package catala
Compiler and library for the literate programming language for tax code specification
Install
Dune Dependency
Authors
Maintainers
Sources
0.7.0.tar.gz
md5=6dbbc2f50c23693f26ab6f048e78172f
sha512=a5701e14932d8a866e2aa3731f76df85ff2a68b4fa943fd510c535913573274d66eaec1ae6fcae17f20b475876048a9ab196ef6d8c23d4ea6b90b986aa0a6daa
doc/src/catala.dcalc/optimizations.ml.html
Source file optimizations.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
(* This file is part of the Catala compiler, a specification language for tax and social benefits computation rules. Copyright (C) 2022 Inria, contributors: Alain Delaët <alain.delaet--tixeuil@inria.fr>, Denis Merigoux <denis.merigoux@inria.fr> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) open Utils open Ast type partial_evaluation_ctx = { var_values : typed marked_expr Ast.VarMap.t; decl_ctx : decl_ctx; } let rec partial_evaluation (ctx : partial_evaluation_ctx) (e : 'm marked_expr) : 'm marked_expr Bindlib.box = let pos = Marked.get_mark e in let rec_helper = partial_evaluation ctx in match Marked.unmark e with | EApp ( (( EOp (Unop Not), _ | EApp ((EOp (Unop (Log _)), _), [(EOp (Unop Not), _)]), _ ) as op), [e1] ) -> (* reduction of logical not *) (Bindlib.box_apply (fun e1 -> match e1 with | ELit (LBool false), _ -> ELit (LBool true), pos | ELit (LBool true), _ -> ELit (LBool false), pos | _ -> EApp (op, [e1]), pos)) (rec_helper e1) | EApp ( (( EOp (Binop Or), _ | EApp ((EOp (Unop (Log _)), _), [(EOp (Binop Or), _)]), _ ) as op), [e1; e2] ) -> (* reduction of logical or *) (Bindlib.box_apply2 (fun e1 e2 -> match e1, e2 with | (ELit (LBool false), _), new_e | new_e, (ELit (LBool false), _) -> new_e | (ELit (LBool true), _), _ | _, (ELit (LBool true), _) -> ELit (LBool true), pos | _ -> EApp (op, [e1; e2]), pos)) (rec_helper e1) (rec_helper e2) | EApp ( (( EOp (Binop And), _ | EApp ((EOp (Unop (Log _)), _), [(EOp (Binop And), _)]), _ ) as op), [e1; e2] ) -> (* reduction of logical and *) (Bindlib.box_apply2 (fun e1 e2 -> match e1, e2 with | (ELit (LBool true), _), new_e | new_e, (ELit (LBool true), _) -> new_e | (ELit (LBool false), _), _ | _, (ELit (LBool false), _) -> ELit (LBool false), pos | _ -> EApp (op, [e1; e2]), pos)) (rec_helper e1) (rec_helper e2) | EVar x -> Bindlib.box_apply (fun x -> x, pos) (Bindlib.box_var x) | ETuple (args, s_name) -> Bindlib.box_apply (fun args -> ETuple (args, s_name), pos) (List.map rec_helper args |> Bindlib.box_list) | ETupleAccess (arg, i, s_name, typs) -> Bindlib.box_apply (fun arg -> ETupleAccess (arg, i, s_name, typs), pos) (rec_helper arg) | EInj (arg, i, e_name, typs) -> Bindlib.box_apply (fun arg -> EInj (arg, i, e_name, typs), pos) (rec_helper arg) | EMatch (arg, arms, e_name) -> Bindlib.box_apply2 (fun arg arms -> match arg, arms with | (EInj (e1, i, e_name', _ts), _), _ when Ast.EnumName.compare e_name e_name' = 0 -> (* iota reduction *) EApp (List.nth arms i, [e1]), pos | _ -> EMatch (arg, arms, e_name), pos) (rec_helper arg) (List.map rec_helper arms |> Bindlib.box_list) | EArray args -> Bindlib.box_apply (fun args -> EArray args, pos) (List.map rec_helper args |> Bindlib.box_list) | ELit l -> Bindlib.box (ELit l, pos) | EAbs (binder, typs) -> let vars, body = Bindlib.unmbind binder in let new_body = rec_helper body in let new_binder = Bindlib.bind_mvar vars new_body in Bindlib.box_apply (fun binder -> EAbs (binder, typs), pos) new_binder | EApp (f, args) -> Bindlib.box_apply2 (fun f args -> match Marked.unmark f with | EAbs (binder, _ts) -> (* beta reduction *) Bindlib.msubst binder (List.map fst args |> Array.of_list) | _ -> EApp (f, args), pos) (rec_helper f) (List.map rec_helper args |> Bindlib.box_list) | EAssert e1 -> Bindlib.box_apply (fun e1 -> EAssert e1, pos) (rec_helper e1) | EOp op -> Bindlib.box (EOp op, pos) | EDefault (exceptions, just, cons) -> Bindlib.box_apply3 (fun exceptions just cons -> (* TODO: mechanically prove each of these optimizations correct :) *) match ( List.filter (fun except -> match Marked.unmark except with | ELit LEmptyError -> false | _ -> true) exceptions (* we can discard the exceptions that are always empty error *), just, cons ) with | exceptions, just, cons when List.fold_left (fun nb except -> if is_value except then nb + 1 else nb) 0 exceptions > 1 -> (* at this point we know a conflict error will be triggered so we just feed the expression to the interpreter that will print the beautiful right error message *) Interpreter.evaluate_expr ctx.decl_ctx (EDefault (exceptions, just, cons), pos) | [except], _, _ when is_value except -> (* if there is only one exception and it is a non-empty value it is always chosen *) except | ( [], ( ( ELit (LBool true) | EApp ((EOp (Unop (Log _)), _), [(ELit (LBool true), _)]) ), _ ), cons ) -> cons | ( [], ( ( ELit (LBool false) | EApp ((EOp (Unop (Log _)), _), [(ELit (LBool false), _)]) ), _ ), _ ) -> ELit LEmptyError, pos | [], just, cons when not !Cli.avoid_exceptions_flag -> (* without exceptions, a default is just an [if then else] raising an error in the else case. This exception is only valid in the context of compilation_with_exceptions, so we desactivate with a global flag to know if we will be compiling using exceptions or the option monad. *) EIfThenElse (just, cons, (ELit LEmptyError, pos)), pos | exceptions, just, cons -> EDefault (exceptions, just, cons), pos) (List.map rec_helper exceptions |> Bindlib.box_list) (rec_helper just) (rec_helper cons) | EIfThenElse (e1, e2, e3) -> Bindlib.box_apply3 (fun e1 e2 e3 -> match Marked.unmark e1, Marked.unmark e2, Marked.unmark e3 with | ELit (LBool true), _, _ | EApp ((EOp (Unop (Log _)), _), [(ELit (LBool true), _)]), _, _ -> e2 | ELit (LBool false), _, _ | EApp ((EOp (Unop (Log _)), _), [(ELit (LBool false), _)]), _, _ -> e3 | ( _, ( ELit (LBool true) | EApp ((EOp (Unop (Log _)), _), [(ELit (LBool true), _)]) ), ( ELit (LBool false) | EApp ((EOp (Unop (Log _)), _), [(ELit (LBool false), _)]) ) ) -> e1 | _ when equal_exprs e2 e3 -> e2 | _ -> EIfThenElse (e1, e2, e3), pos) (rec_helper e1) (rec_helper e2) (rec_helper e3) | ErrorOnEmpty e1 -> Bindlib.box_apply (fun e1 -> ErrorOnEmpty e1, pos) (rec_helper e1) let optimize_expr (decl_ctx : decl_ctx) (e : 'm marked_expr) = partial_evaluation { var_values = VarMap.empty; decl_ctx } e let rec scope_lets_map (t : 'a -> 'm marked_expr -> 'm marked_expr Bindlib.box) (ctx : 'a) (scope_body_expr : ('m expr, 'm) scope_body_expr) : ('m expr, 'm) scope_body_expr Bindlib.box = match scope_body_expr with | Result e -> Bindlib.box_apply (fun e' -> Result e') (t ctx e) | ScopeLet scope_let -> let var, next = Bindlib.unbind scope_let.scope_let_next in let new_scope_let_expr = t ctx scope_let.scope_let_expr in let new_next = scope_lets_map t ctx next in let new_next = Bindlib.bind_var var new_next in Bindlib.box_apply2 (fun new_scope_let_expr new_next -> ScopeLet { scope_let with scope_let_expr = new_scope_let_expr; scope_let_next = new_next; }) new_scope_let_expr new_next let rec scopes_map (t : 'a -> 'm marked_expr -> 'm marked_expr Bindlib.box) (ctx : 'a) (scopes : ('m expr, 'm) scopes) : ('m expr, 'm) scopes Bindlib.box = match scopes with | Nil -> Bindlib.box Nil | ScopeDef scope_def -> let scope_var, scope_next = Bindlib.unbind scope_def.scope_next in let scope_arg_var, scope_body_expr = Bindlib.unbind scope_def.scope_body.scope_body_expr in let new_scope_body_expr = scope_lets_map t ctx scope_body_expr in let new_scope_body_expr = Bindlib.bind_var scope_arg_var new_scope_body_expr in let new_scope_next = scopes_map t ctx scope_next in let new_scope_next = Bindlib.bind_var scope_var new_scope_next in Bindlib.box_apply2 (fun new_scope_body_expr new_scope_next -> ScopeDef { scope_def with scope_next = new_scope_next; scope_body = { scope_def.scope_body with scope_body_expr = new_scope_body_expr; }; }) new_scope_body_expr new_scope_next let program_map (t : 'a -> 'm marked_expr -> 'm marked_expr Bindlib.box) (ctx : 'a) (p : 'm program) : 'm program Bindlib.box = Bindlib.box_apply (fun new_scopes -> { p with scopes = new_scopes }) (scopes_map t ctx p.scopes) let optimize_program (p : 'm program) : untyped program = Bindlib.unbox (program_map partial_evaluation { var_values = VarMap.empty; decl_ctx = p.decl_ctx } p) |> untype_program
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>