package catala
Compiler and library for the literate programming language for tax code specification
Install
Dune Dependency
Authors
Maintainers
Sources
0.8.0.tar.gz
md5=1408a1cce45c7d5990b981e83e7589c2
sha512=eb3b923aa1f743378b4a05e30f50be5d180dc862a716270d747a90e469017f42fa5fc41352f02fbbf59cd2560f91c4f1b32cf38d80085b105d9387b0aed2039d
doc/src/catala.shared_ast/expr.ml.html
Source file expr.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783
(* This file is part of the Catala compiler, a specification language for tax and social benefits computation rules. Copyright (C) 2020-2022 Inria, contributor: Denis Merigoux <denis.merigoux@inria.fr>, Alain Delaët-Tixeuil <alain.delaet--tixeuil@inria.fr>, Louis Gesbert <louis.gesbert@inria.fr> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) open Catala_utils open Definitions (** Functions handling the types of [shared_ast] *) (* Basic block constructors *) module Box = struct module B = Bindlib let app0 x mark = B.box x, mark let app1 (xb, m) f mark = B.box_apply (fun x -> f (x, m)) xb, mark let app2 (xb1, m1) (xb2, m2) f mark = B.box_apply2 (fun x1 x2 -> f (x1, m1) (x2, m2)) xb1 xb2, mark let app3 (xb1, m1) (xb2, m2) (xb3, m3) f mark = ( B.box_apply3 (fun x1 x2 x3 -> f (x1, m1) (x2, m2) (x3, m3)) xb1 xb2 xb3, mark ) let appn xmbl f mark = let xbl, ml = List.split xmbl in B.box_apply (fun xl -> f (List.combine xl ml)) (B.box_list xbl), mark let app1n (xb0, m0) xmbl f mark = let xbl, ml = List.split xmbl in ( B.box_apply2 (fun x0 xl -> f (x0, m0) (List.combine xl ml)) xb0 (B.box_list xbl), mark ) let app2n (xb0, m0) (xb1, m1) xmbl f mark = let xbl, ml = List.split xmbl in ( B.box_apply3 (fun x0 x1 xl -> f (x0, m0) (x1, m1) (List.combine xl ml)) xb0 xb1 (B.box_list xbl), mark ) let lift : ('a, 't) boxed_gexpr -> ('a, 't) gexpr B.box = fun em -> B.box_apply (fun e -> Marked.mark (Marked.get_mark em) e) (Marked.unmark em) module LiftStruct = Bindlib.Lift (StructField.Map) let lift_struct = LiftStruct.lift_box module LiftEnum = Bindlib.Lift (EnumConstructor.Map) let lift_enum = LiftEnum.lift_box module LiftScopeVars = Bindlib.Lift (ScopeVar.Map) let lift_scope_vars = LiftScopeVars.lift_box end let bind vars e = Bindlib.bind_mvar vars (Box.lift e) let subst binder vars = Bindlib.msubst binder (Array.of_list (List.map Marked.unmark vars)) let evar v mark = Marked.mark mark (Bindlib.box_var v) let etuple args = Box.appn args @@ fun args -> ETuple args let etupleaccess e index size = assert (index < size); Box.app1 e @@ fun e -> ETupleAccess { e; index; size } let earray args = Box.appn args @@ fun args -> EArray args let elit l mark = Marked.mark mark (Bindlib.box (ELit l)) let eabs binder tys mark = Bindlib.box_apply (fun binder -> EAbs { binder; tys }) binder, mark let eapp f args = Box.app1n f args @@ fun f args -> EApp { f; args } let eassert e1 = Box.app1 e1 @@ fun e1 -> EAssert e1 let eop op tys = Box.app0 @@ EOp { op; tys } let edefault excepts just cons = Box.app2n just cons excepts @@ fun just cons excepts -> EDefault { excepts; just; cons } let eifthenelse cond etrue efalse = Box.app3 cond etrue efalse @@ fun cond etrue efalse -> EIfThenElse { cond; etrue; efalse } let eerroronempty e1 = Box.app1 e1 @@ fun e1 -> EErrorOnEmpty e1 let eraise e1 = Box.app0 @@ ERaise e1 let ecatch body exn handler = Box.app2 body handler @@ fun body handler -> ECatch { body; exn; handler } let elocation loc = Box.app0 @@ ELocation loc let estruct name (fields : ('a, 't) boxed_gexpr StructField.Map.t) mark = Marked.mark mark @@ Bindlib.box_apply (fun fields -> EStruct { name; fields }) (Box.lift_struct (StructField.Map.map Box.lift fields)) let edstructaccess e field name_opt = Box.app1 e @@ fun e -> EDStructAccess { name_opt; e; field } let estructaccess e field name = Box.app1 e @@ fun e -> EStructAccess { name; e; field } let einj e cons name = Box.app1 e @@ fun e -> EInj { name; e; cons } let ematch e name cases mark = Marked.mark mark @@ Bindlib.box_apply2 (fun e cases -> EMatch { name; e; cases }) (Box.lift e) (Box.lift_enum (EnumConstructor.Map.map Box.lift cases)) let escopecall scope args mark = Marked.mark mark @@ Bindlib.box_apply (fun args -> EScopeCall { scope; args }) (Box.lift_scope_vars (ScopeVar.Map.map Box.lift args)) (* - Manipulation of marks - *) let no_mark : type m. m mark -> m mark = function | Untyped _ -> Untyped { pos = Pos.no_pos } | Typed _ -> Typed { pos = Pos.no_pos; ty = Marked.mark Pos.no_pos TAny } let mark_pos (type m) (m : m mark) : Pos.t = match m with Untyped { pos } | Typed { pos; _ } -> pos let pos (type m) (x : ('a, m mark) Marked.t) : Pos.t = mark_pos (Marked.get_mark x) let ty (_, m) : typ = match m with Typed { ty; _ } -> ty let set_ty (type m) (ty : typ) (x : ('a, m mark) Marked.t) : ('a, typed mark) Marked.t = Marked.mark (match Marked.get_mark x with | Untyped { pos } -> Typed { pos; ty } | Typed m -> Typed { m with ty }) (Marked.unmark x) let map_mark (type m) (pos_f : Pos.t -> Pos.t) (ty_f : typ -> typ) (m : m mark) : m mark = match m with | Untyped { pos } -> Untyped { pos = pos_f pos } | Typed { pos; ty } -> Typed { pos = pos_f pos; ty = ty_f ty } let map_mark2 (type m) (pos_f : Pos.t -> Pos.t -> Pos.t) (ty_f : typed -> typed -> typ) (m1 : m mark) (m2 : m mark) : m mark = match m1, m2 with | Untyped m1, Untyped m2 -> Untyped { pos = pos_f m1.pos m2.pos } | Typed m1, Typed m2 -> Typed { pos = pos_f m1.pos m2.pos; ty = ty_f m1 m2 } let fold_marks (type m) (pos_f : Pos.t list -> Pos.t) (ty_f : typed list -> typ) (ms : m mark list) : m mark = match ms with | [] -> invalid_arg "Dcalc.Ast.fold_mark" | Untyped _ :: _ as ms -> Untyped { pos = pos_f (List.map (function Untyped { pos } -> pos) ms) } | Typed _ :: _ as ms -> Typed { pos = pos_f (List.map (function Typed { pos; _ } -> pos) ms); ty = ty_f (List.map (function Typed m -> m) ms); } let with_pos (type m) (pos : Pos.t) (m : m mark) : m mark = map_mark (fun _ -> pos) (fun ty -> ty) m let map_ty (type m) (ty_f : typ -> typ) (m : m mark) : m mark = map_mark (fun pos -> pos) ty_f m let with_ty (type m) (m : m mark) ?pos (ty : typ) : m mark = map_mark (fun default -> Option.value pos ~default) (fun _ -> ty) m let maybe_ty (type m) ?(typ = TAny) (m : m mark) : typ = match m with Untyped { pos } -> Marked.mark pos typ | Typed { ty; _ } -> ty (* - Traversal functions - *) (* shallow map *) let map (type a) ~(f : (a, 'm1) gexpr -> (a, 'm2) boxed_gexpr) (e : ((a, 'm1) naked_gexpr, 'm2) Marked.t) : (a, 'm2) boxed_gexpr = let m = Marked.get_mark e in match Marked.unmark e with | ELit l -> elit l m | EApp { f = e1; args } -> eapp (f e1) (List.map f args) m | EOp { op; tys } -> eop op tys m | EArray args -> earray (List.map f args) m | EVar v -> evar (Var.translate v) m | EAbs { binder; tys } -> let vars, body = Bindlib.unmbind binder in let body = f body in let binder = bind (Array.map Var.translate vars) body in eabs binder tys m | EIfThenElse { cond; etrue; efalse } -> eifthenelse (f cond) (f etrue) (f efalse) m | ETuple args -> etuple (List.map f args) m | ETupleAccess { e; index; size } -> etupleaccess (f e) index size m | EInj { e; name; cons } -> einj (f e) cons name m | EAssert e1 -> eassert (f e1) m | EDefault { excepts; just; cons } -> edefault (List.map f excepts) (f just) (f cons) m | EErrorOnEmpty e1 -> eerroronempty (f e1) m | ECatch { body; exn; handler } -> ecatch (f body) exn (f handler) m | ERaise exn -> eraise exn m | ELocation loc -> elocation loc m | EStruct { name; fields } -> let fields = StructField.Map.map f fields in estruct name fields m | EDStructAccess { e; field; name_opt } -> edstructaccess (f e) field name_opt m | EStructAccess { e; field; name } -> estructaccess (f e) field name m | EMatch { e; name; cases } -> let cases = EnumConstructor.Map.map f cases in ematch (f e) name cases m | EScopeCall { scope; args } -> let fields = ScopeVar.Map.map f args in escopecall scope fields m let rec map_top_down ~f e = map ~f:(map_top_down ~f) (f e) let map_marks ~f e = map_top_down ~f:(fun e -> Marked.(mark (f (get_mark e)) (unmark e))) e (* Folds the given function on the direct children of the given expression. Does not open binders. *) let shallow_fold (type a) (f : (a, 'm) gexpr -> 'acc -> 'acc) (e : (a, 'm) gexpr) (acc : 'acc) : 'acc = let lfold x acc = List.fold_left (fun acc x -> f x acc) acc x in match Marked.unmark e with | ELit _ | EOp _ | EVar _ | ERaise _ | ELocation _ -> acc | EApp { f = e; args } -> acc |> f e |> lfold args | EArray args -> acc |> lfold args | EAbs _ -> acc | EIfThenElse { cond; etrue; efalse } -> acc |> f cond |> f etrue |> f efalse | ETuple args -> acc |> lfold args | ETupleAccess { e; _ } -> acc |> f e | EInj { e; _ } -> acc |> f e | EAssert e -> acc |> f e | EDefault { excepts; just; cons } -> acc |> lfold excepts |> f just |> f cons | EErrorOnEmpty e -> acc |> f e | ECatch { body; handler; _ } -> acc |> f body |> f handler | EStruct { fields; _ } -> acc |> StructField.Map.fold (fun _ -> f) fields | EDStructAccess { e; _ } -> acc |> f e | EStructAccess { e; _ } -> acc |> f e | EMatch { e; cases; _ } -> acc |> f e |> EnumConstructor.Map.fold (fun _ -> f) cases | EScopeCall { args; _ } -> acc |> ScopeVar.Map.fold (fun _ -> f) args (* Like [map], but also allows to gather a result bottom-up. *) let map_gather (type a) ~(acc : 'acc) ~(join : 'acc -> 'acc -> 'acc) ~(f : (a, 'm1) gexpr -> 'acc * (a, 'm2) boxed_gexpr) (e : ((a, 'm1) naked_gexpr, 'm2) Marked.t) : 'acc * (a, 'm2) boxed_gexpr = let m = Marked.get_mark e in let lfoldmap es = let acc, r_es = List.fold_left (fun (acc, es) e -> let acc1, e = f e in join acc acc1, e :: es) (acc, []) es in acc, List.rev r_es in match Marked.unmark e with | ELit l -> acc, elit l m | EApp { f = e1; args } -> let acc1, f = f e1 in let acc2, args = lfoldmap args in join acc1 acc2, eapp f args m | EOp { op; tys } -> acc, eop op tys m | EArray args -> let acc, args = lfoldmap args in acc, earray args m | EVar v -> acc, evar (Var.translate v) m | EAbs { binder; tys } -> let vars, body = Bindlib.unmbind binder in let acc, body = f body in let binder = bind (Array.map Var.translate vars) body in acc, eabs binder tys m | EIfThenElse { cond; etrue; efalse } -> let acc1, cond = f cond in let acc2, etrue = f etrue in let acc3, efalse = f efalse in join (join acc1 acc2) acc3, eifthenelse cond etrue efalse m | ETuple args -> let acc, args = lfoldmap args in acc, etuple args m | ETupleAccess { e; index; size } -> let acc, e = f e in acc, etupleaccess e index size m | EInj { e; name; cons } -> let acc, e = f e in acc, einj e cons name m | EAssert e -> let acc, e = f e in acc, eassert e m | EDefault { excepts; just; cons } -> let acc1, excepts = lfoldmap excepts in let acc2, just = f just in let acc3, cons = f cons in join (join acc1 acc2) acc3, edefault excepts just cons m | EErrorOnEmpty e -> let acc, e = f e in acc, eerroronempty e m | ECatch { body; exn; handler } -> let acc1, body = f body in let acc2, handler = f handler in join acc1 acc2, ecatch body exn handler m | ERaise exn -> acc, eraise exn m | ELocation loc -> acc, elocation loc m | EStruct { name; fields } -> let acc, fields = StructField.Map.fold (fun cons e (acc, fields) -> let acc1, e = f e in join acc acc1, StructField.Map.add cons e fields) fields (acc, StructField.Map.empty) in acc, estruct name fields m | EDStructAccess { e; field; name_opt } -> let acc, e = f e in acc, edstructaccess e field name_opt m | EStructAccess { e; field; name } -> let acc, e = f e in acc, estructaccess e field name m | EMatch { e; name; cases } -> let acc, e = f e in let acc, cases = EnumConstructor.Map.fold (fun cons e (acc, cases) -> let acc1, e = f e in join acc acc1, EnumConstructor.Map.add cons e cases) cases (acc, EnumConstructor.Map.empty) in acc, ematch e name cases m | EScopeCall { scope; args } -> let acc, args = ScopeVar.Map.fold (fun var e (acc, args) -> let acc1, e = f e in join acc acc1, ScopeVar.Map.add var e args) args (acc, ScopeVar.Map.empty) in acc, escopecall scope args m (* - *) (** See [Bindlib.box_term] documentation for why we are doing that. *) let rec rebox e = map ~f:rebox e let box e = Marked.same_mark_as (Bindlib.box (Marked.unmark e)) e let unbox (e, m) = Bindlib.unbox e, m let untype e = map_marks ~f:(fun m -> Untyped { pos = mark_pos m }) e (* Tests *) let is_value (type a) (e : (a, _) gexpr) = match Marked.unmark e with | ELit _ | EAbs _ | EOp _ | ERaise _ -> true | _ -> false let equal_lit (type a) (l1 : a glit) (l2 : a glit) = let open Runtime.Oper in match l1, l2 with | LBool b1, LBool b2 -> not (o_xor b1 b2) | LEmptyError, LEmptyError -> true | LInt n1, LInt n2 -> o_eq_int_int n1 n2 | LRat r1, LRat r2 -> o_eq_rat_rat r1 r2 | LMoney m1, LMoney m2 -> o_eq_mon_mon m1 m2 | LUnit, LUnit -> true | LDate d1, LDate d2 -> o_eq_dat_dat d1 d2 | LDuration d1, LDuration d2 -> o_eq_dur_dur d1 d2 | ( ( LBool _ | LEmptyError | LInt _ | LRat _ | LMoney _ | LUnit | LDate _ | LDuration _ ), _ ) -> false let compare_lit (type a) (l1 : a glit) (l2 : a glit) = let open Runtime.Oper in match l1, l2 with | LBool b1, LBool b2 -> Bool.compare b1 b2 | LEmptyError, LEmptyError -> 0 | LInt n1, LInt n2 -> if o_lt_int_int n1 n2 then -1 else if o_eq_int_int n1 n2 then 0 else 1 | LRat r1, LRat r2 -> if o_lt_rat_rat r1 r2 then -1 else if o_eq_rat_rat r1 r2 then 0 else 1 | LMoney m1, LMoney m2 -> if o_lt_mon_mon m1 m2 then -1 else if o_eq_mon_mon m1 m2 then 0 else 1 | LUnit, LUnit -> 0 | LDate d1, LDate d2 -> if o_lt_dat_dat d1 d2 then -1 else if o_eq_dat_dat d1 d2 then 0 else 1 | LDuration d1, LDuration d2 -> ( (* Duration comparison in the runtime may fail, so rely on a basic lexicographic comparison instead *) let y1, m1, d1 = Runtime.duration_to_years_months_days d1 in let y2, m2, d2 = Runtime.duration_to_years_months_days d2 in match compare y1 y2 with | 0 -> ( match compare m1 m2 with 0 -> compare d1 d2 | n -> n) | n -> n) | LBool _, _ -> -1 | _, LBool _ -> 1 | LEmptyError, _ -> -1 | _, LEmptyError -> 1 | LInt _, _ -> -1 | _, LInt _ -> 1 | LRat _, _ -> -1 | _, LRat _ -> 1 | LMoney _, _ -> -1 | _, LMoney _ -> 1 | LUnit, _ -> -1 | _, LUnit -> 1 | LDate _, _ -> -1 | _, LDate _ -> 1 | LDuration _, _ -> . | _, LDuration _ -> . let compare_location (type a) (x : a glocation Marked.pos) (y : a glocation Marked.pos) = match Marked.unmark x, Marked.unmark y with | DesugaredScopeVar (vx, None), DesugaredScopeVar (vy, None) | DesugaredScopeVar (vx, Some _), DesugaredScopeVar (vy, None) | DesugaredScopeVar (vx, None), DesugaredScopeVar (vy, Some _) -> ScopeVar.compare (Marked.unmark vx) (Marked.unmark vy) | DesugaredScopeVar ((x, _), Some sx), DesugaredScopeVar ((y, _), Some sy) -> let cmp = ScopeVar.compare x y in if cmp = 0 then StateName.compare sx sy else cmp | ScopelangScopeVar (vx, _), ScopelangScopeVar (vy, _) -> ScopeVar.compare vx vy | ( SubScopeVar (_, (xsubindex, _), (xsubvar, _)), SubScopeVar (_, (ysubindex, _), (ysubvar, _)) ) -> let c = SubScopeName.compare xsubindex ysubindex in if c = 0 then ScopeVar.compare xsubvar ysubvar else c | ToplevelVar (vx, _), ToplevelVar (vy, _) -> TopdefName.compare vx vy | DesugaredScopeVar _, _ -> -1 | _, DesugaredScopeVar _ -> 1 | ScopelangScopeVar _, _ -> -1 | _, ScopelangScopeVar _ -> 1 | SubScopeVar _, _ -> -1 | _, SubScopeVar _ -> 1 | ToplevelVar _, _ -> . | _, ToplevelVar _ -> . let equal_location a b = compare_location a b = 0 let equal_except ex1 ex2 = ex1 = ex2 let compare_except ex1 ex2 = Stdlib.compare ex1 ex2 (* weird indentation; see https://github.com/ocaml-ppx/ocamlformat/issues/2143 *) let rec equal_list : 'a. ('a, 't) gexpr list -> ('a, 't) gexpr list -> bool = fun es1 es2 -> try List.for_all2 equal es1 es2 with Invalid_argument _ -> false and equal : type a. (a, 't) gexpr -> (a, 't) gexpr -> bool = fun e1 e2 -> match Marked.unmark e1, Marked.unmark e2 with | EVar v1, EVar v2 -> Bindlib.eq_vars v1 v2 | ETuple es1, ETuple es2 -> equal_list es1 es2 | ( ETupleAccess { e = e1; index = id1; size = s1 }, ETupleAccess { e = e2; index = id2; size = s2 } ) -> s1 = s2 && equal e1 e2 && id1 = id2 | EArray es1, EArray es2 -> equal_list es1 es2 | ELit l1, ELit l2 -> l1 = l2 | EAbs { binder = b1; tys = tys1 }, EAbs { binder = b2; tys = tys2 } -> Type.equal_list tys1 tys2 && let vars1, body1 = Bindlib.unmbind b1 in let body2 = Bindlib.msubst b2 (Array.map (fun x -> EVar x) vars1) in equal body1 body2 | EApp { f = e1; args = args1 }, EApp { f = e2; args = args2 } -> equal e1 e2 && equal_list args1 args2 | EAssert e1, EAssert e2 -> equal e1 e2 | EOp { op = op1; tys = tys1 }, EOp { op = op2; tys = tys2 } -> Operator.equal op1 op2 && Type.equal_list tys1 tys2 | ( EDefault { excepts = exc1; just = def1; cons = cons1 }, EDefault { excepts = exc2; just = def2; cons = cons2 } ) -> equal def1 def2 && equal cons1 cons2 && equal_list exc1 exc2 | ( EIfThenElse { cond = if1; etrue = then1; efalse = else1 }, EIfThenElse { cond = if2; etrue = then2; efalse = else2 } ) -> equal if1 if2 && equal then1 then2 && equal else1 else2 | EErrorOnEmpty e1, EErrorOnEmpty e2 -> equal e1 e2 | ERaise ex1, ERaise ex2 -> equal_except ex1 ex2 | ( ECatch { body = etry1; exn = ex1; handler = ewith1 }, ECatch { body = etry2; exn = ex2; handler = ewith2 } ) -> equal etry1 etry2 && equal_except ex1 ex2 && equal ewith1 ewith2 | ELocation l1, ELocation l2 -> equal_location (Marked.mark Pos.no_pos l1) (Marked.mark Pos.no_pos l2) | ( EStruct { name = s1; fields = fields1 }, EStruct { name = s2; fields = fields2 } ) -> StructName.equal s1 s2 && StructField.Map.equal equal fields1 fields2 | ( EDStructAccess { e = e1; field = f1; name_opt = s1 }, EDStructAccess { e = e2; field = f2; name_opt = s2 } ) -> Option.equal StructName.equal s1 s2 && IdentName.equal f1 f2 && equal e1 e2 | ( EStructAccess { e = e1; field = f1; name = s1 }, EStructAccess { e = e2; field = f2; name = s2 } ) -> StructName.equal s1 s2 && StructField.equal f1 f2 && equal e1 e2 | EInj { e = e1; cons = c1; name = n1 }, EInj { e = e2; cons = c2; name = n2 } -> EnumName.equal n1 n2 && EnumConstructor.equal c1 c2 && equal e1 e2 | ( EMatch { e = e1; name = n1; cases = cases1 }, EMatch { e = e2; name = n2; cases = cases2 } ) -> EnumName.equal n1 n2 && equal e1 e2 && EnumConstructor.Map.equal equal cases1 cases2 | ( EScopeCall { scope = s1; args = fields1 }, EScopeCall { scope = s2; args = fields2 } ) -> ScopeName.equal s1 s2 && ScopeVar.Map.equal equal fields1 fields2 | ( ( EVar _ | ETuple _ | ETupleAccess _ | EArray _ | ELit _ | EAbs _ | EApp _ | EAssert _ | EOp _ | EDefault _ | EIfThenElse _ | EErrorOnEmpty _ | ERaise _ | ECatch _ | ELocation _ | EStruct _ | EDStructAccess _ | EStructAccess _ | EInj _ | EMatch _ | EScopeCall _ ), _ ) -> false let rec compare : type a. (a, _) gexpr -> (a, _) gexpr -> int = fun e1 e2 -> (* Infix operator to chain comparisons lexicographically. *) let ( @@< ) cmp1 cmpf = match cmp1 with 0 -> cmpf () | n -> n in (* OCamlformat doesn't know to keep consistency in match cases so disabled locally for readability *) match[@ocamlformat "disable"] Marked.unmark e1, Marked.unmark e2 with | ELit l1, ELit l2 -> compare_lit l1 l2 | EApp {f=f1; args=args1}, EApp {f=f2; args=args2} -> compare f1 f2 @@< fun () -> List.compare compare args1 args2 | EOp {op=op1; tys=tys1}, EOp {op=op2; tys=tys2} -> Operator.compare op1 op2 @@< fun () -> List.compare Type.compare tys1 tys2 | EArray a1, EArray a2 -> List.compare compare a1 a2 | EVar v1, EVar v2 -> Bindlib.compare_vars v1 v2 | EAbs {binder=binder1; tys=typs1}, EAbs {binder=binder2; tys=typs2} -> List.compare Type.compare typs1 typs2 @@< fun () -> let _, e1, e2 = Bindlib.unmbind2 binder1 binder2 in compare e1 e2 | EIfThenElse {cond=i1; etrue=t1; efalse=e1}, EIfThenElse {cond=i2; etrue=t2; efalse=e2} -> compare i1 i2 @@< fun () -> compare t1 t2 @@< fun () -> compare e1 e2 | ELocation l1, ELocation l2 -> compare_location (Marked.mark Pos.no_pos l1) (Marked.mark Pos.no_pos l2) | EStruct {name=name1; fields=field_map1}, EStruct {name=name2; fields=field_map2} -> StructName.compare name1 name2 @@< fun () -> StructField.Map.compare compare field_map1 field_map2 | EDStructAccess {e=e1; field=field_name1; name_opt=struct_name1}, EDStructAccess {e=e2; field=field_name2; name_opt=struct_name2} -> compare e1 e2 @@< fun () -> IdentName.compare field_name1 field_name2 @@< fun () -> Option.compare StructName.compare struct_name1 struct_name2 | EStructAccess {e=e1; field=field_name1; name=struct_name1}, EStructAccess {e=e2; field=field_name2; name=struct_name2} -> compare e1 e2 @@< fun () -> StructField.compare field_name1 field_name2 @@< fun () -> StructName.compare struct_name1 struct_name2 | EMatch {e=e1; name=name1; cases=emap1}, EMatch {e=e2; name=name2; cases=emap2} -> EnumName.compare name1 name2 @@< fun () -> compare e1 e2 @@< fun () -> EnumConstructor.Map.compare compare emap1 emap2 | EScopeCall {scope=name1; args=field_map1}, EScopeCall {scope=name2; args=field_map2} -> ScopeName.compare name1 name2 @@< fun () -> ScopeVar.Map.compare compare field_map1 field_map2 | ETuple es1, ETuple es2 -> List.compare compare es1 es2 | ETupleAccess {e=e1; index=n1; size=s1}, ETupleAccess {e=e2; index=n2; size=s2} -> Int.compare s1 s2 @@< fun () -> Int.compare n1 n2 @@< fun () -> compare e1 e2 | EInj {e=e1; name=name1; cons=cons1}, EInj {e=e2; name=name2; cons=cons2} -> EnumName.compare name1 name2 @@< fun () -> EnumConstructor.compare cons1 cons2 @@< fun () -> compare e1 e2 | EAssert e1, EAssert e2 -> compare e1 e2 | EDefault {excepts=exs1; just=just1; cons=cons1}, EDefault {excepts=exs2; just=just2; cons=cons2} -> compare just1 just2 @@< fun () -> compare cons1 cons2 @@< fun () -> List.compare compare exs1 exs2 | EErrorOnEmpty e1, EErrorOnEmpty e2 -> compare e1 e2 | ERaise ex1, ERaise ex2 -> compare_except ex1 ex2 | ECatch {body=etry1; exn=ex1; handler=ewith1}, ECatch {body=etry2; exn=ex2; handler=ewith2} -> compare_except ex1 ex2 @@< fun () -> compare etry1 etry2 @@< fun () -> compare ewith1 ewith2 | ELit _, _ -> -1 | _, ELit _ -> 1 | EApp _, _ -> -1 | _, EApp _ -> 1 | EOp _, _ -> -1 | _, EOp _ -> 1 | EArray _, _ -> -1 | _, EArray _ -> 1 | EVar _, _ -> -1 | _, EVar _ -> 1 | EAbs _, _ -> -1 | _, EAbs _ -> 1 | EIfThenElse _, _ -> -1 | _, EIfThenElse _ -> 1 | ELocation _, _ -> -1 | _, ELocation _ -> 1 | EStruct _, _ -> -1 | _, EStruct _ -> 1 | EDStructAccess _, _ -> -1 | _, EDStructAccess _ -> 1 | EStructAccess _, _ -> -1 | _, EStructAccess _ -> 1 | EMatch _, _ -> -1 | _, EMatch _ -> 1 | EScopeCall _, _ -> -1 | _, EScopeCall _ -> 1 | ETuple _, _ -> -1 | _, ETuple _ -> 1 | ETupleAccess _, _ -> -1 | _, ETupleAccess _ -> 1 | EInj _, _ -> -1 | _, EInj _ -> 1 | EAssert _, _ -> -1 | _, EAssert _ -> 1 | EDefault _, _ -> -1 | _, EDefault _ -> 1 | EErrorOnEmpty _, _ -> . | _, EErrorOnEmpty _ -> . | ERaise _, _ -> -1 | _, ERaise _ -> 1 | ECatch _, _ -> . | _, ECatch _ -> . let rec free_vars : type a. (a, 't) gexpr -> (a, 't) gexpr Var.Set.t = function | EVar v, _ -> Var.Set.singleton v | EAbs { binder; _ }, _ -> let vs, body = Bindlib.unmbind binder in Array.fold_right Var.Set.remove vs (free_vars body) | e -> shallow_fold (fun e -> Var.Set.union (free_vars e)) e Var.Set.empty let remove_logging_calls e = let rec f e = match Marked.unmark e with | EApp { f = EOp { op = Log _; _ }, _; args = [arg] } -> map ~f arg | _ -> map ~f e in f e let format ?debug decl_ctx ppf e = Print.expr ?debug decl_ctx ppf e let rec size : type a. (a, 't) gexpr -> int = fun e -> match Marked.unmark e with | EVar _ | ELit _ | EOp _ -> 1 | ETuple args -> List.fold_left (fun acc arg -> acc + size arg) 1 args | EArray args -> List.fold_left (fun acc arg -> acc + size arg) 1 args | ETupleAccess { e; _ } -> size e + 1 | EInj { e; _ } -> size e + 1 | EAssert e -> size e + 1 | EErrorOnEmpty e -> size e + 1 | EApp { f; args } -> List.fold_left (fun acc arg -> acc + size arg) (1 + size f) args | EAbs { binder; _ } -> let _, body = Bindlib.unmbind binder in 1 + size body | EIfThenElse { cond; etrue; efalse } -> 1 + size cond + size etrue + size efalse | EDefault { excepts; just; cons } -> List.fold_left (fun acc except -> acc + size except) (1 + size just + size cons) excepts | ERaise _ -> 1 | ECatch { body; handler; _ } -> 1 + size body + size handler | ELocation _ -> 1 | EStruct { fields; _ } -> StructField.Map.fold (fun _ e acc -> acc + 1 + size e) fields 0 | EDStructAccess { e; _ } -> 1 + size e | EStructAccess { e; _ } -> 1 + size e | EMatch { e; cases; _ } -> EnumConstructor.Map.fold (fun _ e acc -> acc + 1 + size e) cases (size e) | EScopeCall { args; _ } -> ScopeVar.Map.fold (fun _ e acc -> acc + 1 + size e) args 1 (* - Expression building helpers - *) let make_var v mark = evar v mark let make_abs xs e taus pos = let mark = map_mark (fun _ -> pos) (fun ety -> Marked.mark pos (TArrow (taus, ety))) (Marked.get_mark e) in eabs (bind xs e) taus mark let make_app e args pos = let mark = fold_marks (fun _ -> pos) (function | [] -> assert false | fty :: argtys -> ( match Marked.unmark fty.ty with | TArrow (tx', tr) -> assert (Type.unifiable_list tx' (List.map (fun x -> x.ty) argtys)); tr | TAny -> fty.ty | _ -> assert false)) (List.map Marked.get_mark (e :: args)) in eapp e args mark let empty_thunked_term mark = let silent = Var.make "_" in let pos = mark_pos mark in make_abs [| silent |] (Bindlib.box (ELit LEmptyError), mark) [TLit TUnit, pos] pos let make_let_in x tau e1 e2 mpos = make_app (make_abs [| x |] e2 [tau] mpos) [e1] (pos e2) let make_multiple_let_in xs taus e1s e2 mpos = make_app (make_abs xs e2 taus mpos) e1s (pos e2) let make_default_unboxed excepts just cons = let rec bool_value = function | ELit (LBool b), _ -> Some b | EApp { f = EOp { op = Log (l, _); _ }, _; args = [e]; _ }, _ when l <> PosRecordIfTrueBool (* we don't remove the log calls corresponding to source code definitions !*) -> bool_value e | _ -> None in match excepts, bool_value just, cons with | [], Some true, cons -> Marked.unmark cons | excepts, Some true, (EDefault { excepts = []; just; cons }, _) -> EDefault { excepts; just; cons } | [except], Some false, _ -> Marked.unmark except | excepts, _, cons -> EDefault { excepts; just; cons } let make_default exceptions just cons = Box.app2n just cons exceptions @@ fun just cons exceptions -> make_default_unboxed exceptions just cons let make_tuple el m0 = match el with | [] -> etuple [] (with_ty m0 (TTuple [], mark_pos m0)) | el -> let m = fold_marks (fun posl -> List.hd posl) (fun ml -> TTuple (List.map (fun t -> t.ty) ml), (List.hd ml).pos) (List.map (fun e -> Marked.get_mark e) el) in etuple el m
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>