package catala
Compiler and library for the literate programming language for tax code specification
Install
Dune Dependency
Authors
Maintainers
Sources
0.8.0.tar.gz
md5=1408a1cce45c7d5990b981e83e7589c2
sha512=eb3b923aa1f743378b4a05e30f50be5d180dc862a716270d747a90e469017f42fa5fc41352f02fbbf59cd2560f91c4f1b32cf38d80085b105d9387b0aed2039d
doc/src/catala.shared_ast/definitions.ml.html
Source file definitions.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
(* This file is part of the Catala compiler, a specification language for tax and social benefits computation rules. Copyright (C) 2020-2022 Inria, contributor: Denis Merigoux <denis.merigoux@inria.fr>, Alain Delaët-Tixeuil <alain.delaet--tixeuil@inria.fr>, Louis Gesbert <louis.gesbert@inria.fr> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) (** This module defines generic types for types, literals and expressions shared through several of the different ASTs. *) (* Doesn't define values, so OK to have without an mli *) open Catala_utils module Runtime = Runtime_ocaml.Runtime module ScopeName = Uid.Gen () module TopdefName = Uid.Gen () module StructName = Uid.Gen () module StructField = Uid.Gen () module EnumName = Uid.Gen () module EnumConstructor = Uid.Gen () (** Only used by surface *) module RuleName = Uid.Gen () module LabelName = Uid.Gen () (** Used for unresolved structs/maps in desugared *) module IdentName = String (** Only used by desugared/scopelang *) module ScopeVar = Uid.Gen () module SubScopeName = Uid.Gen () module StateName = Uid.Gen () (** {1 Abstract syntax tree} *) (** Define a common base type for the expressions in most passes of the compiler *) type desugared = [ `Desugared ] (** {2 Phantom types used to select relevant cases on the generic AST} we instantiate them with a polymorphic variant to take advantage of sub-typing. The values aren't actually used. *) type scopelang = [ `Scopelang ] type dcalc = [ `Dcalc ] type lcalc = [ `Lcalc ] type 'a any = [< desugared | scopelang | dcalc | lcalc ] as 'a (** ['a any] is 'a, but adds the constraint that it should be restricted to valid AST kinds *) (** {2 Types} *) type typ_lit = TBool | TUnit | TInt | TRat | TMoney | TDate | TDuration type typ = naked_typ Marked.pos and naked_typ = | TLit of typ_lit | TTuple of typ list | TStruct of StructName.t | TEnum of EnumName.t | TOption of typ | TArrow of typ list * typ | TArray of typ | TAny (** {2 Constants and operators} *) type date = Runtime.date type duration = Runtime.duration type log_entry = | VarDef of naked_typ (** During code generation, we need to know the type of the variable being logged for embedding *) | BeginCall | EndCall | PosRecordIfTrueBool module Op = struct (** Classification of operators on how they should be typed *) type monomorphic = | Monomorphic (** Operands and return types of the operator are fixed *) type polymorphic = | Polymorphic (** The operator is truly polymorphic: it's the same runtime function that may work on multiple types. We require that resolving the argument types from right to left trivially resolves all type variables declared in the operator type. *) type overloaded = | Overloaded (** The operator is ambiguous and requires the types of its arguments to be known before it can be typed, using a pre-defined table *) type resolved = | Resolved (** Explicit monomorphic versions of the overloaded operators *) (** Classification of operators. This could be inlined in the definition of [t] but is more concise this way *) type (_, _) kind = | Monomorphic : ('a any, monomorphic) kind | Polymorphic : ('a any, polymorphic) kind | Overloaded : ([< desugared ], overloaded) kind | Resolved : ([< scopelang | dcalc | lcalc ], resolved) kind type (_, _) t = (* unary *) (* * monomorphic *) | Not : ('a any, monomorphic) t | GetDay : ('a any, monomorphic) t | GetMonth : ('a any, monomorphic) t | GetYear : ('a any, monomorphic) t | FirstDayOfMonth : ('a any, monomorphic) t | LastDayOfMonth : ('a any, monomorphic) t (* * polymorphic *) | Length : ('a any, polymorphic) t | Log : log_entry * Uid.MarkedString.info list -> ('a any, polymorphic) t (* * overloaded *) | Minus : (desugared, overloaded) t | Minus_int : ([< scopelang | dcalc | lcalc ], resolved) t | Minus_rat : ([< scopelang | dcalc | lcalc ], resolved) t | Minus_mon : ([< scopelang | dcalc | lcalc ], resolved) t | Minus_dur : ([< scopelang | dcalc | lcalc ], resolved) t | ToRat : (desugared, overloaded) t | ToRat_int : ([< scopelang | dcalc | lcalc ], resolved) t | ToRat_mon : ([< scopelang | dcalc | lcalc ], resolved) t | ToMoney : (desugared, overloaded) t | ToMoney_rat : ([< scopelang | dcalc | lcalc ], resolved) t | Round : (desugared, overloaded) t | Round_rat : ([< scopelang | dcalc | lcalc ], resolved) t | Round_mon : ([< scopelang | dcalc | lcalc ], resolved) t (* binary *) (* * monomorphic *) | And : ('a any, monomorphic) t | Or : ('a any, monomorphic) t | Xor : ('a any, monomorphic) t (* * polymorphic *) | Eq : ('a any, polymorphic) t | Map : ('a any, polymorphic) t | Concat : ('a any, polymorphic) t | Filter : ('a any, polymorphic) t | Reduce : ('a any, polymorphic) t (* * overloaded *) | Add : (desugared, overloaded) t | Add_int_int : ([< scopelang | dcalc | lcalc ], resolved) t | Add_rat_rat : ([< scopelang | dcalc | lcalc ], resolved) t | Add_mon_mon : ([< scopelang | dcalc | lcalc ], resolved) t | Add_dat_dur : ([< scopelang | dcalc | lcalc ], resolved) t | Add_dur_dur : ([< scopelang | dcalc | lcalc ], resolved) t | Sub : (desugared, overloaded) t | Sub_int_int : ([< scopelang | dcalc | lcalc ], resolved) t | Sub_rat_rat : ([< scopelang | dcalc | lcalc ], resolved) t | Sub_mon_mon : ([< scopelang | dcalc | lcalc ], resolved) t | Sub_dat_dat : ([< scopelang | dcalc | lcalc ], resolved) t | Sub_dat_dur : ([< scopelang | dcalc | lcalc ], resolved) t | Sub_dur_dur : ([< scopelang | dcalc | lcalc ], resolved) t | Mult : (desugared, overloaded) t | Mult_int_int : ([< scopelang | dcalc | lcalc ], resolved) t | Mult_rat_rat : ([< scopelang | dcalc | lcalc ], resolved) t | Mult_mon_rat : ([< scopelang | dcalc | lcalc ], resolved) t | Mult_dur_int : ([< scopelang | dcalc | lcalc ], resolved) t | Div : (desugared, overloaded) t | Div_int_int : ([< scopelang | dcalc | lcalc ], resolved) t | Div_rat_rat : ([< scopelang | dcalc | lcalc ], resolved) t | Div_mon_rat : ([< scopelang | dcalc | lcalc ], resolved) t | Div_mon_mon : ([< scopelang | dcalc | lcalc ], resolved) t | Div_dur_dur : ([< scopelang | dcalc | lcalc ], resolved) t | Lt : (desugared, overloaded) t | Lt_int_int : ([< scopelang | dcalc | lcalc ], resolved) t | Lt_rat_rat : ([< scopelang | dcalc | lcalc ], resolved) t | Lt_mon_mon : ([< scopelang | dcalc | lcalc ], resolved) t | Lt_dat_dat : ([< scopelang | dcalc | lcalc ], resolved) t | Lt_dur_dur : ([< scopelang | dcalc | lcalc ], resolved) t | Lte : (desugared, overloaded) t | Lte_int_int : ([< scopelang | dcalc | lcalc ], resolved) t | Lte_rat_rat : ([< scopelang | dcalc | lcalc ], resolved) t | Lte_mon_mon : ([< scopelang | dcalc | lcalc ], resolved) t | Lte_dat_dat : ([< scopelang | dcalc | lcalc ], resolved) t | Lte_dur_dur : ([< scopelang | dcalc | lcalc ], resolved) t | Gt : (desugared, overloaded) t | Gt_int_int : ([< scopelang | dcalc | lcalc ], resolved) t | Gt_rat_rat : ([< scopelang | dcalc | lcalc ], resolved) t | Gt_mon_mon : ([< scopelang | dcalc | lcalc ], resolved) t | Gt_dat_dat : ([< scopelang | dcalc | lcalc ], resolved) t | Gt_dur_dur : ([< scopelang | dcalc | lcalc ], resolved) t | Gte : (desugared, overloaded) t | Gte_int_int : ([< scopelang | dcalc | lcalc ], resolved) t | Gte_rat_rat : ([< scopelang | dcalc | lcalc ], resolved) t | Gte_mon_mon : ([< scopelang | dcalc | lcalc ], resolved) t | Gte_dat_dat : ([< scopelang | dcalc | lcalc ], resolved) t | Gte_dur_dur : ([< scopelang | dcalc | lcalc ], resolved) t (* Todo: Eq is not an overload at the moment, but it should be one. The trick is that it needs generation of specific code for arrays, every struct and enum: operators [Eq_structs of StructName.t], etc. *) | Eq_int_int : ([< scopelang | dcalc | lcalc ], resolved) t | Eq_rat_rat : ([< scopelang | dcalc | lcalc ], resolved) t | Eq_mon_mon : ([< scopelang | dcalc | lcalc ], resolved) t | Eq_dur_dur : ([< scopelang | dcalc | lcalc ], resolved) t | Eq_dat_dat : ([< scopelang | dcalc | lcalc ], resolved) t (* ternary *) (* * polymorphic *) | Fold : ('a any, polymorphic) t end type ('a, 'k) operator = ('a any, 'k) Op.t type except = ConflictError | EmptyError | NoValueProvided | Crash (** {2 Generic expressions} *) (** Define a common base type for the expressions in most passes of the compiler *) (** Literals are the same throughout compilation except for the [LEmptyError] case which is eliminated midway through. *) type 'a glit = | LBool : bool -> 'a glit | LEmptyError : [< desugared | scopelang | dcalc ] glit | LInt : Runtime.integer -> 'a glit | LRat : Runtime.decimal -> 'a glit | LMoney : Runtime.money -> 'a glit | LUnit : 'a glit | LDate : date -> 'a glit | LDuration : duration -> 'a glit (** Locations are handled differently in [desugared] and [scopelang] *) type 'a glocation = | DesugaredScopeVar : ScopeVar.t Marked.pos * StateName.t option -> desugared glocation | ScopelangScopeVar : ScopeVar.t Marked.pos -> scopelang glocation | SubScopeVar : ScopeName.t * SubScopeName.t Marked.pos * ScopeVar.t Marked.pos -> [< desugared | scopelang ] glocation | ToplevelVar : TopdefName.t Marked.pos -> [< desugared | scopelang ] glocation type ('a, 't) gexpr = (('a, 't) naked_gexpr, 't) Marked.t (** General expressions: groups all expression cases of the different ASTs, and uses a GADT to eliminate irrelevant cases for each one. The ['t] annotations are also totally unconstrained at this point. The dcalc exprs, for example, are then defined with [type naked_expr = dcalc naked_gexpr] plus the annotations. A few tips on using this GADT: - To write a function that handles cases from different ASTs, explicit the type variables: [fun (type a) (x: a naked_gexpr) -> ...] - For recursive functions, you may need to additionally explicit the generalisation of the variable: [let rec f: type a . a naked_gexpr -> ...] - Always think of using the pre-defined map/fold functions in [Expr] rather than completely defining your recursion manually. *) and ('a, 't) naked_gexpr = (* Constructors common to all ASTs *) | ELit : 'a glit -> ('a any, 't) naked_gexpr | EApp : { f : ('a, 't) gexpr; args : ('a, 't) gexpr list; } -> ('a any, 't) naked_gexpr | EOp : { op : ('a, _) operator; tys : typ list } -> ('a any, 't) naked_gexpr | EArray : ('a, 't) gexpr list -> ('a any, 't) naked_gexpr | EVar : ('a, 't) naked_gexpr Bindlib.var -> ('a any, 't) naked_gexpr | EAbs : { binder : (('a, 't) naked_gexpr, ('a, 't) gexpr) Bindlib.mbinder; tys : typ list; } -> ('a any, 't) naked_gexpr | EIfThenElse : { cond : ('a, 't) gexpr; etrue : ('a, 't) gexpr; efalse : ('a, 't) gexpr; } -> ('a any, 't) naked_gexpr | EStruct : { name : StructName.t; fields : ('a, 't) gexpr StructField.Map.t; } -> ('a any, 't) naked_gexpr | EInj : { name : EnumName.t; e : ('a, 't) gexpr; cons : EnumConstructor.t; } -> ('a any, 't) naked_gexpr | EMatch : { name : EnumName.t; e : ('a, 't) gexpr; cases : ('a, 't) gexpr EnumConstructor.Map.t; } -> ('a any, 't) naked_gexpr | ETuple : ('a, 't) gexpr list -> ('a any, 't) naked_gexpr | ETupleAccess : { e : ('a, 't) gexpr; index : int; size : int; } -> ('a any, 't) naked_gexpr (* Early stages *) | ELocation : 'a glocation -> (([< desugared | scopelang ] as 'a), 't) naked_gexpr | EScopeCall : { scope : ScopeName.t; args : ('a, 't) gexpr ScopeVar.Map.t; } -> (([< desugared | scopelang ] as 'a), 't) naked_gexpr | EDStructAccess : { name_opt : StructName.t option; e : ('a, 't) gexpr; field : IdentName.t; } -> ((desugared as 'a), 't) naked_gexpr (** [desugared] has ambiguous struct fields *) | EStructAccess : { name : StructName.t; e : ('a, 't) gexpr; field : StructField.t; } -> (([< scopelang | dcalc | lcalc ] as 'a), 't) naked_gexpr (** Resolved struct/enums, after [desugared] *) (* Lambda-like *) | EAssert : ('a, 't) gexpr -> (([< dcalc | lcalc ] as 'a), 't) naked_gexpr (* Default terms *) | EDefault : { excepts : ('a, 't) gexpr list; just : ('a, 't) gexpr; cons : ('a, 't) gexpr; } -> (([< desugared | scopelang | dcalc ] as 'a), 't) naked_gexpr | EErrorOnEmpty : ('a, 't) gexpr -> (([< desugared | scopelang | dcalc ] as 'a), 't) naked_gexpr (* Lambda calculus with exceptions *) | ERaise : except -> ((lcalc as 'a), 't) naked_gexpr | ECatch : { body : ('a, 't) gexpr; exn : except; handler : ('a, 't) gexpr; } -> ((lcalc as 'a), 't) naked_gexpr type ('a, 't) boxed_gexpr = (('a, 't) naked_gexpr Bindlib.box, 't) Marked.t (** The annotation is lifted outside of the box for expressions *) type 'e boxed = ('a, 't) boxed_gexpr constraint 'e = ('a, 't) gexpr (** [('a, 't) gexpr boxed] is [('a, 't) boxed_gexpr]. The difference with [('a, 't) gexpr Bindlib.box] is that the annotations is outside of the box, and can therefore be accessed without the need to resolve the box *) type ('e, 'b) binder = (('a, 't) naked_gexpr, 'b) Bindlib.binder constraint 'e = ('a, 't) gexpr (** The expressions use the {{:https://lepigre.fr/ocaml-bindlib/} Bindlib} library, based on higher-order abstract syntax *) type ('e, 'b) mbinder = (('a, 't) naked_gexpr, 'b) Bindlib.mbinder constraint 'e = ('a, 't) gexpr (** {2 Markings} *) type untyped = { pos : Pos.t } [@@ocaml.unboxed] type typed = { pos : Pos.t; ty : typ } (** The generic type of AST markings. Using a GADT allows functions to be polymorphic in the marking, but still do transformations on types when appropriate. Expected to fill the ['t] parameter of [gexpr] and [gexpr] (a ['t] annotation different from this type is used in the middle of the typing processing, but all visible ASTs should otherwise use this. *) type _ mark = Untyped : untyped -> untyped mark | Typed : typed -> typed mark (** Useful for errors and printing, for example *) type any_expr = AnyExpr : (_, _ mark) gexpr -> any_expr (** {2 Higher-level program structure} *) (** Constructs scopes and programs on top of expressions. The ['e] type parameter throughout is expected to match instances of the [gexpr] type defined above. Markings are constrained to the [mark] GADT defined above. Note that this structure is at the moment only relevant for [dcalc] and [lcalc], as [scopelang] has its own scope structure, as the name implies. *) (** This kind annotation signals that the let-binding respects a structural invariant. These invariants concern the shape of the expression in the let-binding, and are documented below. *) type scope_let_kind = | DestructuringInputStruct (** [let x = input.field]*) | ScopeVarDefinition (** [let x = error_on_empty e]*) | SubScopeVarDefinition (** [let s.x = fun _ -> e] or [let s.x = error_on_empty e] for input-only subscope variables. *) | CallingSubScope (** [let result = s ({ x = s.x; y = s.x; ...}) ]*) | DestructuringSubScopeResults (** [let s.x = result.x ]**) | Assertion (** [let _ = assert e]*) type 'e scope_let = { scope_let_kind : scope_let_kind; scope_let_typ : typ; scope_let_expr : 'e; scope_let_next : ('e, 'e scope_body_expr) binder; (* todo ? Factorise the code_item _list type below and use it here *) scope_let_pos : Pos.t; } constraint 'e = (_ any, _ mark) gexpr (** This type is parametrized by the expression type so it can be reused in later intermediate representations. *) (** A scope let-binding has all the information necessary to make a proper let-binding expression, plus an annotation for the kind of the let-binding that comes from the compilation of a {!module: Scopelang.Ast} statement. *) and 'e scope_body_expr = | Result of 'e | ScopeLet of 'e scope_let constraint 'e = (_ any, _ mark) gexpr type 'e scope_body = { scope_body_input_struct : StructName.t; scope_body_output_struct : StructName.t; scope_body_expr : ('e, 'e scope_body_expr) binder; } constraint 'e = (_ any, _ mark) gexpr (** Instead of being a single expression, we give a little more ad-hoc structure to the scope body by decomposing it in an ordered list of let-bindings, and a result expression that uses the let-binded variables. The first binder is the argument of type [scope_body_input_struct]. *) type 'e code_item = | ScopeDef of ScopeName.t * 'e scope_body | Topdef of TopdefName.t * typ * 'e (* A chained list, but with a binder for each element into the next: [x := let a = e1 in e2] is thus [Cons (e1, {a. Cons (e2, {x. Nil})})] *) type 'e code_item_list = | Nil | Cons of 'e code_item * ('e, 'e code_item_list) binder type struct_ctx = typ StructField.Map.t StructName.Map.t type enum_ctx = typ EnumConstructor.Map.t EnumName.Map.t type scope_out_struct = { out_struct_name : StructName.t; out_struct_fields : StructField.t ScopeVar.Map.t; } type decl_ctx = { ctx_enums : enum_ctx; ctx_structs : struct_ctx; ctx_struct_fields : StructField.t StructName.Map.t IdentName.Map.t; (** needed for disambiguation (desugared -> scope) *) ctx_scopes : scope_out_struct ScopeName.Map.t; } type 'e program = { decl_ctx : decl_ctx; code_items : 'e code_item_list }
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>