package catala
Compiler and library for the literate programming language for tax code specification
Install
Dune Dependency
Authors
Maintainers
Sources
0.7.0.tar.gz
md5=6dbbc2f50c23693f26ab6f048e78172f
sha512=a5701e14932d8a866e2aa3731f76df85ff2a68b4fa943fd510c535913573274d66eaec1ae6fcae17f20b475876048a9ab196ef6d8c23d4ea6b90b986aa0a6daa
doc/src/catala.dcalc/ast.ml.html
Source file ast.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
(* This file is part of the Catala compiler, a specification language for tax and social benefits computation rules. Copyright (C) 2020 Inria, contributor: Denis Merigoux <denis.merigoux@inria.fr>, Alain Delaët-Tixeuil <alain.delaet--tixeuil@inria.fr> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. *) [@@@ocaml.warning "-7-34"] open Utils module Runtime = Runtime_ocaml.Runtime module ScopeName : Uid.Id with type info = Uid.MarkedString.info = Uid.Make (Uid.MarkedString) () module StructName : Uid.Id with type info = Uid.MarkedString.info = Uid.Make (Uid.MarkedString) () module StructFieldName : Uid.Id with type info = Uid.MarkedString.info = Uid.Make (Uid.MarkedString) () module StructMap : Map.S with type key = StructName.t = Map.Make (StructName) module EnumName : Uid.Id with type info = Uid.MarkedString.info = Uid.Make (Uid.MarkedString) () module EnumConstructor : Uid.Id with type info = Uid.MarkedString.info = Uid.Make (Uid.MarkedString) () module EnumMap : Map.S with type key = EnumName.t = Map.Make (EnumName) type typ_lit = TBool | TUnit | TInt | TRat | TMoney | TDate | TDuration type marked_typ = typ Marked.pos and typ = | TLit of typ_lit | TTuple of marked_typ list * StructName.t option | TEnum of marked_typ list * EnumName.t | TArrow of marked_typ * marked_typ | TArray of marked_typ | TAny type date = Runtime.date type duration = Runtime.duration type integer = Runtime.integer type decimal = Runtime.decimal type money = Runtime.money type lit = | LBool of bool | LEmptyError | LInt of integer | LRat of decimal | LMoney of money | LUnit | LDate of date | LDuration of duration type op_kind = KInt | KRat | KMoney | KDate | KDuration type ternop = Fold type binop = | And | Or | Xor | Add of op_kind | Sub of op_kind | Mult of op_kind | Div of op_kind | Lt of op_kind | Lte of op_kind | Gt of op_kind | Gte of op_kind | Eq | Neq | Map | Concat | Filter type log_entry = VarDef of typ | BeginCall | EndCall | PosRecordIfTrueBool type unop = | Not | Minus of op_kind | Log of log_entry * Utils.Uid.MarkedString.info list | Length | IntToRat | MoneyToRat | RatToMoney | GetDay | GetMonth | GetYear | FirstDayOfMonth | LastDayOfMonth | RoundMoney | RoundDecimal type operator = Ternop of ternop | Binop of binop | Unop of unop (** Some structures used for type inference *) module Infer = struct module Any = Utils.Uid.Make (struct type info = unit let format_info fmt () = Format.fprintf fmt "any" end) () type unionfind_typ = typ Marked.pos UnionFind.elem (** We do not reuse {!type: Dcalc.Ast.typ} because we have to include a new [TAny] variant. Indeed, error terms can have any type and this has to be captured by the type sytem. *) and typ = | TLit of typ_lit | TArrow of unionfind_typ * unionfind_typ | TTuple of unionfind_typ list * StructName.t option | TEnum of unionfind_typ list * EnumName.t | TArray of unionfind_typ | TAny of Any.t let rec typ_to_ast (ty : unionfind_typ) : marked_typ = let ty, pos = UnionFind.get (UnionFind.find ty) in match ty with | TLit l -> TLit l, pos | TTuple (ts, s) -> TTuple (List.map typ_to_ast ts, s), pos | TEnum (ts, e) -> TEnum (List.map typ_to_ast ts, e), pos | TArrow (t1, t2) -> TArrow (typ_to_ast t1, typ_to_ast t2), pos | TAny _ -> TAny, pos | TArray t1 -> TArray (typ_to_ast t1), pos let rec ast_to_typ (ty : marked_typ) : unionfind_typ = let ty' = match Marked.unmark ty with | TLit l -> TLit l | TArrow (t1, t2) -> TArrow (ast_to_typ t1, ast_to_typ t2) | TTuple (ts, s) -> TTuple (List.map (fun t -> ast_to_typ t) ts, s) | TEnum (ts, e) -> TEnum (List.map (fun t -> ast_to_typ t) ts, e) | TArray t -> TArray (ast_to_typ t) | TAny -> TAny (Any.fresh ()) in UnionFind.make (Marked.same_mark_as ty' ty) end type untyped = { pos : Pos.t } [@@ocaml.unboxed] type typed = { pos : Pos.t; ty : marked_typ } type inferring = { pos : Pos.t; uf : Infer.unionfind_typ } (** The generic type of AST markings. Using a GADT allows functions to be polymorphic in the marking, but still do transformations on types when appropriate *) type _ mark = | Untyped : untyped -> untyped mark | Typed : typed -> typed mark | Inferring : inferring -> inferring mark type ('a, 'm) marked = ('a, 'm mark) Marked.t type 'm marked_expr = ('m expr, 'm) marked and 'm expr = | EVar of 'm expr Bindlib.var | ETuple of 'm marked_expr list * StructName.t option | ETupleAccess of 'm marked_expr * int * StructName.t option * typ Marked.pos list | EInj of 'm marked_expr * int * EnumName.t * typ Marked.pos list | EMatch of 'm marked_expr * 'm marked_expr list * EnumName.t | EArray of 'm marked_expr list | ELit of lit | EAbs of (('m expr, 'm marked_expr) Bindlib.mbinder[@opaque]) * typ Marked.pos list | EApp of 'm marked_expr * 'm marked_expr list | EAssert of 'm marked_expr | EOp of operator | EDefault of 'm marked_expr list * 'm marked_expr * 'm marked_expr | EIfThenElse of 'm marked_expr * 'm marked_expr * 'm marked_expr | ErrorOnEmpty of 'm marked_expr type typed_expr = typed marked_expr type struct_ctx = (StructFieldName.t * typ Marked.pos) list StructMap.t type enum_ctx = (EnumConstructor.t * typ Marked.pos) list EnumMap.t type decl_ctx = { ctx_enums : enum_ctx; ctx_structs : struct_ctx } type 'm binder = ('m expr, 'm marked_expr) Bindlib.binder type scope_let_kind = | DestructuringInputStruct | ScopeVarDefinition | SubScopeVarDefinition | CallingSubScope | DestructuringSubScopeResults | Assertion type ('expr, 'm) scope_let = { scope_let_kind : scope_let_kind; scope_let_typ : typ Marked.pos; scope_let_expr : ('expr, 'm) marked; scope_let_next : ('expr, ('expr, 'm) scope_body_expr) Bindlib.binder; scope_let_pos : Pos.t; } and ('expr, 'm) scope_body_expr = | Result of ('expr, 'm) marked | ScopeLet of ('expr, 'm) scope_let type ('expr, 'm) scope_body = { scope_body_input_struct : StructName.t; scope_body_output_struct : StructName.t; scope_body_expr : ('expr, ('expr, 'm) scope_body_expr) Bindlib.binder; } type ('expr, 'm) scope_def = { scope_name : ScopeName.t; scope_body : ('expr, 'm) scope_body; scope_next : ('expr, ('expr, 'm) scopes) Bindlib.binder; } and ('expr, 'm) scopes = Nil | ScopeDef of ('expr, 'm) scope_def type ('expr, 'm) program_generic = { decl_ctx : decl_ctx; scopes : ('expr, 'm) scopes; } type 'm program = ('m expr, 'm) program_generic let no_mark (type m) : m mark -> m mark = function | Untyped _ -> Untyped { pos = Pos.no_pos } | Typed _ -> Typed { pos = Pos.no_pos; ty = Marked.mark Pos.no_pos TAny } | Inferring _ -> Inferring { pos = Pos.no_pos; uf = UnionFind.make Infer.(TAny (Any.fresh ()), Pos.no_pos); } let mark_pos (type m) (m : m mark) : Pos.t = match m with | Untyped { pos } | Typed { pos; _ } | Inferring { pos; _ } -> pos let pos (type m) (x : ('a, m) marked) : Pos.t = mark_pos (Marked.get_mark x) let ty (_, m) : marked_typ = match m with Typed { ty; _ } -> ty let with_ty (type m) (ty : marked_typ) (x : ('a, m) marked) : ('a, typed) marked = Marked.mark (match Marked.get_mark x with | Untyped { pos } | Inferring { pos; _ } -> Typed { pos; ty } | Typed m -> Typed { m with ty }) (Marked.unmark x) let evar v mark = Bindlib.box_apply (Marked.mark mark) (Bindlib.box_var v) let etuple args s mark = Bindlib.box_apply (fun args -> ETuple (args, s), mark) (Bindlib.box_list args) let etupleaccess e1 i s typs mark = Bindlib.box_apply (fun e1 -> ETupleAccess (e1, i, s, typs), mark) e1 let einj e1 i e_name typs mark = Bindlib.box_apply (fun e1 -> EInj (e1, i, e_name, typs), mark) e1 let ematch arg arms e_name mark = Bindlib.box_apply2 (fun arg arms -> EMatch (arg, arms, e_name), mark) arg (Bindlib.box_list arms) let earray args mark = Bindlib.box_apply (fun args -> EArray args, mark) (Bindlib.box_list args) let elit l mark = Bindlib.box (ELit l, mark) let eabs binder typs mark = Bindlib.box_apply (fun binder -> EAbs (binder, typs), mark) binder let eapp e1 args mark = Bindlib.box_apply2 (fun e1 args -> EApp (e1, args), mark) e1 (Bindlib.box_list args) let eassert e1 mark = Bindlib.box_apply (fun e1 -> EAssert e1, mark) e1 let eop op mark = Bindlib.box (EOp op, mark) let edefault excepts just cons mark = Bindlib.box_apply3 (fun excepts just cons -> EDefault (excepts, just, cons), mark) (Bindlib.box_list excepts) just cons let eifthenelse e1 e2 e3 mark = Bindlib.box_apply3 (fun e1 e2 e3 -> EIfThenElse (e1, e2, e3), mark) e1 e2 e3 let eerroronempty e1 mark = Bindlib.box_apply (fun e1 -> ErrorOnEmpty e1, mark) e1 let translate_var v = Bindlib.copy_var v (fun x -> EVar x) (Bindlib.name_of v) let map_expr ctx ~f e = let m = Marked.get_mark e in match Marked.unmark e with | EVar v -> evar (translate_var v) m | EApp (e1, args) -> eapp (f ctx e1) (List.map (f ctx) args) m | EAbs (binder, typs) -> let vars, body = Bindlib.unmbind binder in eabs (Bindlib.bind_mvar (Array.map translate_var vars) (f ctx body)) typs m | ETuple (args, s) -> etuple (List.map (f ctx) args) s m | ETupleAccess (e1, n, s_name, typs) -> etupleaccess ((f ctx) e1) n s_name typs m | EInj (e1, i, e_name, typs) -> einj ((f ctx) e1) i e_name typs m | EMatch (arg, arms, e_name) -> ematch ((f ctx) arg) (List.map (f ctx) arms) e_name m | EArray args -> earray (List.map (f ctx) args) m | ELit l -> elit l m | EAssert e1 -> eassert ((f ctx) e1) m | EOp op -> Bindlib.box (EOp op, m) | EDefault (excepts, just, cons) -> edefault (List.map (f ctx) excepts) ((f ctx) just) ((f ctx) cons) m | EIfThenElse (e1, e2, e3) -> eifthenelse ((f ctx) e1) ((f ctx) e2) ((f ctx) e3) m | ErrorOnEmpty e1 -> eerroronempty ((f ctx) e1) m let rec map_expr_top_down ~f e = map_expr () ~f:(fun () -> map_expr_top_down ~f) (f e) let map_expr_marks ~f e = map_expr_top_down ~f:(fun e -> Marked.(mark (f (get_mark e)) (unmark e))) e let untype_expr e = map_expr_marks ~f:(fun m -> Untyped { pos = mark_pos m }) e type ('expr, 'm) box_expr_sig = ('expr, 'm) marked -> ('expr, 'm) marked Bindlib.box (** See [Bindlib.box_term] documentation for why we are doing that. *) let box_expr : ('m expr, 'm) box_expr_sig = fun e -> let rec id_t () e = map_expr () ~f:id_t e in id_t () e let rec fold_left_scope_lets ~f ~init scope_body_expr = match scope_body_expr with | Result _ -> init | ScopeLet scope_let -> let var, next = Bindlib.unbind scope_let.scope_let_next in fold_left_scope_lets ~f ~init:(f init scope_let var) next let rec fold_right_scope_lets ~f ~init scope_body_expr = match scope_body_expr with | Result result -> init result | ScopeLet scope_let -> let var, next = Bindlib.unbind scope_let.scope_let_next in let next_result = fold_right_scope_lets ~f ~init next in f scope_let var next_result let map_exprs_in_scope_lets ~f ~varf scope_body_expr = fold_right_scope_lets ~f:(fun scope_let var_next acc -> Bindlib.box_apply2 (fun scope_let_next scope_let_expr -> ScopeLet { scope_let with scope_let_next; scope_let_expr }) (Bindlib.bind_var (varf var_next) acc) (f scope_let.scope_let_expr)) ~init:(fun res -> Bindlib.box_apply (fun res -> Result res) (f res)) scope_body_expr let rec fold_left_scope_defs ~f ~init scopes = match scopes with | Nil -> init | ScopeDef scope_def -> let var, next = Bindlib.unbind scope_def.scope_next in fold_left_scope_defs ~f ~init:(f init scope_def var) next let rec fold_right_scope_defs ~f ~init scopes = match scopes with | Nil -> init | ScopeDef scope_def -> let var_next, next = Bindlib.unbind scope_def.scope_next in let result_next = fold_right_scope_defs ~f ~init next in f scope_def var_next result_next let map_scope_defs ~f scopes = fold_right_scope_defs ~f:(fun scope_def var_next acc -> let new_scope_def = f scope_def in let new_next = Bindlib.bind_var var_next acc in Bindlib.box_apply2 (fun new_scope_def new_next -> ScopeDef { new_scope_def with scope_next = new_next }) new_scope_def new_next) ~init:(Bindlib.box Nil) scopes let map_exprs_in_scopes ~f ~varf scopes = fold_right_scope_defs ~f:(fun scope_def var_next acc -> let scope_input_var, scope_lets = Bindlib.unbind scope_def.scope_body.scope_body_expr in let new_scope_body_expr = map_exprs_in_scope_lets ~f ~varf scope_lets in let new_scope_body_expr = Bindlib.bind_var (varf scope_input_var) new_scope_body_expr in let new_next = Bindlib.bind_var (varf var_next) acc in Bindlib.box_apply2 (fun scope_body_expr scope_next -> ScopeDef { scope_def with scope_body = { scope_def.scope_body with scope_body_expr }; scope_next; }) new_scope_body_expr new_next) ~init:(Bindlib.box Nil) scopes let untype_program prg = { prg with scopes = Bindlib.unbox (map_exprs_in_scopes ~f:(fun e -> untype_expr e) ~varf:translate_var prg.scopes); } type 'm var = 'm expr Bindlib.var type 'm vars = 'm expr Bindlib.mvar let new_var s = Bindlib.new_var (fun x -> EVar x) s module Var = struct type t = V : 'a expr Bindlib.var -> t (* We use this trivial GADT to make the 'm parameter disappear under an existential. It's fine for a use as keys only. (bindlib defines [any_var] similarly but it's not exported) todo: add [@@ocaml.unboxed] once it's possible through abstract types *) let t v = V v let get (V v) = Bindlib.copy_var v (fun x -> EVar x) (Bindlib.name_of v) let compare (V x) (V y) = Bindlib.compare_vars x y let eq (V x) (V y) = Bindlib.eq_vars x y end module VarSet = Set.Make (Var) module VarMap = Map.Make (Var) let rec free_vars_expr (e : 'm marked_expr) : VarSet.t = match Marked.unmark e with | EVar v -> VarSet.singleton (Var.t v) | ETuple (es, _) | EArray es -> es |> List.map free_vars_expr |> List.fold_left VarSet.union VarSet.empty | ETupleAccess (e1, _, _, _) | EAssert e1 | ErrorOnEmpty e1 | EInj (e1, _, _, _) -> free_vars_expr e1 | EApp (e1, es) | EMatch (e1, es, _) -> e1 :: es |> List.map free_vars_expr |> List.fold_left VarSet.union VarSet.empty | EDefault (es, ejust, econs) -> ejust :: econs :: es |> List.map free_vars_expr |> List.fold_left VarSet.union VarSet.empty | EOp _ | ELit _ -> VarSet.empty | EIfThenElse (e1, e2, e3) -> [e1; e2; e3] |> List.map free_vars_expr |> List.fold_left VarSet.union VarSet.empty | EAbs (binder, _) -> let vs, body = Bindlib.unmbind binder in Array.fold_right VarSet.remove (Array.map Var.t vs) (free_vars_expr body) let rec free_vars_scope_body_expr (scope_lets : ('m expr, 'm) scope_body_expr) : VarSet.t = match scope_lets with | Result e -> free_vars_expr e | ScopeLet { scope_let_expr = e; scope_let_next = next; _ } -> let v, body = Bindlib.unbind next in VarSet.union (free_vars_expr e) (VarSet.remove (Var.t v) (free_vars_scope_body_expr body)) let free_vars_scope_body (scope_body : ('m expr, 'm) scope_body) : VarSet.t = let { scope_body_expr = binder; _ } = scope_body in let v, body = Bindlib.unbind binder in VarSet.remove (Var.t v) (free_vars_scope_body_expr body) let rec free_vars_scopes (scopes : ('m expr, 'm) scopes) : VarSet.t = match scopes with | Nil -> VarSet.empty | ScopeDef { scope_body = body; scope_next = next; _ } -> let v, next = Bindlib.unbind next in VarSet.union (VarSet.remove (Var.t v) (free_vars_scopes next)) (free_vars_scope_body body) (* type vars = expr Bindlib.mvar *) let make_var ((x, mark) : ('m expr Bindlib.var, 'm) marked) : 'm marked_expr Bindlib.box = Bindlib.box_apply (fun x -> x, mark) (Bindlib.box_var x) type ('e, 'm) make_abs_sig = 'e Bindlib.mvar -> ('e, 'm) marked Bindlib.box -> typ Marked.pos list -> 'm mark -> ('e, 'm) marked Bindlib.box let (make_abs : ('m expr, 'm) make_abs_sig) = fun xs e taus mark -> Bindlib.box_apply (fun b -> EAbs (b, taus), mark) (Bindlib.bind_mvar xs e) let make_app : 'm marked_expr Bindlib.box -> 'm marked_expr Bindlib.box list -> 'm mark -> 'm marked_expr Bindlib.box = fun e u mark -> Bindlib.box_apply2 (fun e u -> EApp (e, u), mark) e (Bindlib.box_list u) type ('expr, 'm) make_let_in_sig = 'expr Bindlib.var -> typ Marked.pos -> ('expr, 'm) marked Bindlib.box -> ('expr, 'm) marked Bindlib.box -> Pos.t -> ('expr, 'm) marked Bindlib.box let map_mark (type m) (pos_f : Pos.t -> Pos.t) (ty_f : marked_typ -> marked_typ) (m : m mark) : m mark = match m with | Untyped { pos } -> Untyped { pos = pos_f pos } | Typed { pos; ty } -> Typed { pos = pos_f pos; ty = ty_f ty } | Inferring { pos; uf } -> Inferring { pos = pos_f pos; uf = Infer.ast_to_typ (ty_f (Infer.typ_to_ast uf)) } let resolve_inferring { uf; pos } = { ty = Infer.typ_to_ast uf; pos } let map_mark2 (type m) (pos_f : Pos.t -> Pos.t -> Pos.t) (ty_f : typed -> typed -> marked_typ) (m1 : m mark) (m2 : m mark) : m mark = match m1, m2 with | Untyped m1, Untyped m2 -> Untyped { pos = pos_f m1.pos m2.pos } | Typed m1, Typed m2 -> Typed { pos = pos_f m1.pos m2.pos; ty = ty_f m1 m2 } | Inferring m1, Inferring m2 -> Inferring { pos = pos_f m1.pos m2.pos; uf = Infer.ast_to_typ (ty_f (resolve_inferring m1) (resolve_inferring m2)); } let fold_marks (type m) (pos_f : Pos.t list -> Pos.t) (ty_f : typed list -> marked_typ) (ms : m mark list) : m mark = match ms with | [] -> invalid_arg "Dcalc.Ast.fold_mark" | Untyped _ :: _ as ms -> Untyped { pos = pos_f (List.map (function Untyped { pos } -> pos) ms) } | Typed _ :: _ -> Typed { pos = pos_f (List.map (function Typed { pos; _ } -> pos) ms); ty = ty_f (List.map (function Typed m -> m) ms); } | Inferring _ :: _ -> Inferring { pos = pos_f (List.map (function Inferring { pos; _ } -> pos) ms); uf = Infer.ast_to_typ (ty_f (List.map (function Inferring m -> resolve_inferring m) ms)); } let empty_thunked_term mark : 'm marked_expr = let silent = new_var "_" in let pos = mark_pos mark in Bindlib.unbox (make_abs [| silent |] (Bindlib.box (ELit LEmptyError, mark)) [TLit TUnit, pos] (map_mark (fun pos -> pos) (fun ty -> Marked.mark pos (TArrow (Marked.mark pos (TLit TUnit), ty))) mark)) let (make_let_in : ('m expr, 'm) make_let_in_sig) = fun x tau e1 e2 pos -> let m_e1 = Marked.get_mark (Bindlib.unbox e1) in let m_e2 = Marked.get_mark (Bindlib.unbox e2) in let m_abs = map_mark2 (fun _ _ -> pos) (fun m1 m2 -> Marked.mark pos (TArrow (m1.ty, m2.ty))) m_e1 m_e2 in make_app (make_abs [| x |] e2 [tau] m_abs) [e1] m_e2 let is_value (e : 'e marked_expr) : bool = match Marked.unmark e with ELit _ | EAbs _ | EOp _ -> true | _ -> false let rec equal_typs (ty1 : typ Marked.pos) (ty2 : typ Marked.pos) : bool = match Marked.unmark ty1, Marked.unmark ty2 with | TLit l1, TLit l2 -> l1 = l2 | TTuple (tys1, n1), TTuple (tys2, n2) -> n1 = n2 && equal_typs_list tys1 tys2 | TEnum (tys1, n1), TEnum (tys2, n2) -> n1 = n2 && equal_typs_list tys1 tys2 | TArrow (t1, t1'), TArrow (t2, t2') -> equal_typs t1 t2 && equal_typs t1' t2' | TArray t1, TArray t2 -> equal_typs t1 t2 | TAny, TAny -> true | _, _ -> false and equal_typs_list (tys1 : typ Marked.pos list) (tys2 : typ Marked.pos list) : bool = List.length tys1 = List.length tys2 && (* OCaml && operator short-circuits when a clause is false, we can safely assume here that both lists have equal length *) List.for_all (fun (x, y) -> equal_typs x y) (List.combine tys1 tys2) let equal_log_entries (l1 : log_entry) (l2 : log_entry) : bool = match l1, l2 with | VarDef t1, VarDef t2 -> equal_typs (t1, Pos.no_pos) (t2, Pos.no_pos) | x, y -> x = y let equal_unops (op1 : unop) (op2 : unop) : bool = match op1, op2 with (* Log entries contain a typ which contain position information, we thus need to descend into them *) | Log (l1, info1), Log (l2, info2) -> equal_log_entries l1 l2 && info1 = info2 (* All the other cases can be discharged through equality *) | _ -> op1 = op2 let equal_ops (op1 : operator) (op2 : operator) : bool = match op1, op2 with | Ternop op1, Ternop op2 -> op1 = op2 | Binop op1, Binop op2 -> op1 = op2 | Unop op1, Unop op2 -> equal_unops op1 op2 | _, _ -> false let rec equal_exprs (e1 : 'm marked_expr) (e2 : 'm marked_expr) : bool = match Marked.unmark e1, Marked.unmark e2 with | EVar v1, EVar v2 -> Bindlib.eq_vars v1 v2 | ETuple (es1, n1), ETuple (es2, n2) -> n1 = n2 && equal_exprs_list es1 es2 | ETupleAccess (e1, id1, n1, tys1), ETupleAccess (e2, id2, n2, tys2) -> equal_exprs e1 e2 && id1 = id2 && n1 = n2 && equal_typs_list tys1 tys2 | EInj (e1, id1, n1, tys1), EInj (e2, id2, n2, tys2) -> equal_exprs e1 e2 && id1 = id2 && n1 = n2 && equal_typs_list tys1 tys2 | EMatch (e1, cases1, n1), EMatch (e2, cases2, n2) -> n1 = n2 && equal_exprs e1 e2 && equal_exprs_list cases1 cases2 | EArray es1, EArray es2 -> equal_exprs_list es1 es2 | ELit l1, ELit l2 -> l1 = l2 | EAbs (b1, tys1), EAbs (b2, tys2) -> equal_typs_list tys1 tys2 && let vars1, body1 = Bindlib.unmbind b1 in let body2 = Bindlib.msubst b2 (Array.map (fun x -> EVar x) vars1) in equal_exprs body1 body2 | EAssert e1, EAssert e2 -> equal_exprs e1 e2 | EOp op1, EOp op2 -> equal_ops op1 op2 | EDefault (exc1, def1, cons1), EDefault (exc2, def2, cons2) -> equal_exprs def1 def2 && equal_exprs cons1 cons2 && equal_exprs_list exc1 exc2 | EIfThenElse (if1, then1, else1), EIfThenElse (if2, then2, else2) -> equal_exprs if1 if2 && equal_exprs then1 then2 && equal_exprs else1 else2 | ErrorOnEmpty e1, ErrorOnEmpty e2 -> equal_exprs e1 e2 | _, _ -> false and equal_exprs_list (es1 : 'e marked_expr list) (es2 : 'm marked_expr list) : bool = List.length es1 = List.length es2 && (* OCaml && operator short-circuits when a clause is false, we can safely assume here that both lists have equal length *) List.for_all (fun (x, y) -> equal_exprs x y) (List.combine es1 es2) let rec unfold_scope_body_expr ~(box_expr : ('expr, 'm) box_expr_sig) ~(make_let_in : ('expr, 'm) make_let_in_sig) (ctx : decl_ctx) (scope_let : ('expr, 'm) scope_body_expr) : ('expr, 'm) marked Bindlib.box = match scope_let with | Result e -> box_expr e | ScopeLet { scope_let_kind = _; scope_let_typ; scope_let_expr; scope_let_next; scope_let_pos; } -> let var, next = Bindlib.unbind scope_let_next in make_let_in var scope_let_typ (box_expr scope_let_expr) (unfold_scope_body_expr ~box_expr ~make_let_in ctx next) scope_let_pos let build_whole_scope_expr ~(box_expr : ('expr, 'm) box_expr_sig) ~(make_abs : ('expr, 'm) make_abs_sig) ~(make_let_in : ('expr, 'm) make_let_in_sig) (ctx : decl_ctx) (body : ('expr, 'm) scope_body) (mark_scope : 'm mark) : ('expr, 'm) marked Bindlib.box = let var, body_expr = Bindlib.unbind body.scope_body_expr in let body_expr = unfold_scope_body_expr ~box_expr ~make_let_in ctx body_expr in make_abs (Array.of_list [var]) body_expr [ ( TTuple ( List.map snd (StructMap.find body.scope_body_input_struct ctx.ctx_structs), Some body.scope_body_input_struct ), mark_pos mark_scope ); ] mark_scope let build_scope_typ_from_sig (ctx : decl_ctx) (scope_input_struct_name : StructName.t) (scope_return_struct_name : StructName.t) (pos : Pos.t) : typ Marked.pos = let scope_sig = StructMap.find scope_input_struct_name ctx.ctx_structs in let scope_return_typ = StructMap.find scope_return_struct_name ctx.ctx_structs in let result_typ = TTuple (List.map snd scope_return_typ, Some scope_return_struct_name), pos in let input_typ = TTuple (List.map snd scope_sig, Some scope_input_struct_name), pos in TArrow (input_typ, result_typ), pos type 'expr scope_name_or_var = | ScopeName of ScopeName.t | ScopeVar of 'expr Bindlib.var let get_scope_body_mark scope_body = match snd (Bindlib.unbind scope_body.scope_body_expr) with | Result e | ScopeLet { scope_let_expr = e; _ } -> Marked.get_mark e let rec unfold_scopes ~(box_expr : ('expr, 'm) box_expr_sig) ~(make_abs : ('expr, 'm) make_abs_sig) ~(make_let_in : ('expr, 'm) make_let_in_sig) (ctx : decl_ctx) (s : ('expr, 'm) scopes) (mark : 'm mark) (main_scope : 'expr scope_name_or_var) : ('expr, 'm) marked Bindlib.box = match s with | Nil -> ( match main_scope with | ScopeVar v -> Bindlib.box_apply (fun v -> v, mark) (Bindlib.box_var v) | ScopeName _ -> failwith "should not happen") | ScopeDef { scope_name; scope_body; scope_next } -> let scope_var, scope_next = Bindlib.unbind scope_next in let scope_pos = Marked.get_mark (ScopeName.get_info scope_name) in let scope_body_mark = get_scope_body_mark scope_body in let main_scope = match main_scope with | ScopeVar v -> ScopeVar v | ScopeName n -> if ScopeName.compare n scope_name = 0 then ScopeVar scope_var else ScopeName n in make_let_in scope_var (build_scope_typ_from_sig ctx scope_body.scope_body_input_struct scope_body.scope_body_output_struct scope_pos) (build_whole_scope_expr ~box_expr ~make_abs ~make_let_in ctx scope_body scope_body_mark) (unfold_scopes ~box_expr ~make_abs ~make_let_in ctx scope_next mark main_scope) scope_pos let rec find_scope name vars = function | Nil -> raise Not_found | ScopeDef { scope_name; scope_body; _ } when scope_name = name -> List.rev vars, scope_body | ScopeDef { scope_next; _ } -> let var, next = Bindlib.unbind scope_next in find_scope name (var :: vars) next let build_whole_program_expr ~(box_expr : ('expr, 'm) box_expr_sig) ~(make_abs : ('expr, 'm) make_abs_sig) ~(make_let_in : ('expr, 'm) make_let_in_sig) (p : ('expr, 'm) program_generic) (main_scope : ScopeName.t) : ('expr, 'm) marked Bindlib.box = let _, main_scope_body = find_scope main_scope [] p.scopes in unfold_scopes ~box_expr ~make_abs ~make_let_in p.decl_ctx p.scopes (get_scope_body_mark main_scope_body) (ScopeName main_scope) let rec expr_size (e : 'm marked_expr) : int = match Marked.unmark e with | EVar _ | ELit _ | EOp _ -> 1 | ETuple (args, _) | EArray args -> List.fold_left (fun acc arg -> acc + expr_size arg) 1 args | ETupleAccess (e1, _, _, _) | EInj (e1, _, _, _) | EAssert e1 | ErrorOnEmpty e1 -> expr_size e1 + 1 | EMatch (arg, args, _) | EApp (arg, args) -> List.fold_left (fun acc arg -> acc + expr_size arg) (1 + expr_size arg) args | EAbs (binder, _) -> let _, body = Bindlib.unmbind binder in 1 + expr_size body | EIfThenElse (e1, e2, e3) -> 1 + expr_size e1 + expr_size e2 + expr_size e3 | EDefault (exceptions, just, cons) -> List.fold_left (fun acc except -> acc + expr_size except) (1 + expr_size just + expr_size cons) exceptions let remove_logging_calls (e : 'm marked_expr) : 'm marked_expr Bindlib.box = let rec f () e = match Marked.unmark e with | EApp ((EOp (Unop (Log _)), _), [arg]) -> map_expr () ~f arg | _ -> map_expr () ~f e in f () e
sectionYPositions = computeSectionYPositions($el), 10)"
x-init="setTimeout(() => sectionYPositions = computeSectionYPositions($el), 10)"
>