package catala

  1. Overview
  2. Docs
Compiler and library for the literate programming language for tax code specification

Install

Dune Dependency

Authors

Maintainers

Sources

0.8.0.tar.gz
md5=1408a1cce45c7d5990b981e83e7589c2
sha512=eb3b923aa1f743378b4a05e30f50be5d180dc862a716270d747a90e469017f42fa5fc41352f02fbbf59cd2560f91c4f1b32cf38d80085b105d9387b0aed2039d

doc/src/catala.shared_ast/definitions.ml.html

Source file definitions.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
(* This file is part of the Catala compiler, a specification language for tax
   and social benefits computation rules. Copyright (C) 2020-2022 Inria,
   contributor: Denis Merigoux <denis.merigoux@inria.fr>, Alain Delaët-Tixeuil
   <alain.delaet--tixeuil@inria.fr>, Louis Gesbert <louis.gesbert@inria.fr>

   Licensed under the Apache License, Version 2.0 (the "License"); you may not
   use this file except in compliance with the License. You may obtain a copy of
   the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
   WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
   License for the specific language governing permissions and limitations under
   the License. *)

(** This module defines generic types for types, literals and expressions shared
    through several of the different ASTs. *)

(* Doesn't define values, so OK to have without an mli *)

open Catala_utils
module Runtime = Runtime_ocaml.Runtime
module ScopeName = Uid.Gen ()
module TopdefName = Uid.Gen ()
module StructName = Uid.Gen ()
module StructField = Uid.Gen ()
module EnumName = Uid.Gen ()
module EnumConstructor = Uid.Gen ()

(** Only used by surface *)

module RuleName = Uid.Gen ()
module LabelName = Uid.Gen ()

(** Used for unresolved structs/maps in desugared *)

module IdentName = String

(** Only used by desugared/scopelang *)

module ScopeVar = Uid.Gen ()
module SubScopeName = Uid.Gen ()
module StateName = Uid.Gen ()

(** {1 Abstract syntax tree} *)

(** Define a common base type for the expressions in most passes of the compiler *)

type desugared = [ `Desugared ]
(** {2 Phantom types used to select relevant cases on the generic AST}

    we instantiate them with a polymorphic variant to take advantage of
    sub-typing. The values aren't actually used. *)

type scopelang = [ `Scopelang ]
type dcalc = [ `Dcalc ]
type lcalc = [ `Lcalc ]

type 'a any = [< desugared | scopelang | dcalc | lcalc ] as 'a
(** ['a any] is 'a, but adds the constraint that it should be restricted to
    valid AST kinds *)

(** {2 Types} *)

type typ_lit = TBool | TUnit | TInt | TRat | TMoney | TDate | TDuration

type typ = naked_typ Marked.pos

and naked_typ =
  | TLit of typ_lit
  | TTuple of typ list
  | TStruct of StructName.t
  | TEnum of EnumName.t
  | TOption of typ
  | TArrow of typ list * typ
  | TArray of typ
  | TAny

(** {2 Constants and operators} *)

type date = Runtime.date
type duration = Runtime.duration

type log_entry =
  | VarDef of naked_typ
      (** During code generation, we need to know the type of the variable being
          logged for embedding *)
  | BeginCall
  | EndCall
  | PosRecordIfTrueBool

module Op = struct
  (** Classification of operators on how they should be typed *)

  type monomorphic =
    | Monomorphic  (** Operands and return types of the operator are fixed *)

  type polymorphic =
    | Polymorphic
        (** The operator is truly polymorphic: it's the same runtime function
            that may work on multiple types. We require that resolving the
            argument types from right to left trivially resolves all type
            variables declared in the operator type. *)

  type overloaded =
    | Overloaded
        (** The operator is ambiguous and requires the types of its arguments to
            be known before it can be typed, using a pre-defined table *)

  type resolved =
    | Resolved  (** Explicit monomorphic versions of the overloaded operators *)

  (** Classification of operators. This could be inlined in the definition of
      [t] but is more concise this way *)
  type (_, _) kind =
    | Monomorphic : ('a any, monomorphic) kind
    | Polymorphic : ('a any, polymorphic) kind
    | Overloaded : ([< desugared ], overloaded) kind
    | Resolved : ([< scopelang | dcalc | lcalc ], resolved) kind

  type (_, _) t =
    (* unary *)
    (* * monomorphic *)
    | Not : ('a any, monomorphic) t
    | GetDay : ('a any, monomorphic) t
    | GetMonth : ('a any, monomorphic) t
    | GetYear : ('a any, monomorphic) t
    | FirstDayOfMonth : ('a any, monomorphic) t
    | LastDayOfMonth : ('a any, monomorphic) t
    (* * polymorphic *)
    | Length : ('a any, polymorphic) t
    | Log : log_entry * Uid.MarkedString.info list -> ('a any, polymorphic) t
    (* * overloaded *)
    | Minus : (desugared, overloaded) t
    | Minus_int : ([< scopelang | dcalc | lcalc ], resolved) t
    | Minus_rat : ([< scopelang | dcalc | lcalc ], resolved) t
    | Minus_mon : ([< scopelang | dcalc | lcalc ], resolved) t
    | Minus_dur : ([< scopelang | dcalc | lcalc ], resolved) t
    | ToRat : (desugared, overloaded) t
    | ToRat_int : ([< scopelang | dcalc | lcalc ], resolved) t
    | ToRat_mon : ([< scopelang | dcalc | lcalc ], resolved) t
    | ToMoney : (desugared, overloaded) t
    | ToMoney_rat : ([< scopelang | dcalc | lcalc ], resolved) t
    | Round : (desugared, overloaded) t
    | Round_rat : ([< scopelang | dcalc | lcalc ], resolved) t
    | Round_mon : ([< scopelang | dcalc | lcalc ], resolved) t
    (* binary *)
    (* * monomorphic *)
    | And : ('a any, monomorphic) t
    | Or : ('a any, monomorphic) t
    | Xor : ('a any, monomorphic) t
    (* * polymorphic *)
    | Eq : ('a any, polymorphic) t
    | Map : ('a any, polymorphic) t
    | Concat : ('a any, polymorphic) t
    | Filter : ('a any, polymorphic) t
    | Reduce : ('a any, polymorphic) t
    (* * overloaded *)
    | Add : (desugared, overloaded) t
    | Add_int_int : ([< scopelang | dcalc | lcalc ], resolved) t
    | Add_rat_rat : ([< scopelang | dcalc | lcalc ], resolved) t
    | Add_mon_mon : ([< scopelang | dcalc | lcalc ], resolved) t
    | Add_dat_dur : ([< scopelang | dcalc | lcalc ], resolved) t
    | Add_dur_dur : ([< scopelang | dcalc | lcalc ], resolved) t
    | Sub : (desugared, overloaded) t
    | Sub_int_int : ([< scopelang | dcalc | lcalc ], resolved) t
    | Sub_rat_rat : ([< scopelang | dcalc | lcalc ], resolved) t
    | Sub_mon_mon : ([< scopelang | dcalc | lcalc ], resolved) t
    | Sub_dat_dat : ([< scopelang | dcalc | lcalc ], resolved) t
    | Sub_dat_dur : ([< scopelang | dcalc | lcalc ], resolved) t
    | Sub_dur_dur : ([< scopelang | dcalc | lcalc ], resolved) t
    | Mult : (desugared, overloaded) t
    | Mult_int_int : ([< scopelang | dcalc | lcalc ], resolved) t
    | Mult_rat_rat : ([< scopelang | dcalc | lcalc ], resolved) t
    | Mult_mon_rat : ([< scopelang | dcalc | lcalc ], resolved) t
    | Mult_dur_int : ([< scopelang | dcalc | lcalc ], resolved) t
    | Div : (desugared, overloaded) t
    | Div_int_int : ([< scopelang | dcalc | lcalc ], resolved) t
    | Div_rat_rat : ([< scopelang | dcalc | lcalc ], resolved) t
    | Div_mon_rat : ([< scopelang | dcalc | lcalc ], resolved) t
    | Div_mon_mon : ([< scopelang | dcalc | lcalc ], resolved) t
    | Div_dur_dur : ([< scopelang | dcalc | lcalc ], resolved) t
    | Lt : (desugared, overloaded) t
    | Lt_int_int : ([< scopelang | dcalc | lcalc ], resolved) t
    | Lt_rat_rat : ([< scopelang | dcalc | lcalc ], resolved) t
    | Lt_mon_mon : ([< scopelang | dcalc | lcalc ], resolved) t
    | Lt_dat_dat : ([< scopelang | dcalc | lcalc ], resolved) t
    | Lt_dur_dur : ([< scopelang | dcalc | lcalc ], resolved) t
    | Lte : (desugared, overloaded) t
    | Lte_int_int : ([< scopelang | dcalc | lcalc ], resolved) t
    | Lte_rat_rat : ([< scopelang | dcalc | lcalc ], resolved) t
    | Lte_mon_mon : ([< scopelang | dcalc | lcalc ], resolved) t
    | Lte_dat_dat : ([< scopelang | dcalc | lcalc ], resolved) t
    | Lte_dur_dur : ([< scopelang | dcalc | lcalc ], resolved) t
    | Gt : (desugared, overloaded) t
    | Gt_int_int : ([< scopelang | dcalc | lcalc ], resolved) t
    | Gt_rat_rat : ([< scopelang | dcalc | lcalc ], resolved) t
    | Gt_mon_mon : ([< scopelang | dcalc | lcalc ], resolved) t
    | Gt_dat_dat : ([< scopelang | dcalc | lcalc ], resolved) t
    | Gt_dur_dur : ([< scopelang | dcalc | lcalc ], resolved) t
    | Gte : (desugared, overloaded) t
    | Gte_int_int : ([< scopelang | dcalc | lcalc ], resolved) t
    | Gte_rat_rat : ([< scopelang | dcalc | lcalc ], resolved) t
    | Gte_mon_mon : ([< scopelang | dcalc | lcalc ], resolved) t
    | Gte_dat_dat : ([< scopelang | dcalc | lcalc ], resolved) t
    | Gte_dur_dur : ([< scopelang | dcalc | lcalc ], resolved) t
    (* Todo: Eq is not an overload at the moment, but it should be one. The
       trick is that it needs generation of specific code for arrays, every
       struct and enum: operators [Eq_structs of StructName.t], etc. *)
    | Eq_int_int : ([< scopelang | dcalc | lcalc ], resolved) t
    | Eq_rat_rat : ([< scopelang | dcalc | lcalc ], resolved) t
    | Eq_mon_mon : ([< scopelang | dcalc | lcalc ], resolved) t
    | Eq_dur_dur : ([< scopelang | dcalc | lcalc ], resolved) t
    | Eq_dat_dat : ([< scopelang | dcalc | lcalc ], resolved) t
    (* ternary *)
    (* * polymorphic *)
    | Fold : ('a any, polymorphic) t
end

type ('a, 'k) operator = ('a any, 'k) Op.t
type except = ConflictError | EmptyError | NoValueProvided | Crash

(** {2 Generic expressions} *)

(** Define a common base type for the expressions in most passes of the compiler *)

(** Literals are the same throughout compilation except for the [LEmptyError]
    case which is eliminated midway through. *)
type 'a glit =
  | LBool : bool -> 'a glit
  | LEmptyError : [< desugared | scopelang | dcalc ] glit
  | LInt : Runtime.integer -> 'a glit
  | LRat : Runtime.decimal -> 'a glit
  | LMoney : Runtime.money -> 'a glit
  | LUnit : 'a glit
  | LDate : date -> 'a glit
  | LDuration : duration -> 'a glit

(** Locations are handled differently in [desugared] and [scopelang] *)
type 'a glocation =
  | DesugaredScopeVar :
      ScopeVar.t Marked.pos * StateName.t option
      -> desugared glocation
  | ScopelangScopeVar : ScopeVar.t Marked.pos -> scopelang glocation
  | SubScopeVar :
      ScopeName.t * SubScopeName.t Marked.pos * ScopeVar.t Marked.pos
      -> [< desugared | scopelang ] glocation
  | ToplevelVar :
      TopdefName.t Marked.pos
      -> [< desugared | scopelang ] glocation

type ('a, 't) gexpr = (('a, 't) naked_gexpr, 't) Marked.t
(** General expressions: groups all expression cases of the different ASTs, and
    uses a GADT to eliminate irrelevant cases for each one. The ['t] annotations
    are also totally unconstrained at this point. The dcalc exprs, for example,
    are then defined with [type naked_expr = dcalc naked_gexpr] plus the
    annotations.

    A few tips on using this GADT:

    - To write a function that handles cases from different ASTs, explicit the
      type variables: [fun (type a) (x: a naked_gexpr) -> ...]
    - For recursive functions, you may need to additionally explicit the
      generalisation of the variable: [let rec f: type a . a naked_gexpr -> ...]
    - Always think of using the pre-defined map/fold functions in [Expr] rather
      than completely defining your recursion manually. *)

and ('a, 't) naked_gexpr =
  (* Constructors common to all ASTs *)
  | ELit : 'a glit -> ('a any, 't) naked_gexpr
  | EApp : {
      f : ('a, 't) gexpr;
      args : ('a, 't) gexpr list;
    }
      -> ('a any, 't) naked_gexpr
  | EOp : { op : ('a, _) operator; tys : typ list } -> ('a any, 't) naked_gexpr
  | EArray : ('a, 't) gexpr list -> ('a any, 't) naked_gexpr
  | EVar : ('a, 't) naked_gexpr Bindlib.var -> ('a any, 't) naked_gexpr
  | EAbs : {
      binder : (('a, 't) naked_gexpr, ('a, 't) gexpr) Bindlib.mbinder;
      tys : typ list;
    }
      -> ('a any, 't) naked_gexpr
  | EIfThenElse : {
      cond : ('a, 't) gexpr;
      etrue : ('a, 't) gexpr;
      efalse : ('a, 't) gexpr;
    }
      -> ('a any, 't) naked_gexpr
  | EStruct : {
      name : StructName.t;
      fields : ('a, 't) gexpr StructField.Map.t;
    }
      -> ('a any, 't) naked_gexpr
  | EInj : {
      name : EnumName.t;
      e : ('a, 't) gexpr;
      cons : EnumConstructor.t;
    }
      -> ('a any, 't) naked_gexpr
  | EMatch : {
      name : EnumName.t;
      e : ('a, 't) gexpr;
      cases : ('a, 't) gexpr EnumConstructor.Map.t;
    }
      -> ('a any, 't) naked_gexpr
  | ETuple : ('a, 't) gexpr list -> ('a any, 't) naked_gexpr
  | ETupleAccess : {
      e : ('a, 't) gexpr;
      index : int;
      size : int;
    }
      -> ('a any, 't) naked_gexpr
  (* Early stages *)
  | ELocation :
      'a glocation
      -> (([< desugared | scopelang ] as 'a), 't) naked_gexpr
  | EScopeCall : {
      scope : ScopeName.t;
      args : ('a, 't) gexpr ScopeVar.Map.t;
    }
      -> (([< desugared | scopelang ] as 'a), 't) naked_gexpr
  | EDStructAccess : {
      name_opt : StructName.t option;
      e : ('a, 't) gexpr;
      field : IdentName.t;
    }
      -> ((desugared as 'a), 't) naked_gexpr
      (** [desugared] has ambiguous struct fields *)
  | EStructAccess : {
      name : StructName.t;
      e : ('a, 't) gexpr;
      field : StructField.t;
    }
      -> (([< scopelang | dcalc | lcalc ] as 'a), 't) naked_gexpr
      (** Resolved struct/enums, after [desugared] *)
  (* Lambda-like *)
  | EAssert : ('a, 't) gexpr -> (([< dcalc | lcalc ] as 'a), 't) naked_gexpr
  (* Default terms *)
  | EDefault : {
      excepts : ('a, 't) gexpr list;
      just : ('a, 't) gexpr;
      cons : ('a, 't) gexpr;
    }
      -> (([< desugared | scopelang | dcalc ] as 'a), 't) naked_gexpr
  | EErrorOnEmpty :
      ('a, 't) gexpr
      -> (([< desugared | scopelang | dcalc ] as 'a), 't) naked_gexpr
  (* Lambda calculus with exceptions *)
  | ERaise : except -> ((lcalc as 'a), 't) naked_gexpr
  | ECatch : {
      body : ('a, 't) gexpr;
      exn : except;
      handler : ('a, 't) gexpr;
    }
      -> ((lcalc as 'a), 't) naked_gexpr

type ('a, 't) boxed_gexpr = (('a, 't) naked_gexpr Bindlib.box, 't) Marked.t
(** The annotation is lifted outside of the box for expressions *)

type 'e boxed = ('a, 't) boxed_gexpr constraint 'e = ('a, 't) gexpr
(** [('a, 't) gexpr boxed] is [('a, 't) boxed_gexpr]. The difference with
    [('a, 't) gexpr Bindlib.box] is that the annotations is outside of the box,
    and can therefore be accessed without the need to resolve the box *)

type ('e, 'b) binder = (('a, 't) naked_gexpr, 'b) Bindlib.binder
  constraint 'e = ('a, 't) gexpr
(** The expressions use the {{:https://lepigre.fr/ocaml-bindlib/} Bindlib}
    library, based on higher-order abstract syntax *)

type ('e, 'b) mbinder = (('a, 't) naked_gexpr, 'b) Bindlib.mbinder
  constraint 'e = ('a, 't) gexpr

(** {2 Markings} *)

type untyped = { pos : Pos.t } [@@ocaml.unboxed]
type typed = { pos : Pos.t; ty : typ }

(** The generic type of AST markings. Using a GADT allows functions to be
    polymorphic in the marking, but still do transformations on types when
    appropriate. Expected to fill the ['t] parameter of [gexpr] and [gexpr] (a
    ['t] annotation different from this type is used in the middle of the typing
    processing, but all visible ASTs should otherwise use this. *)
type _ mark = Untyped : untyped -> untyped mark | Typed : typed -> typed mark

(** Useful for errors and printing, for example *)
type any_expr = AnyExpr : (_, _ mark) gexpr -> any_expr

(** {2 Higher-level program structure} *)

(** Constructs scopes and programs on top of expressions. The ['e] type
    parameter throughout is expected to match instances of the [gexpr] type
    defined above. Markings are constrained to the [mark] GADT defined above.
    Note that this structure is at the moment only relevant for [dcalc] and
    [lcalc], as [scopelang] has its own scope structure, as the name implies. *)

(** This kind annotation signals that the let-binding respects a structural
    invariant. These invariants concern the shape of the expression in the
    let-binding, and are documented below. *)
type scope_let_kind =
  | DestructuringInputStruct  (** [let x = input.field]*)
  | ScopeVarDefinition  (** [let x = error_on_empty e]*)
  | SubScopeVarDefinition
      (** [let s.x = fun _ -> e] or [let s.x = error_on_empty e] for input-only
          subscope variables. *)
  | CallingSubScope  (** [let result = s ({ x = s.x; y = s.x; ...}) ]*)
  | DestructuringSubScopeResults  (** [let s.x = result.x ]**)
  | Assertion  (** [let _ = assert e]*)

type 'e scope_let = {
  scope_let_kind : scope_let_kind;
  scope_let_typ : typ;
  scope_let_expr : 'e;
  scope_let_next : ('e, 'e scope_body_expr) binder;
  (* todo ? Factorise the code_item _list type below and use it here *)
  scope_let_pos : Pos.t;
}
  constraint 'e = (_ any, _ mark) gexpr
(** This type is parametrized by the expression type so it can be reused in
    later intermediate representations. *)

(** A scope let-binding has all the information necessary to make a proper
    let-binding expression, plus an annotation for the kind of the let-binding
    that comes from the compilation of a {!module: Scopelang.Ast} statement. *)
and 'e scope_body_expr =
  | Result of 'e
  | ScopeLet of 'e scope_let
  constraint 'e = (_ any, _ mark) gexpr

type 'e scope_body = {
  scope_body_input_struct : StructName.t;
  scope_body_output_struct : StructName.t;
  scope_body_expr : ('e, 'e scope_body_expr) binder;
}
  constraint 'e = (_ any, _ mark) gexpr
(** Instead of being a single expression, we give a little more ad-hoc structure
    to the scope body by decomposing it in an ordered list of let-bindings, and
    a result expression that uses the let-binded variables. The first binder is
    the argument of type [scope_body_input_struct]. *)

type 'e code_item =
  | ScopeDef of ScopeName.t * 'e scope_body
  | Topdef of TopdefName.t * typ * 'e

(* A chained list, but with a binder for each element into the next: [x := let a
   = e1 in e2] is thus [Cons (e1, {a. Cons (e2, {x. Nil})})] *)
type 'e code_item_list =
  | Nil
  | Cons of 'e code_item * ('e, 'e code_item_list) binder

type struct_ctx = typ StructField.Map.t StructName.Map.t
type enum_ctx = typ EnumConstructor.Map.t EnumName.Map.t

type scope_out_struct = {
  out_struct_name : StructName.t;
  out_struct_fields : StructField.t ScopeVar.Map.t;
}

type decl_ctx = {
  ctx_enums : enum_ctx;
  ctx_structs : struct_ctx;
  ctx_struct_fields : StructField.t StructName.Map.t IdentName.Map.t;
      (** needed for disambiguation (desugared -> scope) *)
  ctx_scopes : scope_out_struct ScopeName.Map.t;
}

type 'e program = { decl_ctx : decl_ctx; code_items : 'e code_item_list }
OCaml

Innovation. Community. Security.