package catala

  1. Overview
  2. Docs
Compiler and library for the literate programming language for tax code specification

Install

Dune Dependency

Authors

Maintainers

Sources

0.8.0.tar.gz
md5=1408a1cce45c7d5990b981e83e7589c2
sha512=eb3b923aa1f743378b4a05e30f50be5d180dc862a716270d747a90e469017f42fa5fc41352f02fbbf59cd2560f91c4f1b32cf38d80085b105d9387b0aed2039d

doc/src/catala.shared_ast/expr.ml.html

Source file expr.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
(* This file is part of the Catala compiler, a specification language for tax
   and social benefits computation rules. Copyright (C) 2020-2022 Inria,
   contributor: Denis Merigoux <denis.merigoux@inria.fr>, Alain Delaët-Tixeuil
   <alain.delaet--tixeuil@inria.fr>, Louis Gesbert <louis.gesbert@inria.fr>

   Licensed under the Apache License, Version 2.0 (the "License"); you may not
   use this file except in compliance with the License. You may obtain a copy of
   the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
   WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
   License for the specific language governing permissions and limitations under
   the License. *)

open Catala_utils
open Definitions

(** Functions handling the types of [shared_ast] *)

(* Basic block constructors *)

module Box = struct
  module B = Bindlib

  let app0 x mark = B.box x, mark
  let app1 (xb, m) f mark = B.box_apply (fun x -> f (x, m)) xb, mark

  let app2 (xb1, m1) (xb2, m2) f mark =
    B.box_apply2 (fun x1 x2 -> f (x1, m1) (x2, m2)) xb1 xb2, mark

  let app3 (xb1, m1) (xb2, m2) (xb3, m3) f mark =
    ( B.box_apply3 (fun x1 x2 x3 -> f (x1, m1) (x2, m2) (x3, m3)) xb1 xb2 xb3,
      mark )

  let appn xmbl f mark =
    let xbl, ml = List.split xmbl in
    B.box_apply (fun xl -> f (List.combine xl ml)) (B.box_list xbl), mark

  let app1n (xb0, m0) xmbl f mark =
    let xbl, ml = List.split xmbl in
    ( B.box_apply2
        (fun x0 xl -> f (x0, m0) (List.combine xl ml))
        xb0 (B.box_list xbl),
      mark )

  let app2n (xb0, m0) (xb1, m1) xmbl f mark =
    let xbl, ml = List.split xmbl in
    ( B.box_apply3
        (fun x0 x1 xl -> f (x0, m0) (x1, m1) (List.combine xl ml))
        xb0 xb1 (B.box_list xbl),
      mark )

  let lift : ('a, 't) boxed_gexpr -> ('a, 't) gexpr B.box =
   fun em ->
    B.box_apply (fun e -> Marked.mark (Marked.get_mark em) e) (Marked.unmark em)

  module LiftStruct = Bindlib.Lift (StructField.Map)

  let lift_struct = LiftStruct.lift_box

  module LiftEnum = Bindlib.Lift (EnumConstructor.Map)

  let lift_enum = LiftEnum.lift_box

  module LiftScopeVars = Bindlib.Lift (ScopeVar.Map)

  let lift_scope_vars = LiftScopeVars.lift_box
end

let bind vars e = Bindlib.bind_mvar vars (Box.lift e)

let subst binder vars =
  Bindlib.msubst binder (Array.of_list (List.map Marked.unmark vars))

let evar v mark = Marked.mark mark (Bindlib.box_var v)
let etuple args = Box.appn args @@ fun args -> ETuple args

let etupleaccess e index size =
  assert (index < size);
  Box.app1 e @@ fun e -> ETupleAccess { e; index; size }

let earray args = Box.appn args @@ fun args -> EArray args
let elit l mark = Marked.mark mark (Bindlib.box (ELit l))

let eabs binder tys mark =
  Bindlib.box_apply (fun binder -> EAbs { binder; tys }) binder, mark

let eapp f args = Box.app1n f args @@ fun f args -> EApp { f; args }
let eassert e1 = Box.app1 e1 @@ fun e1 -> EAssert e1
let eop op tys = Box.app0 @@ EOp { op; tys }

let edefault excepts just cons =
  Box.app2n just cons excepts
  @@ fun just cons excepts -> EDefault { excepts; just; cons }

let eifthenelse cond etrue efalse =
  Box.app3 cond etrue efalse
  @@ fun cond etrue efalse -> EIfThenElse { cond; etrue; efalse }

let eerroronempty e1 = Box.app1 e1 @@ fun e1 -> EErrorOnEmpty e1
let eraise e1 = Box.app0 @@ ERaise e1

let ecatch body exn handler =
  Box.app2 body handler @@ fun body handler -> ECatch { body; exn; handler }

let elocation loc = Box.app0 @@ ELocation loc

let estruct name (fields : ('a, 't) boxed_gexpr StructField.Map.t) mark =
  Marked.mark mark
  @@ Bindlib.box_apply
       (fun fields -> EStruct { name; fields })
       (Box.lift_struct (StructField.Map.map Box.lift fields))

let edstructaccess e field name_opt =
  Box.app1 e @@ fun e -> EDStructAccess { name_opt; e; field }

let estructaccess e field name =
  Box.app1 e @@ fun e -> EStructAccess { name; e; field }

let einj e cons name = Box.app1 e @@ fun e -> EInj { name; e; cons }

let ematch e name cases mark =
  Marked.mark mark
  @@ Bindlib.box_apply2
       (fun e cases -> EMatch { name; e; cases })
       (Box.lift e)
       (Box.lift_enum (EnumConstructor.Map.map Box.lift cases))

let escopecall scope args mark =
  Marked.mark mark
  @@ Bindlib.box_apply
       (fun args -> EScopeCall { scope; args })
       (Box.lift_scope_vars (ScopeVar.Map.map Box.lift args))

(* - Manipulation of marks - *)

let no_mark : type m. m mark -> m mark = function
  | Untyped _ -> Untyped { pos = Pos.no_pos }
  | Typed _ -> Typed { pos = Pos.no_pos; ty = Marked.mark Pos.no_pos TAny }

let mark_pos (type m) (m : m mark) : Pos.t =
  match m with Untyped { pos } | Typed { pos; _ } -> pos

let pos (type m) (x : ('a, m mark) Marked.t) : Pos.t =
  mark_pos (Marked.get_mark x)

let ty (_, m) : typ = match m with Typed { ty; _ } -> ty

let set_ty (type m) (ty : typ) (x : ('a, m mark) Marked.t) :
    ('a, typed mark) Marked.t =
  Marked.mark
    (match Marked.get_mark x with
    | Untyped { pos } -> Typed { pos; ty }
    | Typed m -> Typed { m with ty })
    (Marked.unmark x)

let map_mark (type m) (pos_f : Pos.t -> Pos.t) (ty_f : typ -> typ) (m : m mark)
    : m mark =
  match m with
  | Untyped { pos } -> Untyped { pos = pos_f pos }
  | Typed { pos; ty } -> Typed { pos = pos_f pos; ty = ty_f ty }

let map_mark2
    (type m)
    (pos_f : Pos.t -> Pos.t -> Pos.t)
    (ty_f : typed -> typed -> typ)
    (m1 : m mark)
    (m2 : m mark) : m mark =
  match m1, m2 with
  | Untyped m1, Untyped m2 -> Untyped { pos = pos_f m1.pos m2.pos }
  | Typed m1, Typed m2 -> Typed { pos = pos_f m1.pos m2.pos; ty = ty_f m1 m2 }

let fold_marks
    (type m)
    (pos_f : Pos.t list -> Pos.t)
    (ty_f : typed list -> typ)
    (ms : m mark list) : m mark =
  match ms with
  | [] -> invalid_arg "Dcalc.Ast.fold_mark"
  | Untyped _ :: _ as ms ->
    Untyped { pos = pos_f (List.map (function Untyped { pos } -> pos) ms) }
  | Typed _ :: _ as ms ->
    Typed
      {
        pos = pos_f (List.map (function Typed { pos; _ } -> pos) ms);
        ty = ty_f (List.map (function Typed m -> m) ms);
      }

let with_pos (type m) (pos : Pos.t) (m : m mark) : m mark =
  map_mark (fun _ -> pos) (fun ty -> ty) m

let map_ty (type m) (ty_f : typ -> typ) (m : m mark) : m mark =
  map_mark (fun pos -> pos) ty_f m

let with_ty (type m) (m : m mark) ?pos (ty : typ) : m mark =
  map_mark (fun default -> Option.value pos ~default) (fun _ -> ty) m

let maybe_ty (type m) ?(typ = TAny) (m : m mark) : typ =
  match m with Untyped { pos } -> Marked.mark pos typ | Typed { ty; _ } -> ty

(* - Traversal functions - *)

(* shallow map *)
let map
    (type a)
    ~(f : (a, 'm1) gexpr -> (a, 'm2) boxed_gexpr)
    (e : ((a, 'm1) naked_gexpr, 'm2) Marked.t) : (a, 'm2) boxed_gexpr =
  let m = Marked.get_mark e in
  match Marked.unmark e with
  | ELit l -> elit l m
  | EApp { f = e1; args } -> eapp (f e1) (List.map f args) m
  | EOp { op; tys } -> eop op tys m
  | EArray args -> earray (List.map f args) m
  | EVar v -> evar (Var.translate v) m
  | EAbs { binder; tys } ->
    let vars, body = Bindlib.unmbind binder in
    let body = f body in
    let binder = bind (Array.map Var.translate vars) body in
    eabs binder tys m
  | EIfThenElse { cond; etrue; efalse } ->
    eifthenelse (f cond) (f etrue) (f efalse) m
  | ETuple args -> etuple (List.map f args) m
  | ETupleAccess { e; index; size } -> etupleaccess (f e) index size m
  | EInj { e; name; cons } -> einj (f e) cons name m
  | EAssert e1 -> eassert (f e1) m
  | EDefault { excepts; just; cons } ->
    edefault (List.map f excepts) (f just) (f cons) m
  | EErrorOnEmpty e1 -> eerroronempty (f e1) m
  | ECatch { body; exn; handler } -> ecatch (f body) exn (f handler) m
  | ERaise exn -> eraise exn m
  | ELocation loc -> elocation loc m
  | EStruct { name; fields } ->
    let fields = StructField.Map.map f fields in
    estruct name fields m
  | EDStructAccess { e; field; name_opt } ->
    edstructaccess (f e) field name_opt m
  | EStructAccess { e; field; name } -> estructaccess (f e) field name m
  | EMatch { e; name; cases } ->
    let cases = EnumConstructor.Map.map f cases in
    ematch (f e) name cases m
  | EScopeCall { scope; args } ->
    let fields = ScopeVar.Map.map f args in
    escopecall scope fields m

let rec map_top_down ~f e = map ~f:(map_top_down ~f) (f e)

let map_marks ~f e =
  map_top_down ~f:(fun e -> Marked.(mark (f (get_mark e)) (unmark e))) e

(* Folds the given function on the direct children of the given expression. Does
   not open binders. *)
let shallow_fold
    (type a)
    (f : (a, 'm) gexpr -> 'acc -> 'acc)
    (e : (a, 'm) gexpr)
    (acc : 'acc) : 'acc =
  let lfold x acc = List.fold_left (fun acc x -> f x acc) acc x in
  match Marked.unmark e with
  | ELit _ | EOp _ | EVar _ | ERaise _ | ELocation _ -> acc
  | EApp { f = e; args } -> acc |> f e |> lfold args
  | EArray args -> acc |> lfold args
  | EAbs _ -> acc
  | EIfThenElse { cond; etrue; efalse } -> acc |> f cond |> f etrue |> f efalse
  | ETuple args -> acc |> lfold args
  | ETupleAccess { e; _ } -> acc |> f e
  | EInj { e; _ } -> acc |> f e
  | EAssert e -> acc |> f e
  | EDefault { excepts; just; cons } -> acc |> lfold excepts |> f just |> f cons
  | EErrorOnEmpty e -> acc |> f e
  | ECatch { body; handler; _ } -> acc |> f body |> f handler
  | EStruct { fields; _ } -> acc |> StructField.Map.fold (fun _ -> f) fields
  | EDStructAccess { e; _ } -> acc |> f e
  | EStructAccess { e; _ } -> acc |> f e
  | EMatch { e; cases; _ } ->
    acc |> f e |> EnumConstructor.Map.fold (fun _ -> f) cases
  | EScopeCall { args; _ } -> acc |> ScopeVar.Map.fold (fun _ -> f) args

(* Like [map], but also allows to gather a result bottom-up. *)
let map_gather
    (type a)
    ~(acc : 'acc)
    ~(join : 'acc -> 'acc -> 'acc)
    ~(f : (a, 'm1) gexpr -> 'acc * (a, 'm2) boxed_gexpr)
    (e : ((a, 'm1) naked_gexpr, 'm2) Marked.t) : 'acc * (a, 'm2) boxed_gexpr =
  let m = Marked.get_mark e in
  let lfoldmap es =
    let acc, r_es =
      List.fold_left
        (fun (acc, es) e ->
          let acc1, e = f e in
          join acc acc1, e :: es)
        (acc, []) es
    in
    acc, List.rev r_es
  in
  match Marked.unmark e with
  | ELit l -> acc, elit l m
  | EApp { f = e1; args } ->
    let acc1, f = f e1 in
    let acc2, args = lfoldmap args in
    join acc1 acc2, eapp f args m
  | EOp { op; tys } -> acc, eop op tys m
  | EArray args ->
    let acc, args = lfoldmap args in
    acc, earray args m
  | EVar v -> acc, evar (Var.translate v) m
  | EAbs { binder; tys } ->
    let vars, body = Bindlib.unmbind binder in
    let acc, body = f body in
    let binder = bind (Array.map Var.translate vars) body in
    acc, eabs binder tys m
  | EIfThenElse { cond; etrue; efalse } ->
    let acc1, cond = f cond in
    let acc2, etrue = f etrue in
    let acc3, efalse = f efalse in
    join (join acc1 acc2) acc3, eifthenelse cond etrue efalse m
  | ETuple args ->
    let acc, args = lfoldmap args in
    acc, etuple args m
  | ETupleAccess { e; index; size } ->
    let acc, e = f e in
    acc, etupleaccess e index size m
  | EInj { e; name; cons } ->
    let acc, e = f e in
    acc, einj e cons name m
  | EAssert e ->
    let acc, e = f e in
    acc, eassert e m
  | EDefault { excepts; just; cons } ->
    let acc1, excepts = lfoldmap excepts in
    let acc2, just = f just in
    let acc3, cons = f cons in
    join (join acc1 acc2) acc3, edefault excepts just cons m
  | EErrorOnEmpty e ->
    let acc, e = f e in
    acc, eerroronempty e m
  | ECatch { body; exn; handler } ->
    let acc1, body = f body in
    let acc2, handler = f handler in
    join acc1 acc2, ecatch body exn handler m
  | ERaise exn -> acc, eraise exn m
  | ELocation loc -> acc, elocation loc m
  | EStruct { name; fields } ->
    let acc, fields =
      StructField.Map.fold
        (fun cons e (acc, fields) ->
          let acc1, e = f e in
          join acc acc1, StructField.Map.add cons e fields)
        fields
        (acc, StructField.Map.empty)
    in
    acc, estruct name fields m
  | EDStructAccess { e; field; name_opt } ->
    let acc, e = f e in
    acc, edstructaccess e field name_opt m
  | EStructAccess { e; field; name } ->
    let acc, e = f e in
    acc, estructaccess e field name m
  | EMatch { e; name; cases } ->
    let acc, e = f e in
    let acc, cases =
      EnumConstructor.Map.fold
        (fun cons e (acc, cases) ->
          let acc1, e = f e in
          join acc acc1, EnumConstructor.Map.add cons e cases)
        cases
        (acc, EnumConstructor.Map.empty)
    in
    acc, ematch e name cases m
  | EScopeCall { scope; args } ->
    let acc, args =
      ScopeVar.Map.fold
        (fun var e (acc, args) ->
          let acc1, e = f e in
          join acc acc1, ScopeVar.Map.add var e args)
        args (acc, ScopeVar.Map.empty)
    in
    acc, escopecall scope args m

(* - *)

(** See [Bindlib.box_term] documentation for why we are doing that. *)
let rec rebox e = map ~f:rebox e

let box e = Marked.same_mark_as (Bindlib.box (Marked.unmark e)) e
let unbox (e, m) = Bindlib.unbox e, m
let untype e = map_marks ~f:(fun m -> Untyped { pos = mark_pos m }) e

(* Tests *)

let is_value (type a) (e : (a, _) gexpr) =
  match Marked.unmark e with
  | ELit _ | EAbs _ | EOp _ | ERaise _ -> true
  | _ -> false

let equal_lit (type a) (l1 : a glit) (l2 : a glit) =
  let open Runtime.Oper in
  match l1, l2 with
  | LBool b1, LBool b2 -> not (o_xor b1 b2)
  | LEmptyError, LEmptyError -> true
  | LInt n1, LInt n2 -> o_eq_int_int n1 n2
  | LRat r1, LRat r2 -> o_eq_rat_rat r1 r2
  | LMoney m1, LMoney m2 -> o_eq_mon_mon m1 m2
  | LUnit, LUnit -> true
  | LDate d1, LDate d2 -> o_eq_dat_dat d1 d2
  | LDuration d1, LDuration d2 -> o_eq_dur_dur d1 d2
  | ( ( LBool _ | LEmptyError | LInt _ | LRat _ | LMoney _ | LUnit | LDate _
      | LDuration _ ),
      _ ) ->
    false

let compare_lit (type a) (l1 : a glit) (l2 : a glit) =
  let open Runtime.Oper in
  match l1, l2 with
  | LBool b1, LBool b2 -> Bool.compare b1 b2
  | LEmptyError, LEmptyError -> 0
  | LInt n1, LInt n2 ->
    if o_lt_int_int n1 n2 then -1 else if o_eq_int_int n1 n2 then 0 else 1
  | LRat r1, LRat r2 ->
    if o_lt_rat_rat r1 r2 then -1 else if o_eq_rat_rat r1 r2 then 0 else 1
  | LMoney m1, LMoney m2 ->
    if o_lt_mon_mon m1 m2 then -1 else if o_eq_mon_mon m1 m2 then 0 else 1
  | LUnit, LUnit -> 0
  | LDate d1, LDate d2 ->
    if o_lt_dat_dat d1 d2 then -1 else if o_eq_dat_dat d1 d2 then 0 else 1
  | LDuration d1, LDuration d2 -> (
    (* Duration comparison in the runtime may fail, so rely on a basic
       lexicographic comparison instead *)
    let y1, m1, d1 = Runtime.duration_to_years_months_days d1 in
    let y2, m2, d2 = Runtime.duration_to_years_months_days d2 in
    match compare y1 y2 with
    | 0 -> ( match compare m1 m2 with 0 -> compare d1 d2 | n -> n)
    | n -> n)
  | LBool _, _ -> -1
  | _, LBool _ -> 1
  | LEmptyError, _ -> -1
  | _, LEmptyError -> 1
  | LInt _, _ -> -1
  | _, LInt _ -> 1
  | LRat _, _ -> -1
  | _, LRat _ -> 1
  | LMoney _, _ -> -1
  | _, LMoney _ -> 1
  | LUnit, _ -> -1
  | _, LUnit -> 1
  | LDate _, _ -> -1
  | _, LDate _ -> 1
  | LDuration _, _ -> .
  | _, LDuration _ -> .

let compare_location
    (type a)
    (x : a glocation Marked.pos)
    (y : a glocation Marked.pos) =
  match Marked.unmark x, Marked.unmark y with
  | DesugaredScopeVar (vx, None), DesugaredScopeVar (vy, None)
  | DesugaredScopeVar (vx, Some _), DesugaredScopeVar (vy, None)
  | DesugaredScopeVar (vx, None), DesugaredScopeVar (vy, Some _) ->
    ScopeVar.compare (Marked.unmark vx) (Marked.unmark vy)
  | DesugaredScopeVar ((x, _), Some sx), DesugaredScopeVar ((y, _), Some sy) ->
    let cmp = ScopeVar.compare x y in
    if cmp = 0 then StateName.compare sx sy else cmp
  | ScopelangScopeVar (vx, _), ScopelangScopeVar (vy, _) ->
    ScopeVar.compare vx vy
  | ( SubScopeVar (_, (xsubindex, _), (xsubvar, _)),
      SubScopeVar (_, (ysubindex, _), (ysubvar, _)) ) ->
    let c = SubScopeName.compare xsubindex ysubindex in
    if c = 0 then ScopeVar.compare xsubvar ysubvar else c
  | ToplevelVar (vx, _), ToplevelVar (vy, _) -> TopdefName.compare vx vy
  | DesugaredScopeVar _, _ -> -1
  | _, DesugaredScopeVar _ -> 1
  | ScopelangScopeVar _, _ -> -1
  | _, ScopelangScopeVar _ -> 1
  | SubScopeVar _, _ -> -1
  | _, SubScopeVar _ -> 1
  | ToplevelVar _, _ -> .
  | _, ToplevelVar _ -> .

let equal_location a b = compare_location a b = 0
let equal_except ex1 ex2 = ex1 = ex2
let compare_except ex1 ex2 = Stdlib.compare ex1 ex2

(* weird indentation; see
   https://github.com/ocaml-ppx/ocamlformat/issues/2143 *)
let rec equal_list : 'a. ('a, 't) gexpr list -> ('a, 't) gexpr list -> bool =
 fun es1 es2 ->
  try List.for_all2 equal es1 es2 with Invalid_argument _ -> false

and equal : type a. (a, 't) gexpr -> (a, 't) gexpr -> bool =
 fun e1 e2 ->
  match Marked.unmark e1, Marked.unmark e2 with
  | EVar v1, EVar v2 -> Bindlib.eq_vars v1 v2
  | ETuple es1, ETuple es2 -> equal_list es1 es2
  | ( ETupleAccess { e = e1; index = id1; size = s1 },
      ETupleAccess { e = e2; index = id2; size = s2 } ) ->
    s1 = s2 && equal e1 e2 && id1 = id2
  | EArray es1, EArray es2 -> equal_list es1 es2
  | ELit l1, ELit l2 -> l1 = l2
  | EAbs { binder = b1; tys = tys1 }, EAbs { binder = b2; tys = tys2 } ->
    Type.equal_list tys1 tys2
    &&
    let vars1, body1 = Bindlib.unmbind b1 in
    let body2 = Bindlib.msubst b2 (Array.map (fun x -> EVar x) vars1) in
    equal body1 body2
  | EApp { f = e1; args = args1 }, EApp { f = e2; args = args2 } ->
    equal e1 e2 && equal_list args1 args2
  | EAssert e1, EAssert e2 -> equal e1 e2
  | EOp { op = op1; tys = tys1 }, EOp { op = op2; tys = tys2 } ->
    Operator.equal op1 op2 && Type.equal_list tys1 tys2
  | ( EDefault { excepts = exc1; just = def1; cons = cons1 },
      EDefault { excepts = exc2; just = def2; cons = cons2 } ) ->
    equal def1 def2 && equal cons1 cons2 && equal_list exc1 exc2
  | ( EIfThenElse { cond = if1; etrue = then1; efalse = else1 },
      EIfThenElse { cond = if2; etrue = then2; efalse = else2 } ) ->
    equal if1 if2 && equal then1 then2 && equal else1 else2
  | EErrorOnEmpty e1, EErrorOnEmpty e2 -> equal e1 e2
  | ERaise ex1, ERaise ex2 -> equal_except ex1 ex2
  | ( ECatch { body = etry1; exn = ex1; handler = ewith1 },
      ECatch { body = etry2; exn = ex2; handler = ewith2 } ) ->
    equal etry1 etry2 && equal_except ex1 ex2 && equal ewith1 ewith2
  | ELocation l1, ELocation l2 ->
    equal_location (Marked.mark Pos.no_pos l1) (Marked.mark Pos.no_pos l2)
  | ( EStruct { name = s1; fields = fields1 },
      EStruct { name = s2; fields = fields2 } ) ->
    StructName.equal s1 s2 && StructField.Map.equal equal fields1 fields2
  | ( EDStructAccess { e = e1; field = f1; name_opt = s1 },
      EDStructAccess { e = e2; field = f2; name_opt = s2 } ) ->
    Option.equal StructName.equal s1 s2 && IdentName.equal f1 f2 && equal e1 e2
  | ( EStructAccess { e = e1; field = f1; name = s1 },
      EStructAccess { e = e2; field = f2; name = s2 } ) ->
    StructName.equal s1 s2 && StructField.equal f1 f2 && equal e1 e2
  | EInj { e = e1; cons = c1; name = n1 }, EInj { e = e2; cons = c2; name = n2 }
    ->
    EnumName.equal n1 n2 && EnumConstructor.equal c1 c2 && equal e1 e2
  | ( EMatch { e = e1; name = n1; cases = cases1 },
      EMatch { e = e2; name = n2; cases = cases2 } ) ->
    EnumName.equal n1 n2
    && equal e1 e2
    && EnumConstructor.Map.equal equal cases1 cases2
  | ( EScopeCall { scope = s1; args = fields1 },
      EScopeCall { scope = s2; args = fields2 } ) ->
    ScopeName.equal s1 s2 && ScopeVar.Map.equal equal fields1 fields2
  | ( ( EVar _ | ETuple _ | ETupleAccess _ | EArray _ | ELit _ | EAbs _ | EApp _
      | EAssert _ | EOp _ | EDefault _ | EIfThenElse _ | EErrorOnEmpty _
      | ERaise _ | ECatch _ | ELocation _ | EStruct _ | EDStructAccess _
      | EStructAccess _ | EInj _ | EMatch _ | EScopeCall _ ),
      _ ) ->
    false

let rec compare : type a. (a, _) gexpr -> (a, _) gexpr -> int =
 fun e1 e2 ->
  (* Infix operator to chain comparisons lexicographically. *)
  let ( @@< ) cmp1 cmpf = match cmp1 with 0 -> cmpf () | n -> n in
  (* OCamlformat doesn't know to keep consistency in match cases so disabled
     locally for readability *)
  match[@ocamlformat "disable"] Marked.unmark e1, Marked.unmark e2 with
  | ELit l1, ELit l2 ->
    compare_lit l1 l2
  | EApp {f=f1; args=args1}, EApp {f=f2; args=args2} ->
    compare f1 f2 @@< fun () ->
    List.compare compare args1 args2
  | EOp {op=op1; tys=tys1}, EOp {op=op2; tys=tys2} ->
    Operator.compare op1 op2 @@< fun () ->
    List.compare Type.compare tys1 tys2
  | EArray a1, EArray a2 ->
    List.compare compare a1 a2
  | EVar v1, EVar v2 ->
    Bindlib.compare_vars v1 v2
  | EAbs {binder=binder1; tys=typs1},
    EAbs {binder=binder2; tys=typs2} ->
    List.compare Type.compare typs1 typs2 @@< fun () ->
    let _, e1, e2 = Bindlib.unmbind2 binder1 binder2 in
    compare e1 e2
  | EIfThenElse {cond=i1; etrue=t1; efalse=e1},
    EIfThenElse {cond=i2; etrue=t2; efalse=e2} ->
    compare i1 i2 @@< fun () ->
    compare t1 t2 @@< fun () ->
    compare e1 e2
  | ELocation l1, ELocation l2 ->
    compare_location (Marked.mark Pos.no_pos l1) (Marked.mark Pos.no_pos l2)
  | EStruct {name=name1; fields=field_map1},
    EStruct {name=name2; fields=field_map2} ->
    StructName.compare name1 name2 @@< fun () ->
    StructField.Map.compare compare field_map1 field_map2
  | EDStructAccess {e=e1; field=field_name1; name_opt=struct_name1},
    EDStructAccess {e=e2; field=field_name2; name_opt=struct_name2} ->
    compare e1 e2 @@< fun () ->
    IdentName.compare field_name1 field_name2 @@< fun () ->
    Option.compare StructName.compare struct_name1 struct_name2
  | EStructAccess {e=e1; field=field_name1; name=struct_name1},
    EStructAccess {e=e2; field=field_name2; name=struct_name2} ->
    compare e1 e2 @@< fun () ->
    StructField.compare field_name1 field_name2 @@< fun () ->
    StructName.compare struct_name1 struct_name2
  | EMatch {e=e1; name=name1; cases=emap1},
    EMatch {e=e2; name=name2; cases=emap2} ->
    EnumName.compare name1 name2 @@< fun () ->
    compare e1 e2 @@< fun () ->
    EnumConstructor.Map.compare compare emap1 emap2
  | EScopeCall {scope=name1; args=field_map1},
    EScopeCall {scope=name2; args=field_map2} ->
    ScopeName.compare name1 name2 @@< fun () ->
    ScopeVar.Map.compare compare field_map1 field_map2
  | ETuple es1, ETuple es2 ->
    List.compare compare es1 es2
  | ETupleAccess {e=e1; index=n1; size=s1},
    ETupleAccess {e=e2; index=n2; size=s2} ->
    Int.compare s1 s2 @@< fun () ->
    Int.compare n1 n2 @@< fun () ->
    compare e1 e2
  | EInj {e=e1; name=name1; cons=cons1},
    EInj {e=e2; name=name2; cons=cons2} ->
    EnumName.compare name1 name2 @@< fun () ->
    EnumConstructor.compare cons1 cons2 @@< fun () ->
    compare e1 e2
  | EAssert e1, EAssert e2 ->
    compare e1 e2
  | EDefault {excepts=exs1; just=just1; cons=cons1},
    EDefault {excepts=exs2; just=just2; cons=cons2} ->
    compare just1 just2 @@< fun () ->
    compare cons1 cons2 @@< fun () ->
    List.compare compare exs1 exs2
  | EErrorOnEmpty e1, EErrorOnEmpty e2 ->
    compare e1 e2
  | ERaise ex1, ERaise ex2 ->
    compare_except ex1 ex2
  | ECatch {body=etry1; exn=ex1; handler=ewith1},
    ECatch {body=etry2; exn=ex2; handler=ewith2} ->
    compare_except ex1 ex2 @@< fun () ->
    compare etry1 etry2 @@< fun () ->
    compare ewith1 ewith2
  | ELit _, _ -> -1 | _, ELit _ -> 1
  | EApp _, _ -> -1 | _, EApp _ -> 1
  | EOp _, _ -> -1 | _, EOp _ -> 1
  | EArray _, _ -> -1 | _, EArray _ -> 1
  | EVar _, _ -> -1 | _, EVar _ -> 1
  | EAbs _, _ -> -1 | _, EAbs _ -> 1
  | EIfThenElse _, _ -> -1 | _, EIfThenElse _ -> 1
  | ELocation _, _ -> -1 | _, ELocation _ -> 1
  | EStruct _, _ -> -1 | _, EStruct _ -> 1
  | EDStructAccess _, _ -> -1 | _, EDStructAccess _ -> 1
  | EStructAccess _, _ -> -1 | _, EStructAccess _ -> 1
  | EMatch _, _ -> -1 | _, EMatch _ -> 1
  | EScopeCall _, _ -> -1 | _, EScopeCall _ -> 1
  | ETuple _, _ -> -1 | _, ETuple _ -> 1
  | ETupleAccess _, _ -> -1 | _, ETupleAccess _ -> 1
  | EInj _, _ -> -1 | _, EInj _ -> 1
  | EAssert _, _ -> -1 | _, EAssert _ -> 1
  | EDefault _, _ -> -1 | _, EDefault _ -> 1
  | EErrorOnEmpty _, _ -> . | _, EErrorOnEmpty _ -> .
  | ERaise _, _ -> -1 | _, ERaise _ -> 1
  | ECatch _, _ -> . | _, ECatch _ -> .

let rec free_vars : type a. (a, 't) gexpr -> (a, 't) gexpr Var.Set.t = function
  | EVar v, _ -> Var.Set.singleton v
  | EAbs { binder; _ }, _ ->
    let vs, body = Bindlib.unmbind binder in
    Array.fold_right Var.Set.remove vs (free_vars body)
  | e -> shallow_fold (fun e -> Var.Set.union (free_vars e)) e Var.Set.empty

let remove_logging_calls e =
  let rec f e =
    match Marked.unmark e with
    | EApp { f = EOp { op = Log _; _ }, _; args = [arg] } -> map ~f arg
    | _ -> map ~f e
  in
  f e

let format ?debug decl_ctx ppf e = Print.expr ?debug decl_ctx ppf e

let rec size : type a. (a, 't) gexpr -> int =
 fun e ->
  match Marked.unmark e with
  | EVar _ | ELit _ | EOp _ -> 1
  | ETuple args -> List.fold_left (fun acc arg -> acc + size arg) 1 args
  | EArray args -> List.fold_left (fun acc arg -> acc + size arg) 1 args
  | ETupleAccess { e; _ } -> size e + 1
  | EInj { e; _ } -> size e + 1
  | EAssert e -> size e + 1
  | EErrorOnEmpty e -> size e + 1
  | EApp { f; args } ->
    List.fold_left (fun acc arg -> acc + size arg) (1 + size f) args
  | EAbs { binder; _ } ->
    let _, body = Bindlib.unmbind binder in
    1 + size body
  | EIfThenElse { cond; etrue; efalse } ->
    1 + size cond + size etrue + size efalse
  | EDefault { excepts; just; cons } ->
    List.fold_left
      (fun acc except -> acc + size except)
      (1 + size just + size cons)
      excepts
  | ERaise _ -> 1
  | ECatch { body; handler; _ } -> 1 + size body + size handler
  | ELocation _ -> 1
  | EStruct { fields; _ } ->
    StructField.Map.fold (fun _ e acc -> acc + 1 + size e) fields 0
  | EDStructAccess { e; _ } -> 1 + size e
  | EStructAccess { e; _ } -> 1 + size e
  | EMatch { e; cases; _ } ->
    EnumConstructor.Map.fold (fun _ e acc -> acc + 1 + size e) cases (size e)
  | EScopeCall { args; _ } ->
    ScopeVar.Map.fold (fun _ e acc -> acc + 1 + size e) args 1

(* - Expression building helpers - *)

let make_var v mark = evar v mark

let make_abs xs e taus pos =
  let mark =
    map_mark
      (fun _ -> pos)
      (fun ety -> Marked.mark pos (TArrow (taus, ety)))
      (Marked.get_mark e)
  in
  eabs (bind xs e) taus mark

let make_app e args pos =
  let mark =
    fold_marks
      (fun _ -> pos)
      (function
        | [] -> assert false
        | fty :: argtys -> (
          match Marked.unmark fty.ty with
          | TArrow (tx', tr) ->
            assert (Type.unifiable_list tx' (List.map (fun x -> x.ty) argtys));
            tr
          | TAny -> fty.ty
          | _ -> assert false))
      (List.map Marked.get_mark (e :: args))
  in
  eapp e args mark

let empty_thunked_term mark =
  let silent = Var.make "_" in
  let pos = mark_pos mark in
  make_abs [| silent |]
    (Bindlib.box (ELit LEmptyError), mark)
    [TLit TUnit, pos]
    pos

let make_let_in x tau e1 e2 mpos =
  make_app (make_abs [| x |] e2 [tau] mpos) [e1] (pos e2)

let make_multiple_let_in xs taus e1s e2 mpos =
  make_app (make_abs xs e2 taus mpos) e1s (pos e2)

let make_default_unboxed excepts just cons =
  let rec bool_value = function
    | ELit (LBool b), _ -> Some b
    | EApp { f = EOp { op = Log (l, _); _ }, _; args = [e]; _ }, _
      when l <> PosRecordIfTrueBool
           (* we don't remove the log calls corresponding to source code
              definitions !*) ->
      bool_value e
    | _ -> None
  in
  match excepts, bool_value just, cons with
  | [], Some true, cons -> Marked.unmark cons
  | excepts, Some true, (EDefault { excepts = []; just; cons }, _) ->
    EDefault { excepts; just; cons }
  | [except], Some false, _ -> Marked.unmark except
  | excepts, _, cons -> EDefault { excepts; just; cons }

let make_default exceptions just cons =
  Box.app2n just cons exceptions
  @@ fun just cons exceptions -> make_default_unboxed exceptions just cons

let make_tuple el m0 =
  match el with
  | [] -> etuple [] (with_ty m0 (TTuple [], mark_pos m0))
  | el ->
    let m =
      fold_marks
        (fun posl -> List.hd posl)
        (fun ml -> TTuple (List.map (fun t -> t.ty) ml), (List.hd ml).pos)
        (List.map (fun e -> Marked.get_mark e) el)
    in
    etuple el m
OCaml

Innovation. Community. Security.