package catala

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file compile_from_lambda.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
(* This file is part of the Catala compiler, a specification language for tax and social benefits
   computation rules. Copyright (C) 2021 Inria, contributor: Denis Merigoux
   <denis.merigoux@inria.fr>

   Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
   in compliance with the License. You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software distributed under the License
   is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
   or implied. See the License for the specific language governing permissions and limitations under
   the License. *)

open Utils
module A = Ast
module L = Lcalc.Ast
module D = Dcalc.Ast

type ctxt = {
  func_dict : A.TopLevelName.t L.VarMap.t;
  decl_ctx : D.decl_ctx;
  var_dict : A.LocalName.t L.VarMap.t;
  inside_definition_of : A.LocalName.t option;
}

(* Expressions can spill out side effect, hence this function also returns a list of statements to
   be prepended before the expression is evaluated *)
let rec translate_expr (ctxt : ctxt) (expr : L.expr Pos.marked) : A.block * A.expr Pos.marked =
  match Pos.unmark expr with
  | L.EVar v ->
      let local_var =
        try A.EVar (L.VarMap.find (Pos.unmark v) ctxt.var_dict)
        with Not_found -> A.EFunc (L.VarMap.find (Pos.unmark v) ctxt.func_dict)
      in
      ([], (local_var, Pos.get_position v))
  | L.ETuple (args, Some s_name) ->
      let args_stmts, new_args =
        List.fold_left
          (fun (args_stmts, new_args) arg ->
            let arg_stmts, new_arg = translate_expr ctxt arg in
            (arg_stmts @ args_stmts, new_arg :: new_args))
          ([], []) args
      in
      let new_args = List.rev new_args in
      let args_stmts = List.rev args_stmts in
      (args_stmts, (A.EStruct (new_args, s_name), Pos.get_position expr))
  | L.ETuple (_, None) -> failwith "Non-struct tuples cannot be compiled to scalc"
  | L.ETupleAccess (e1, num_field, Some s_name, _) ->
      let e1_stmts, new_e1 = translate_expr ctxt e1 in
      let field_name =
        fst (List.nth (D.StructMap.find s_name ctxt.decl_ctx.ctx_structs) num_field)
      in
      (e1_stmts, (A.EStructFieldAccess (new_e1, field_name, s_name), Pos.get_position expr))
  | L.ETupleAccess (_, _, None, _) -> failwith "Non-struct tuples cannot be compiled to scalc"
  | L.EInj (e1, num_cons, e_name, _) ->
      let e1_stmts, new_e1 = translate_expr ctxt e1 in
      let cons_name = fst (List.nth (D.EnumMap.find e_name ctxt.decl_ctx.ctx_enums) num_cons) in
      (e1_stmts, (A.EInj (new_e1, cons_name, e_name), Pos.get_position expr))
  | L.EApp (f, args) ->
      let f_stmts, new_f = translate_expr ctxt f in
      let args_stmts, new_args =
        List.fold_left
          (fun (args_stmts, new_args) arg ->
            let arg_stmts, new_arg = translate_expr ctxt arg in
            (arg_stmts @ args_stmts, new_arg :: new_args))
          ([], []) args
      in
      let new_args = List.rev new_args in
      (f_stmts @ args_stmts, (A.EApp (new_f, new_args), Pos.get_position expr))
  | L.EArray args ->
      let args_stmts, new_args =
        List.fold_left
          (fun (args_stmts, new_args) arg ->
            let arg_stmts, new_arg = translate_expr ctxt arg in
            (arg_stmts @ args_stmts, new_arg :: new_args))
          ([], []) args
      in
      let new_args = List.rev new_args in
      (args_stmts, (A.EArray new_args, Pos.get_position expr))
  | L.EOp op -> ([], (A.EOp op, Pos.get_position expr))
  | L.ELit l -> ([], (A.ELit l, Pos.get_position expr))
  | _ ->
      let tmp_var = A.LocalName.fresh ("local_var", Pos.get_position expr) in
      let ctxt = { ctxt with inside_definition_of = Some tmp_var } in
      let tmp_stmts = translate_statements ctxt expr in
      ( ( A.SLocalDecl ((tmp_var, Pos.get_position expr), (D.TAny, Pos.get_position expr)),
          Pos.get_position expr )
        :: tmp_stmts,
        (A.EVar tmp_var, Pos.get_position expr) )

and translate_statements (ctxt : ctxt) (block_expr : L.expr Pos.marked) : A.block =
  match Pos.unmark block_expr with
  | L.EApp ((L.EAbs ((binder, _), [ (D.TLit D.TUnit, _) ]), _), [ (L.EAssert e, _) ]) ->
      (* Assertions are always encapsulated in a unit-typed let binding *)
      let _, body = Bindlib.unmbind binder in
      let e_stmts, new_e = translate_expr ctxt e in
      e_stmts
      @ (A.SAssert (Pos.unmark new_e), Pos.get_position block_expr)
        :: translate_statements ctxt body
  | L.EApp ((L.EAbs ((binder, binder_pos), taus), eabs_pos), args) ->
      (* This defines multiple local variables at the time *)
      let vars, body = Bindlib.unmbind binder in
      let vars_tau = List.map2 (fun x tau -> (x, tau)) (Array.to_list vars) taus in
      let ctxt =
        {
          ctxt with
          var_dict =
            List.fold_left
              (fun var_dict (x, _) ->
                L.VarMap.add x (A.LocalName.fresh (Bindlib.name_of x, binder_pos)) var_dict)
              ctxt.var_dict vars_tau;
        }
      in
      let local_decls =
        List.map
          (fun (x, tau) ->
            (A.SLocalDecl ((L.VarMap.find x ctxt.var_dict, binder_pos), tau), eabs_pos))
          vars_tau
      in
      let vars_args =
        List.map2
          (fun (x, tau) arg -> ((L.VarMap.find x ctxt.var_dict, binder_pos), tau, arg))
          vars_tau args
      in
      let def_blocks =
        List.map
          (fun (x, _tau, arg) ->
            let ctxt = { ctxt with inside_definition_of = Some (Pos.unmark x) } in
            let arg_stmts, new_arg = translate_expr ctxt arg in
            arg_stmts @ [ (A.SLocalDef (x, new_arg), binder_pos) ])
          vars_args
      in
      let rest_of_block = translate_statements ctxt body in
      local_decls @ List.flatten def_blocks @ rest_of_block
  | L.EAbs ((binder, binder_pos), taus) ->
      let vars, body = Bindlib.unmbind binder in
      let vars_tau = List.map2 (fun x tau -> (x, tau)) (Array.to_list vars) taus in
      let closure_name =
        match ctxt.inside_definition_of with
        | None -> A.LocalName.fresh ("closure", Pos.get_position block_expr)
        | Some x -> x
      in
      let ctxt =
        {
          ctxt with
          var_dict =
            List.fold_left
              (fun var_dict (x, _) ->
                L.VarMap.add x (A.LocalName.fresh (Bindlib.name_of x, binder_pos)) var_dict)
              ctxt.var_dict vars_tau;
          inside_definition_of = None;
        }
      in
      let new_body = translate_statements ctxt body in
      [
        ( A.SInnerFuncDef
            ( (closure_name, binder_pos),
              {
                func_params =
                  List.map
                    (fun (var, tau) -> ((L.VarMap.find var ctxt.var_dict, binder_pos), tau))
                    vars_tau;
                func_body = new_body;
              } ),
          binder_pos );
      ]
  | L.EMatch (e1, args, e_name) ->
      let e1_stmts, new_e1 = translate_expr ctxt e1 in
      let new_args =
        List.fold_left
          (fun new_args arg ->
            match Pos.unmark arg with
            | L.EAbs ((binder, pos_binder), _) ->
                let vars, body = Bindlib.unmbind binder in
                assert (Array.length vars = 1);
                let var = vars.(0) in
                let scalc_var = A.LocalName.fresh (Bindlib.name_of var, pos_binder) in
                let ctxt = { ctxt with var_dict = L.VarMap.add var scalc_var ctxt.var_dict } in
                let new_arg = translate_statements ctxt body in
                (new_arg, scalc_var) :: new_args
            | _ -> assert false
            (* should not happen *))
          [] args
      in
      let new_args = List.rev new_args in
      e1_stmts @ [ (A.SSwitch (new_e1, e_name, new_args), Pos.get_position block_expr) ]
  | L.EIfThenElse (cond, e_true, e_false) ->
      let cond_stmts, s_cond = translate_expr ctxt cond in
      let s_e_true = translate_statements ctxt e_true in
      let s_e_false = translate_statements ctxt e_false in
      cond_stmts @ [ (A.SIfThenElse (s_cond, s_e_true, s_e_false), Pos.get_position block_expr) ]
  | L.ECatch (e_try, except, e_catch) ->
      let s_e_try = translate_statements ctxt e_try in
      let s_e_catch = translate_statements ctxt e_catch in
      [ (A.STryExcept (s_e_try, except, s_e_catch), Pos.get_position block_expr) ]
  | L.ERaise except -> [ (A.SRaise except, Pos.get_position block_expr) ]
  | _ -> (
      let e_stmts, new_e = translate_expr ctxt block_expr in
      e_stmts
      @
      match e_stmts with
      | (A.SRaise _, _) :: _ ->
          (* if the last statement raises an exception, then we don't need to return or to define
             the current variable since this code will be unreachable *)
          []
      | _ ->
          [
            ( (match ctxt.inside_definition_of with
              | None -> A.SReturn (Pos.unmark new_e)
              | Some x -> A.SLocalDef (Pos.same_pos_as x new_e, new_e)),
              Pos.get_position block_expr );
          ])

let translate_scope (decl_ctx : D.decl_ctx) (func_dict : A.TopLevelName.t L.VarMap.t)
    (scope_expr : L.expr Pos.marked) : (A.LocalName.t Pos.marked * D.typ Pos.marked) list * A.block
    =
  match Pos.unmark scope_expr with
  | L.EAbs ((binder, binder_pos), typs) ->
      let vars, body = Bindlib.unmbind binder in
      let var_dict =
        Array.fold_left
          (fun var_dict var ->
            L.VarMap.add var (A.LocalName.fresh (Bindlib.name_of var, binder_pos)) var_dict)
          L.VarMap.empty vars
      in
      let param_list =
        List.map2
          (fun var typ -> ((L.VarMap.find var var_dict, binder_pos), typ))
          (Array.to_list vars) typs
      in
      let new_body =
        translate_statements { decl_ctx; func_dict; var_dict; inside_definition_of = None } body
      in
      (param_list, new_body)
  | _ -> assert false
(* should not happen *)

let translate_program (p : L.program) : A.program =
  {
    decl_ctx = p.L.decl_ctx;
    scopes =
      (let _, new_scopes =
         List.fold_left
           (fun (func_dict, new_scopes) body ->
             let new_scope_params, new_scope_body =
               translate_scope p.decl_ctx func_dict body.Lcalc.Ast.scope_body_expr
             in
             let func_id =
               A.TopLevelName.fresh (Bindlib.name_of body.Lcalc.Ast.scope_body_var, Pos.no_pos)
             in
             let func_dict = L.VarMap.add body.Lcalc.Ast.scope_body_var func_id func_dict in
             ( func_dict,
               {
                 Ast.scope_body_name = body.Lcalc.Ast.scope_body_name;
                 Ast.scope_body_var = func_id;
                 scope_body_func =
                   { A.func_params = new_scope_params; A.func_body = new_scope_body };
               }
               :: new_scopes ))
           ( (if !Cli.avoid_exceptions_flag then
              L.VarMap.singleton L.handle_default_opt
                (A.TopLevelName.fresh ("handle_default_opt", Pos.no_pos))
             else
               L.VarMap.singleton L.handle_default
                 (A.TopLevelName.fresh ("handle_default", Pos.no_pos))),
             [] )
           p.L.scopes
       in
       List.rev new_scopes);
  }
OCaml

Innovation. Community. Security.