package catala
Compiler and library for the literate programming language for tax code specification
Install
Dune Dependency
Authors
Maintainers
Sources
0.7.0.tar.gz
md5=6dbbc2f50c23693f26ab6f048e78172f
sha512=a5701e14932d8a866e2aa3731f76df85ff2a68b4fa943fd510c535913573274d66eaec1ae6fcae17f20b475876048a9ab196ef6d8c23d4ea6b90b986aa0a6daa
doc/src/catala.verification/conditions.ml.html
Source file conditions.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429
(* This file is part of the Catala compiler, a specification language for tax and social benefits computation rules. Copyright (C) 2022 Inria, contributor: Denis Merigoux <denis.merigoux@inria.fr>, Alain Delaët <alain.delaet--tixeuil@inria.fr> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) open Utils open Dcalc open Ast (** {1 Helpers and type definitions}*) type vc_return = typed marked_expr * typ Marked.pos VarMap.t (** The return type of VC generators is the VC expression plus the types of any locally free variable inside that expression. *) type ctx = { current_scope_name : ScopeName.t; decl : decl_ctx; input_vars : Var.t list; scope_variables_typs : typ Marked.pos VarMap.t; } let conjunction (args : vc_return list) (mark : typed mark) : vc_return = let acc, list = match args with | hd :: tl -> hd, tl | [] -> ((ELit (LBool true), mark), VarMap.empty), [] in List.fold_left (fun (acc, acc_ty) (arg, arg_ty) -> ( (EApp ((EOp (Binop And), mark), [arg; acc]), mark), VarMap.union (fun _ _ _ -> failwith "should not happen") acc_ty arg_ty )) acc list let negation ((arg, arg_ty) : vc_return) (mark : typed mark) : vc_return = (EApp ((EOp (Unop Not), mark), [arg]), mark), arg_ty let disjunction (args : vc_return list) (mark : typed mark) : vc_return = let acc, list = match args with | hd :: tl -> hd, tl | [] -> ((ELit (LBool false), mark), VarMap.empty), [] in List.fold_left (fun ((acc, acc_ty) : vc_return) (arg, arg_ty) -> ( (EApp ((EOp (Binop Or), mark), [arg; acc]), mark), VarMap.union (fun _ _ _ -> failwith "should not happen") acc_ty arg_ty )) acc list (** [half_product \[a1,...,an\] \[b1,...,bm\] returns \[(a1,b1),...(a1,bn),...(an,b1),...(an,bm)\]] *) let half_product (l1 : 'a list) (l2 : 'b list) : ('a * 'b) list = l1 |> List.mapi (fun i ei -> List.filteri (fun j _ -> i < j) l2 |> List.map (fun ej -> ei, ej)) |> List.concat (** This code skims through the topmost layers of the terms like this: [log (error_on_empty < reentrant_variable () | true :- e1 >)] for scope variables, or [fun () -> e1] for subscope variables. But what we really want to analyze is only [e1], so we match this outermost structure explicitely and have a clean verification condition generator that only runs on [e1] *) let match_and_ignore_outer_reentrant_default (ctx : ctx) (e : typed marked_expr) : typed marked_expr = match Marked.unmark e with | ErrorOnEmpty ( EDefault ( [(EApp ((EVar x, _), [(ELit LUnit, _)]), _)], (ELit (LBool true), _), cons ), _ ) when List.exists (fun x' -> Var.eq (Var.t x) x') ctx.input_vars -> (* scope variables*) cons | EAbs (binder, [(TLit TUnit, _)]) -> (* context sub-scope variables *) let _, body = Bindlib.unmbind binder in body | ErrorOnEmpty d -> d (* input subscope variables and non-input scope variable *) | _ -> Errors.raise_spanned_error (pos e) "Internal error: this expression does not have the structure expected by \ the VC generator:\n\ %a" (Print.format_expr ~debug:true ctx.decl) e (** {1 Verification conditions generator}*) (** [generate_vc_must_not_return_empty e] returns the dcalc boolean expression [b] such that if [b] is true, then [e] will never return an empty error. It also returns a map of all the types of locally free variables inside the expression. *) let rec generate_vc_must_not_return_empty (ctx : ctx) (e : typed marked_expr) : vc_return = let out = match Marked.unmark e with | ETuple (args, _) | EArray args -> conjunction (List.map (generate_vc_must_not_return_empty ctx) args) (Marked.get_mark e) | EMatch (arg, arms, _) -> conjunction (List.map (generate_vc_must_not_return_empty ctx) (arg :: arms)) (Marked.get_mark e) | ETupleAccess (e1, _, _, _) | EInj (e1, _, _, _) | EAssert e1 | ErrorOnEmpty e1 -> (generate_vc_must_not_return_empty ctx) e1 | EAbs (binder, typs) -> (* Hot take: for a function never to return an empty error when called, it has to do so whatever its input. So we universally quantify over the variable of the function when inspecting the body, resulting in simply traversing through in the code here. *) let vars, body = Bindlib.unmbind binder in let vc_body_expr, vc_body_ty = (generate_vc_must_not_return_empty ctx) body in ( vc_body_expr, List.fold_left (fun acc (var, ty) -> VarMap.add (Var.t var) ty acc) vc_body_ty (List.map2 (fun x y -> x, y) (Array.to_list vars) typs) ) | EApp (f, args) -> (* We assume here that function calls never return empty error, which implies all functions have been checked never to return empty errors. *) conjunction (List.map (generate_vc_must_not_return_empty ctx) (f :: args)) (Marked.get_mark e) | EIfThenElse (e1, e2, e3) -> let e1_vc, vc_typ1 = generate_vc_must_not_return_empty ctx e1 in let e2_vc, vc_typ2 = generate_vc_must_not_return_empty ctx e2 in let e3_vc, vc_typ3 = generate_vc_must_not_return_empty ctx e3 in conjunction [ e1_vc, vc_typ1; ( (EIfThenElse (e1, e2_vc, e3_vc), Marked.get_mark e), VarMap.union (fun _ _ _ -> failwith "should not happen") vc_typ2 vc_typ3 ); ] (Marked.get_mark e) | ELit LEmptyError -> Marked.same_mark_as (ELit (LBool false)) e, VarMap.empty | EVar _ (* Per default calculus semantics, you cannot call a function with an argument that evaluates to the empty error. Thus, all variable evaluate to non-empty-error terms. *) | ELit _ | EOp _ -> Marked.same_mark_as (ELit (LBool true)) e, VarMap.empty | EDefault (exceptions, just, cons) -> (* <e1 ... en | ejust :- econs > never returns empty if and only if: - first we look if e1 .. en ejust can return empty; - if no, we check that if ejust is true, whether econs can return empty. *) disjunction (List.map (generate_vc_must_not_return_empty ctx) exceptions @ [ conjunction [ generate_vc_must_not_return_empty ctx just; (let vc_just_expr, vc_just_ty = generate_vc_must_not_return_empty ctx cons in ( ( EIfThenElse ( just, (* Comment from Alain: the justification is not checked for holding an default term. In such cases, we need to encode the logic of the default terms within the generation of the verification condition (Z3encoding.translate_expr). Answer from Denis: Normally, there is a structural invariant from the surface language to intermediate representation translation preventing any default terms to appear in justifications.*) vc_just_expr, (ELit (LBool false), Marked.get_mark e) ), Marked.get_mark e ), vc_just_ty )); ] (Marked.get_mark e); ]) (Marked.get_mark e) in out [@@ocamlformat "wrap-comments=false"] (** [generate_vs_must_not_return_confict e] returns the dcalc boolean expression [b] such that if [b] is true, then [e] will never return a conflict error. It also returns a map of all the types of locally free variables inside the expression. *) let rec generate_vs_must_not_return_confict (ctx : ctx) (e : typed marked_expr) : vc_return = let out = (* See the code of [generate_vc_must_not_return_empty] for a list of invariants on which this function relies on. *) match Marked.unmark e with | ETuple (args, _) | EArray args -> conjunction (List.map (generate_vs_must_not_return_confict ctx) args) (Marked.get_mark e) | EMatch (arg, arms, _) -> conjunction (List.map (generate_vs_must_not_return_confict ctx) (arg :: arms)) (Marked.get_mark e) | ETupleAccess (e1, _, _, _) | EInj (e1, _, _, _) | EAssert e1 | ErrorOnEmpty e1 -> generate_vs_must_not_return_confict ctx e1 | EAbs (binder, typs) -> let vars, body = Bindlib.unmbind binder in let vc_body_expr, vc_body_ty = (generate_vs_must_not_return_confict ctx) body in ( vc_body_expr, List.fold_left (fun acc (var, ty) -> VarMap.add (Var.t var) ty acc) vc_body_ty (List.map2 (fun x y -> x, y) (Array.to_list vars) typs) ) | EApp (f, args) -> conjunction (List.map (generate_vs_must_not_return_confict ctx) (f :: args)) (Marked.get_mark e) | EIfThenElse (e1, e2, e3) -> let e1_vc, vc_typ1 = generate_vs_must_not_return_confict ctx e1 in let e2_vc, vc_typ2 = generate_vs_must_not_return_confict ctx e2 in let e3_vc, vc_typ3 = generate_vs_must_not_return_confict ctx e3 in conjunction [ e1_vc, vc_typ1; ( (EIfThenElse (e1, e2_vc, e3_vc), Marked.get_mark e), VarMap.union (fun _ _ _ -> failwith "should not happen") vc_typ2 vc_typ3 ); ] (Marked.get_mark e) | EVar _ | ELit _ | EOp _ -> Marked.same_mark_as (ELit (LBool true)) e, VarMap.empty | EDefault (exceptions, just, cons) -> (* <e1 ... en | ejust :- econs > never returns conflict if and only if: - neither e1 nor ... nor en nor ejust nor econs return conflict - there is no two differents ei ej that are not empty. *) let quadratic = negation (disjunction (List.map (fun (e1, e2) -> conjunction [ generate_vc_must_not_return_empty ctx e1; generate_vc_must_not_return_empty ctx e2; ] (Marked.get_mark e)) (half_product exceptions exceptions)) (Marked.get_mark e)) (Marked.get_mark e) in let others = List.map (generate_vs_must_not_return_confict ctx) (just :: cons :: exceptions) in let out = conjunction (quadratic :: others) (Marked.get_mark e) in out in out [@@ocamlformat "wrap-comments=false"] (** {1 Interface}*) type verification_condition_kind = NoEmptyError | NoOverlappingExceptions type verification_condition = { vc_guard : typed marked_expr; (* should have type bool *) vc_kind : verification_condition_kind; vc_scope : ScopeName.t; vc_variable : Var.t Marked.pos; vc_free_vars_typ : typ Marked.pos VarMap.t; } let rec generate_verification_conditions_scope_body_expr (ctx : ctx) (scope_body_expr : ('m expr, 'm) scope_body_expr) : ctx * verification_condition list = match scope_body_expr with | Result _ -> ctx, [] | ScopeLet scope_let -> let scope_let_var, scope_let_next = Bindlib.unbind scope_let.scope_let_next in let new_ctx, vc_list = match scope_let.scope_let_kind with | DestructuringInputStruct -> { ctx with input_vars = Var.t scope_let_var :: ctx.input_vars }, [] | ScopeVarDefinition | SubScopeVarDefinition -> (* For scope variables, we should check both that they never evaluate to emptyError nor conflictError. But for subscope variable definitions, what we're really doing is adding exceptions to something defined in the subscope so we just ought to verify only that the exceptions overlap. *) let e = Bindlib.unbox (remove_logging_calls scope_let.scope_let_expr) in let e = match_and_ignore_outer_reentrant_default ctx e in let vc_confl, vc_confl_typs = generate_vs_must_not_return_confict ctx e in let vc_confl = if !Cli.optimize_flag then Bindlib.unbox (Optimizations.optimize_expr ctx.decl vc_confl) else vc_confl in let vc_list = [ { vc_guard = Marked.same_mark_as (Marked.unmark vc_confl) e; vc_kind = NoOverlappingExceptions; vc_free_vars_typ = VarMap.union (fun _ _ -> failwith "should not happen") ctx.scope_variables_typs vc_confl_typs; vc_scope = ctx.current_scope_name; vc_variable = Var.t scope_let_var, scope_let.scope_let_pos; }; ] in let vc_list = match scope_let.scope_let_kind with | ScopeVarDefinition -> let vc_empty, vc_empty_typs = generate_vc_must_not_return_empty ctx e in let vc_empty = if !Cli.optimize_flag then Bindlib.unbox (Optimizations.optimize_expr ctx.decl vc_empty) else vc_empty in { vc_guard = Marked.same_mark_as (Marked.unmark vc_empty) e; vc_kind = NoEmptyError; vc_free_vars_typ = VarMap.union (fun _ _ -> failwith "should not happen") ctx.scope_variables_typs vc_empty_typs; vc_scope = ctx.current_scope_name; vc_variable = Var.t scope_let_var, scope_let.scope_let_pos; } :: vc_list | _ -> vc_list in ctx, vc_list | _ -> ctx, [] in let new_ctx, new_vcs = generate_verification_conditions_scope_body_expr { new_ctx with scope_variables_typs = VarMap.add (Var.t scope_let_var) scope_let.scope_let_typ new_ctx.scope_variables_typs; } scope_let_next in new_ctx, vc_list @ new_vcs let rec generate_verification_conditions_scopes (decl_ctx : decl_ctx) (scopes : ('m expr, 'm) scopes) (s : ScopeName.t option) : verification_condition list = match scopes with | Nil -> [] | ScopeDef scope_def -> let is_selected_scope = match s with | Some s when Dcalc.Ast.ScopeName.compare s scope_def.scope_name = 0 -> true | None -> true | _ -> false in let vcs = if is_selected_scope then let _scope_input_var, scope_body_expr = Bindlib.unbind scope_def.scope_body.scope_body_expr in let ctx = { current_scope_name = scope_def.scope_name; decl = decl_ctx; input_vars = []; scope_variables_typs = VarMap.empty (* We don't need to add the typ of the scope input var here because it will never appear in an expression for which we generate a verification conditions (the big struct is destructured with a series of let bindings just after. )*); } in let _, vcs = generate_verification_conditions_scope_body_expr ctx scope_body_expr in vcs else [] in let _scope_var, next = Bindlib.unbind scope_def.scope_next in generate_verification_conditions_scopes decl_ctx next s @ vcs let generate_verification_conditions (p : 'm program) (s : Dcalc.Ast.ScopeName.t option) : verification_condition list = let vcs = generate_verification_conditions_scopes p.decl_ctx p.scopes s in (* We sort this list by scope name and then variable name to ensure consistent output for testing*) List.sort (fun vc1 vc2 -> let to_str vc = Format.asprintf "%s.%s" (Format.asprintf "%a" ScopeName.format_t vc.vc_scope) (Bindlib.name_of (Var.get (Marked.unmark vc.vc_variable))) in String.compare (to_str vc1) (to_str vc2)) vcs
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>