package catala
Compiler and library for the literate programming language for tax code specification
Install
Dune Dependency
Authors
Maintainers
Sources
0.8.0.tar.gz
md5=1408a1cce45c7d5990b981e83e7589c2
sha512=eb3b923aa1f743378b4a05e30f50be5d180dc862a716270d747a90e469017f42fa5fc41352f02fbbf59cd2560f91c4f1b32cf38d80085b105d9387b0aed2039d
doc/src/catala.dcalc/optimizations.ml.html
Source file optimizations.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
(* This file is part of the Catala compiler, a specification language for tax and social benefits computation rules. Copyright (C) 2022 Inria, contributors: Alain Delaët <alain.delaet--tixeuil@inria.fr>, Denis Merigoux <denis.merigoux@inria.fr> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) open Catala_utils open Shared_ast open Ast type partial_evaluation_ctx = { var_values : (typed expr, typed expr) Var.Map.t; decl_ctx : decl_ctx; } let rec partial_evaluation (ctx : partial_evaluation_ctx) (e : 'm expr) : (dcalc, 'm mark) boxed_gexpr = (* We proceed bottom-up, first apply on the subterms *) let e = Expr.map ~f:(partial_evaluation ctx) e in let mark = Marked.get_mark e in (* Then reduce the parent node *) let reduce e = (* Todo: improve the handling of eapp(log,elit) cases here, it obfuscates the matches and the log calls are not preserved, which would be a good property *) match Marked.unmark e with | EApp { f = ( EOp { op = Not; _ }, _ | ( EApp { f = EOp { op = Log _; _ }, _; args = [(EOp { op = Not; _ }, _)]; }, _ ) ) as op; args = [e1]; } -> ( (* reduction of logical not *) match e1 with | ELit (LBool false), _ -> ELit (LBool true) | ELit (LBool true), _ -> ELit (LBool false) | e1 -> EApp { f = op; args = [e1] }) | EApp { f = ( EOp { op = Or; _ }, _ | ( EApp { f = EOp { op = Log _; _ }, _; args = [(EOp { op = Or; _ }, _)]; }, _ ) ) as op; args = [e1; e2]; } -> ( (* reduction of logical or *) match e1, e2 with | (ELit (LBool false), _), new_e | new_e, (ELit (LBool false), _) -> Marked.unmark new_e | (ELit (LBool true), _), _ | _, (ELit (LBool true), _) -> ELit (LBool true) | _ -> EApp { f = op; args = [e1; e2] }) | EApp { f = ( EOp { op = And; _ }, _ | ( EApp { f = EOp { op = Log _; _ }, _; args = [(EOp { op = And; _ }, _)]; }, _ ) ) as op; args = [e1; e2]; } -> ( (* reduction of logical and *) match e1, e2 with | (ELit (LBool true), _), new_e | new_e, (ELit (LBool true), _) -> Marked.unmark new_e | (ELit (LBool false), _), _ | _, (ELit (LBool false), _) -> ELit (LBool false) | _ -> EApp { f = op; args = [e1; e2] }) | EMatch { e = EInj { e; name = name1; cons }, _; cases; name } when EnumName.equal name name1 -> (* iota reduction *) EApp { f = EnumConstructor.Map.find cons cases; args = [e] } | EApp { f = EAbs { binder; _ }, _; args } -> (* beta reduction *) Marked.unmark (Bindlib.msubst binder (List.map fst args |> Array.of_list)) | EDefault { excepts; just; cons } -> ( (* TODO: mechanically prove each of these optimizations correct :) *) let excepts = List.filter (fun except -> Marked.unmark except <> ELit LEmptyError) excepts (* we can discard the exceptions that are always empty error *) in let value_except_count = List.fold_left (fun nb except -> if Expr.is_value except then nb + 1 else nb) 0 excepts in if value_except_count > 1 then (* at this point we know a conflict error will be triggered so we just feed the expression to the interpreter that will print the beautiful right error message *) Marked.unmark (Interpreter.evaluate_expr ctx.decl_ctx e) else match excepts, just with | [except], _ when Expr.is_value except -> (* if there is only one exception and it is a non-empty value it is always chosen *) Marked.unmark except | ( [], ( ( ELit (LBool true) | EApp { f = EOp { op = Log _; _ }, _; args = [(ELit (LBool true), _)]; } ), _ ) ) -> Marked.unmark cons | ( [], ( ( ELit (LBool false) | EApp { f = EOp { op = Log _; _ }, _; args = [(ELit (LBool false), _)]; } ), _ ) ) -> ELit LEmptyError | [], just when not !Cli.avoid_exceptions_flag -> (* without exceptions, a default is just an [if then else] raising an error in the else case. This exception is only valid in the context of compilation_with_exceptions, so we desactivate with a global flag to know if we will be compiling using exceptions or the option monad. FIXME: move this optimisation somewhere else to avoid this check *) EIfThenElse { cond = just; etrue = cons; efalse = ELit LEmptyError, mark } | excepts, just -> EDefault { excepts; just; cons }) | EIfThenElse { cond = ( ELit (LBool true), _ | ( EApp { f = EOp { op = Log _; _ }, _; args = [(ELit (LBool true), _)]; }, _ ) ); etrue; _; } -> Marked.unmark etrue | EIfThenElse { cond = ( ( ELit (LBool false) | EApp { f = EOp { op = Log _; _ }, _; args = [(ELit (LBool false), _)]; } ), _ ); efalse; _; } -> Marked.unmark efalse | EIfThenElse { cond; etrue = ( ( ELit (LBool btrue) | EApp { f = EOp { op = Log _; _ }, _; args = [(ELit (LBool btrue), _)]; } ), _ ); efalse = ( ( ELit (LBool bfalse) | EApp { f = EOp { op = Log _; _ }, _; args = [(ELit (LBool bfalse), _)]; } ), _ ); } -> if btrue && not bfalse then Marked.unmark cond else if (not btrue) && bfalse then EApp { f = EOp { op = Not; tys = [TLit TBool, Expr.mark_pos mark] }, mark; args = [cond]; } (* note: this last call eliminates the condition & might skip log calls as well *) else (* btrue = bfalse *) ELit (LBool btrue) | e -> e in Expr.Box.app1 e reduce mark let optimize_expr (decl_ctx : decl_ctx) (e : 'm expr) = partial_evaluation { var_values = Var.Map.empty; decl_ctx } e let optimize_program (p : 'm program) : 'm program = Bindlib.unbox (Program.map_exprs ~f: (partial_evaluation { var_values = Var.Map.empty; decl_ctx = p.decl_ctx }) ~varf:(fun v -> v) p)
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>