.eapp e1' args' context_mark | A.EApp { f = e1; args } -> (* Here we type the arguments first (in order), to ensure we know the types of the arguments if [f] is [EAbs] before disambiguation. This is also the right order for the [let-in] form. *) let t_args = List.map (fun _ -> unionfind (TAny (Any.fresh ()))) args in let t_func = unionfind (TArrow (t_args, tau)) in let args' = List.map2 (typecheck_expr_top_down ctx env) t_args args in let e1' = typecheck_expr_top_down ctx env t_func e1 in Expr.eapp e1' args' context_mark | A.EOp { op; tys } -> let tys' = List.map ast_to_typ tys in let t_ret = unionfind (TAny (Any.fresh ())) in let t_func = unionfind (TArrow (tys', t_ret)) in unify ctx e t_func tau; let tys, mark = Operator.kind_dispatch op ~polymorphic:(fun op -> tys, uf_mark (polymorphic_op_type (Marked.mark pos_e op))) ~monomorphic:(fun op -> let mark = uf_mark (ast_to_typ (Operator.monomorphic_type (Marked.mark pos_e op))) in List.map typ_to_ast tys', mark) ~overloaded:(fun op -> unify ctx e t_ret (resolve_overload_ret_type ctx e op tys'); List.map typ_to_ast tys', { uf = t_func; pos = pos_e }) ~resolved:(fun op -> let mark = uf_mark (ast_to_typ (Operator.resolved_type (Marked.mark pos_e op))) in List.map typ_to_ast tys', mark) in Expr.eop op tys mark | A.EDefault { excepts; just; cons } -> let cons' = typecheck_expr_top_down ctx env tau cons in let just' = typecheck_expr_top_down ctx env (unionfind ~pos:just (TLit TBool)) just in let excepts' = List.map (typecheck_expr_top_down ctx env tau) excepts in Expr.edefault excepts' just' cons' context_mark | A.EIfThenElse { cond; etrue = et; efalse = ef } -> let et' = typecheck_expr_top_down ctx env tau et in let ef' = typecheck_expr_top_down ctx env tau ef in let cond' = typecheck_expr_top_down ctx env (unionfind ~pos:cond (TLit TBool)) cond in Expr.eifthenelse cond' et' ef' context_mark | A.EAssert e1 -> let mark = uf_mark (unionfind (TLit TUnit)) in let e1' = typecheck_expr_top_down ctx env (unionfind ~pos:e1 (TLit TBool)) e1 in Expr.eassert e1' mark | A.EErrorOnEmpty e1 -> let e1' = typecheck_expr_top_down ctx env tau e1 in Expr.eerroronempty e1' context_mark | A.EArray es -> let cell_type = unionfind (TAny (Any.fresh ())) in let mark = uf_mark (unionfind (TArray cell_type)) in let es' = List.map (typecheck_expr_top_down ctx env cell_type) es in Expr.earray es' mark let wrap ctx f e = try f e with Type_error (e, ty1, ty2) -> ( let bt = Printexc.get_raw_backtrace () in try handle_type_error ctx e ty1 ty2 with e -> Printexc.raise_with_backtrace e bt) let wrap_expr ctx f e = (* We need to unbox here, because the typing may otherwise be stored in Bindlib closures and not yet applied, and would escape the `try..with` *) wrap ctx (fun e -> Expr.unbox (f e)) e (** {1 API} *) let get_ty_mark { uf; pos } = A.Typed { ty = typ_to_ast uf; pos } let expr_raw (type a) (ctx : A.decl_ctx) ?(env = Env.empty) ?(typ : A.typ option) (e : (a, 'm) A.gexpr) : (a, mark) A.gexpr = let fty = match typ with | None -> typecheck_expr_bottom_up ctx env | Some typ -> typecheck_expr_top_down ctx env (ast_to_typ typ) in wrap_expr ctx fty e let check_expr ctx ?env ?typ e = Expr.map_marks ~f:(fun { pos; _ } -> A.Untyped { pos }) (expr_raw ctx ?env ?typ e) (* Infer the type of an expression *) let expr ctx ?env ?typ e = Expr.map_marks ~f:get_ty_mark (expr_raw ctx ?env ?typ e) let rec scope_body_expr ctx env ty_out body_expr = match body_expr with | A.Result e -> let e' = wrap_expr ctx (typecheck_expr_top_down ctx env ty_out) e in let e' = Expr.map_marks ~f:get_ty_mark e' in Bindlib.box_apply (fun e -> A.Result e) (Expr.Box.lift e') | A.ScopeLet { scope_let_kind; scope_let_typ; scope_let_expr = e0; scope_let_next; scope_let_pos; } -> let ty_e = ast_to_typ scope_let_typ in let e = wrap_expr ctx (typecheck_expr_bottom_up ctx env) e0 in wrap ctx (fun t -> unify ctx e0 (ty e) t) ty_e; (* We could use [typecheck_expr_top_down] rather than this manual unification, but we get better messages with this order of the [unify] parameters, which keeps location of the type as defined instead of as inferred. *) let var, next = Bindlib.unbind scope_let_next in let env = Env.add var ty_e env in let next = scope_body_expr ctx env ty_out next in let scope_let_next = Bindlib.bind_var (Var.translate var) next in Bindlib.box_apply2 (fun scope_let_expr scope_let_next -> A.ScopeLet { scope_let_kind; scope_let_typ; scope_let_expr; scope_let_next; scope_let_pos; }) (Expr.Box.lift (Expr.map_marks ~f:get_ty_mark e)) scope_let_next let scope_body ctx env body = let get_pos struct_name = Marked.get_mark (A.StructName.get_info struct_name) in let struct_ty struct_name = UnionFind.make (Marked.mark (get_pos struct_name) (TStruct struct_name)) in let ty_in = struct_ty body.A.scope_body_input_struct in let ty_out = struct_ty body.A.scope_body_output_struct in let var, e = Bindlib.unbind body.A.scope_body_expr in let env = Env.add var ty_in env in let e' = scope_body_expr ctx env ty_out e in ( Bindlib.box_apply (fun scope_body_expr -> { body with scope_body_expr }) (Bindlib.bind_var (Var.translate var) e'), UnionFind.make (Marked.mark (get_pos body.A.scope_body_output_struct) (TArrow ([ty_in], ty_out))) ) let rec scopes ctx env = function | A.Nil -> Bindlib.box A.Nil | A.Cons (item, next_bind) -> let var, next = Bindlib.unbind next_bind in let env, def = match item with | A.ScopeDef (name, body) -> let body_e, ty_scope = scope_body ctx env body in ( Env.add var ty_scope env, Bindlib.box_apply (fun body -> A.ScopeDef (name, body)) body_e ) | A.Topdef (name, typ, e) -> let e' = expr_raw ctx ~env ~typ e in let uf = (Marked.get_mark e').uf in let e' = Expr.map_marks ~f:get_ty_mark e' in ( Env.add var uf env, Bindlib.box_apply (fun e -> A.Topdef (name, typ, e)) (Expr.Box.lift e') ) in let next' = scopes ctx env next in let next_bind' = Bindlib.bind_var (Var.translate var) next' in Bindlib.box_apply2 (fun item next -> A.Cons (item, next)) def next_bind' let program prg = let code_items = Bindlib.unbox (scopes prg.A.decl_ctx Env.empty prg.A.code_items) in { prg with code_items }
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>