package catala

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file desugared_to_scope.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
(* This file is part of the Catala compiler, a specification language for tax and social benefits
   computation rules. Copyright (C) 2020 Inria, contributor: Denis Merigoux
   <denis.merigoux@inria.fr>

   Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except
   in compliance with the License. You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software distributed under the License
   is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express
   or implied. See the License for the specific language governing permissions and limitations under
   the License. *)

(** Translation from {!module: Desugared.Ast} to {!module: Scopelang.Ast} *)

open Utils

(** {1 Expression translation}*)

type target_scope_vars =
  | WholeVar of Scopelang.Ast.ScopeVar.t
  | States of (Ast.StateName.t * Scopelang.Ast.ScopeVar.t) list

type ctx = {
  scope_var_mapping : target_scope_vars Ast.ScopeVarMap.t;
  var_mapping : Scopelang.Ast.Var.t Ast.VarMap.t;
}

let rec translate_expr (ctx : ctx) (e : Ast.expr Pos.marked) :
    Scopelang.Ast.expr Pos.marked Bindlib.box =
  match Pos.unmark e with
  | Ast.ELocation (SubScopeVar (s_name, ss_name, s_var)) ->
      (* When referring to a subscope variable in an expression, we are referring to the output,
         hence we take the last state. *)
      let new_s_var =
        match Ast.ScopeVarMap.find (Pos.unmark s_var) ctx.scope_var_mapping with
        | WholeVar new_s_var -> Pos.same_pos_as new_s_var s_var
        | States states -> Pos.same_pos_as (snd (List.hd (List.rev states))) s_var
      in
      Bindlib.box
        (Scopelang.Ast.ELocation (SubScopeVar (s_name, ss_name, new_s_var)), Pos.get_position e)
  | Ast.ELocation (ScopeVar (s_var, None)) ->
      Bindlib.box
        ( Scopelang.Ast.ELocation
            (ScopeVar
               (match Ast.ScopeVarMap.find (Pos.unmark s_var) ctx.scope_var_mapping with
               | WholeVar new_s_var -> Pos.same_pos_as new_s_var s_var
               | States _ -> failwith "should not happen")),
          Pos.get_position e )
  | Ast.ELocation (ScopeVar (s_var, Some state)) ->
      Bindlib.box
        ( Scopelang.Ast.ELocation
            (ScopeVar
               (match Ast.ScopeVarMap.find (Pos.unmark s_var) ctx.scope_var_mapping with
               | WholeVar _ -> failwith "should not happen"
               | States states -> Pos.same_pos_as (List.assoc state states) s_var)),
          Pos.get_position e )
  | Ast.EVar v ->
      Bindlib.box_apply
        (fun v -> Pos.same_pos_as v e)
        (Bindlib.box_var (Ast.VarMap.find (Pos.unmark v) ctx.var_mapping))
  | EStruct (s_name, fields) ->
      Bindlib.box_apply
        (fun new_fields -> (Scopelang.Ast.EStruct (s_name, new_fields), Pos.get_position e))
        (Scopelang.Ast.StructFieldMapLift.lift_box
           (Scopelang.Ast.StructFieldMap.map (translate_expr ctx) fields))
  | EStructAccess (e1, s_name, f_name) ->
      Bindlib.box_apply
        (fun new_e1 -> (Scopelang.Ast.EStructAccess (new_e1, s_name, f_name), Pos.get_position e))
        (translate_expr ctx e1)
  | EEnumInj (e1, cons, e_name) ->
      Bindlib.box_apply
        (fun new_e1 -> (Scopelang.Ast.EEnumInj (new_e1, cons, e_name), Pos.get_position e))
        (translate_expr ctx e1)
  | EMatch (e1, e_name, arms) ->
      Bindlib.box_apply2
        (fun new_e1 new_arms ->
          (Scopelang.Ast.EMatch (new_e1, e_name, new_arms), Pos.get_position e))
        (translate_expr ctx e1)
        (Scopelang.Ast.EnumConstructorMapLift.lift_box
           (Scopelang.Ast.EnumConstructorMap.map (translate_expr ctx) arms))
  | ELit l -> Bindlib.box (Scopelang.Ast.ELit l, Pos.get_position e)
  | EAbs ((binder, binder_pos), typs) ->
      let vars, body = Bindlib.unmbind binder in
      let new_vars =
        Array.map (fun var -> Scopelang.Ast.Var.make (Bindlib.name_of var, binder_pos)) vars
      in
      let ctx =
        List.fold_left2
          (fun ctx var new_var ->
            { ctx with var_mapping = Ast.VarMap.add var new_var ctx.var_mapping })
          ctx (Array.to_list vars) (Array.to_list new_vars)
      in
      Bindlib.box_apply
        (fun new_binder ->
          (Scopelang.Ast.EAbs ((new_binder, binder_pos), typs), Pos.get_position e))
        (Bindlib.bind_mvar new_vars (translate_expr ctx body))
  | EApp (e1, args) ->
      Bindlib.box_apply2
        (fun new_e1 new_args -> (Scopelang.Ast.EApp (new_e1, new_args), Pos.get_position e))
        (translate_expr ctx e1)
        (Bindlib.box_list (List.map (translate_expr ctx) args))
  | EOp op -> Bindlib.box (Scopelang.Ast.EOp op, Pos.get_position e)
  | EDefault (excepts, just, cons) ->
      Bindlib.box_apply3
        (fun new_excepts new_just new_cons ->
          (Scopelang.Ast.EDefault (new_excepts, new_just, new_cons), Pos.get_position e))
        (Bindlib.box_list (List.map (translate_expr ctx) excepts))
        (translate_expr ctx just) (translate_expr ctx cons)
  | EIfThenElse (e1, e2, e3) ->
      Bindlib.box_apply3
        (fun new_e1 new_e2 new_e3 ->
          (Scopelang.Ast.EIfThenElse (new_e1, new_e2, new_e3), Pos.get_position e))
        (translate_expr ctx e1) (translate_expr ctx e2) (translate_expr ctx e3)
  | EArray args ->
      Bindlib.box_apply
        (fun new_args -> (Scopelang.Ast.EArray new_args, Pos.get_position e))
        (Bindlib.box_list (List.map (translate_expr ctx) args))
  | ErrorOnEmpty e1 ->
      Bindlib.box_apply
        (fun new_e1 -> (Scopelang.Ast.ErrorOnEmpty new_e1, Pos.get_position e))
        (translate_expr ctx e1)

(** {1 Rule tree construction} *)

(** Intermediate representation for the exception tree of rules for a particular scope definition. *)
type rule_tree =
  | Leaf of Ast.rule list  (** Rules defining a base case piecewise. List is non-empty. *)
  | Node of rule_tree list * Ast.rule list
      (** A list of exceptions to a non-empty list of rules defining a base case piecewise. *)

(** Transforms a flat list of rules into a tree, taking into account the priorities declared between
    rules *)
let def_map_to_tree (def_info : Ast.ScopeDef.t) (def : Ast.rule Ast.RuleMap.t) : rule_tree list =
  let exc_graph = Dependency.build_exceptions_graph def def_info in
  Dependency.check_for_exception_cycle exc_graph;
  (* we start by the base cases: they are the vertices which have no successors *)
  let base_cases =
    Dependency.ExceptionsDependencies.fold_vertex
      (fun v base_cases ->
        if Dependency.ExceptionsDependencies.out_degree exc_graph v = 0 then v :: base_cases
        else base_cases)
      exc_graph []
  in
  let rec build_tree (base_cases : Ast.RuleSet.t) : rule_tree =
    let exceptions = Dependency.ExceptionsDependencies.pred exc_graph base_cases in
    let base_case_as_rule_list =
      List.map (fun r -> Ast.RuleMap.find r def) (List.of_seq (Ast.RuleSet.to_seq base_cases))
    in
    match exceptions with
    | [] -> Leaf base_case_as_rule_list
    | _ -> Node (List.map build_tree exceptions, base_case_as_rule_list)
  in
  List.map build_tree base_cases

(** From the {!type: rule_tree}, builds an {!constructor: Dcalc.Ast.EDefault} expression in the
    scope language. The [~toplevel] parameter is used to know when to place the toplevel binding in
    the case of functions. *)
let rec rule_tree_to_expr ~(toplevel : bool) (ctx : ctx) (def_pos : Pos.t)
    (is_func : Ast.Var.t option) (tree : rule_tree) : Scopelang.Ast.expr Pos.marked Bindlib.box =
  let exceptions, base_rules =
    match tree with Leaf r -> ([], r) | Node (exceptions, r) -> (exceptions, r)
  in
  (* because each rule has its own variable parameter and we want to convert the whole rule tree
     into a function, we need to perform some alpha-renaming of all the expressions *)
  let substitute_parameter (e : Ast.expr Pos.marked Bindlib.box) (rule : Ast.rule) :
      Ast.expr Pos.marked Bindlib.box =
    match (is_func, rule.Ast.rule_parameter) with
    | Some new_param, Some (old_param, _) ->
        let binder = Bindlib.bind_var old_param e in
        Bindlib.box_apply2
          (fun binder new_param -> Bindlib.subst binder new_param)
          binder (Bindlib.box_var new_param)
    | None, None -> e
    | _ -> assert false
    (* should not happen *)
  in
  let ctx =
    match is_func with
    | None -> ctx
    | Some new_param -> (
        match Ast.VarMap.find_opt new_param ctx.var_mapping with
        | None ->
            let new_param_scope = Scopelang.Ast.Var.make (Bindlib.name_of new_param, def_pos) in
            { ctx with var_mapping = Ast.VarMap.add new_param new_param_scope ctx.var_mapping }
        | Some _ ->
            (* We only create a mapping if none exists because [rule_tree_to_expr] is called
               recursively on the exceptions of the tree and we don't want to create a new Scopelang
               variable for the parameter at each tree level. *)
            ctx)
  in
  let base_just_list =
    List.map (fun rule -> substitute_parameter rule.Ast.rule_just rule) base_rules
  in
  let base_cons_list =
    List.map (fun rule -> substitute_parameter rule.Ast.rule_cons rule) base_rules
  in
  let translate_and_unbox_list (list : Ast.expr Pos.marked Bindlib.box list) :
      Scopelang.Ast.expr Pos.marked Bindlib.box list =
    List.map
      (fun e ->
        (* There are two levels of boxing here, the outermost is introduced by the [translate_expr]
           function for which all of the bindings should have been closed by now, so we can safely
           unbox. *)
        Bindlib.unbox (Bindlib.box_apply (translate_expr ctx) e))
      list
  in
  let default_containing_base_cases =
    Bindlib.box_apply2
      (fun base_just_list base_cons_list ->
        ( Scopelang.Ast.EDefault
            ( List.map2
                (fun base_just base_cons ->
                  (Scopelang.Ast.EDefault ([], base_just, base_cons), Pos.get_position base_just))
                base_just_list base_cons_list,
              (Scopelang.Ast.ELit (Dcalc.Ast.LBool false), def_pos),
              (Scopelang.Ast.ELit Dcalc.Ast.LEmptyError, def_pos) ),
          def_pos ))
      (Bindlib.box_list (translate_and_unbox_list base_just_list))
      (Bindlib.box_list (translate_and_unbox_list base_cons_list))
  in
  let exceptions =
    Bindlib.box_list (List.map (rule_tree_to_expr ~toplevel:false ctx def_pos is_func) exceptions)
  in
  let default =
    Bindlib.box_apply2
      (fun exceptions default_containing_base_cases ->
        ( Scopelang.Ast.EDefault
            ( exceptions,
              (Scopelang.Ast.ELit (Dcalc.Ast.LBool true), def_pos),
              default_containing_base_cases ),
          def_pos ))
      exceptions default_containing_base_cases
  in
  match (is_func, (List.hd base_rules).Ast.rule_parameter) with
  | None, None -> default
  | Some new_param, Some (_, typ) ->
      if toplevel then
        (* When we're creating a function from multiple defaults, we must check that the result
           returned by the function is not empty *)
        let default =
          Bindlib.box_apply
            (fun (default : Scopelang.Ast.expr * Pos.t) ->
              (Scopelang.Ast.ErrorOnEmpty default, def_pos))
            default
        in
        Scopelang.Ast.make_abs
          (Array.of_list [ Ast.VarMap.find new_param ctx.var_mapping ])
          default def_pos [ typ ] def_pos
      else default
  | _ -> (* should not happen *) assert false

(** {1 AST translation} *)

(** Translates a definition inside a scope, the resulting expression should be an {!constructor:
    Dcalc.Ast.EDefault} *)
let translate_def (ctx : ctx) (def_info : Ast.ScopeDef.t) (def : Ast.rule Ast.RuleMap.t)
    (typ : Scopelang.Ast.typ Pos.marked) (io : Scopelang.Ast.io) ~(is_cond : bool)
    ~(is_subscope_var : bool) : Scopelang.Ast.expr Pos.marked =
  (* Here, we have to transform this list of rules into a default tree. *)
  let is_def_func = match Pos.unmark typ with Scopelang.Ast.TArrow (_, _) -> true | _ -> false in
  let is_rule_func _ (r : Ast.rule) : bool = Option.is_some r.Ast.rule_parameter in
  let all_rules_func = Ast.RuleMap.for_all is_rule_func def in
  let all_rules_not_func = Ast.RuleMap.for_all (fun n r -> not (is_rule_func n r)) def in
  let is_def_func_param_typ : Scopelang.Ast.typ Pos.marked option =
    if is_def_func && all_rules_func then
      match Pos.unmark typ with
      | Scopelang.Ast.TArrow (t_param, _) -> Some t_param
      | _ ->
          Errors.raise_spanned_error
            (Format.asprintf
               "The definitions of %a are function but its type, %a, is not a function type"
               Ast.ScopeDef.format_t def_info Scopelang.Print.format_typ typ)
            (Pos.get_position typ)
    else if (not is_def_func) && all_rules_not_func then None
    else
      Errors.raise_multispanned_error
        "some definitions of the same variable are functions while others aren't"
        (List.map
           (fun (_, r) ->
             ( Some "This definition is a function:",
               Pos.get_position (Bindlib.unbox r.Ast.rule_cons) ))
           (Ast.RuleMap.bindings (Ast.RuleMap.filter is_rule_func def))
        @ List.map
            (fun (_, r) ->
              ( Some "This definition is not a function:",
                Pos.get_position (Bindlib.unbox r.Ast.rule_cons) ))
            (Ast.RuleMap.bindings (Ast.RuleMap.filter (fun n r -> not (is_rule_func n r)) def)))
  in
  let top_list = def_map_to_tree def_info def in
  let top_value =
    (if is_cond then Ast.always_false_rule else Ast.empty_rule) Pos.no_pos is_def_func_param_typ
  in
  if
    Ast.RuleMap.cardinal def = 0
    && is_subscope_var
    (* Here we have a special case for the empty definitions. Indeed, we could use the code for the
       regular case below that would create a convoluted default always returning empty error, and
       this would be correct. But it gets more complicated with functions. Indeed, if we create an
       empty definition for a subscope argument whose type is a function, we get something like [fun
       () -> (fun real_param -> < ... >)] that is passed as an argument to the subscope. The
       sub-scope de-thunks but the de-thunking does not return empty error, signalling there is not
       reentrant variable, because functions are values! So the subscope does not see that there is
       not reentrant variable and does not pick its internal definition instead. See
       [test/test_scope/subscope_function_arg_not_defined.catala_en] for a test case exercising that
       subtlety.

       To avoid this complication we special case here and put an empty error for all subscope
       variables that are not defined. It covers the subtlety with functions described above but
       also conditions with the false default value. *)
    && not
         (is_cond
         && match Pos.unmark io.Scopelang.Ast.io_input with OnlyInput -> true | _ -> false)
    (* However, this special case suffers from an exception: when a condition is defined as an
       OnlyInput to a subscope, since the [false] default value will not be provided by the calee
       scope, it has to be placed in the caller. *)
  then (ELit LEmptyError, Pos.no_pos)
  else
    Bindlib.unbox
      (rule_tree_to_expr ~toplevel:true ctx
         (Ast.ScopeDef.get_position def_info)
         (Option.map
            (fun _ -> Ast.Var.make ("param", Ast.ScopeDef.get_position def_info))
            is_def_func_param_typ)
         (match top_list with
         | [] ->
             (* In this case, there are no rules to define the expression *)
             Leaf [ top_value ]
         | _ -> Node (top_list, [ top_value ])))

(** Translates a scope *)
let translate_scope (ctx : ctx) (scope : Ast.scope) : Scopelang.Ast.scope_decl =
  let scope_dependencies = Dependency.build_scope_dependencies scope in
  Dependency.check_for_cycle scope scope_dependencies;
  let scope_ordering = Dependency.correct_computation_ordering scope_dependencies in
  let scope_decl_rules =
    List.flatten
      (List.map
         (fun vertex ->
           match vertex with
           | Dependency.Vertex.Var (var, state) -> (
               let scope_def =
                 Ast.ScopeDefMap.find (Ast.ScopeDef.Var (var, state)) scope.scope_defs
               in
               let var_def = scope_def.scope_def_rules in
               let var_typ = scope_def.scope_def_typ in
               let is_cond = scope_def.scope_def_is_condition in
               match Pos.unmark scope_def.Ast.scope_def_io.io_input with
               | OnlyInput when not (Ast.RuleMap.is_empty var_def) ->
                   (* If the variable is tagged as input, then it shall not be redefined. *)
                   Errors.raise_multispanned_error
                     "It is impossible to give a definition to a scope variable tagged as input."
                     ((Some "Incriminated variable:", Pos.get_position (Ast.ScopeVar.get_info var))
                     :: List.map
                          (fun (rule, _) ->
                            ( Some "Incriminated variable definition:",
                              Pos.get_position (Ast.RuleName.get_info rule) ))
                          (Ast.RuleMap.bindings var_def))
               | OnlyInput -> [] (* we do not provide any definition for an input-only variable *)
               | _ ->
                   let expr_def =
                     translate_def ctx
                       (Ast.ScopeDef.Var (var, state))
                       var_def var_typ scope_def.Ast.scope_def_io ~is_cond ~is_subscope_var:false
                   in
                   let scope_var =
                     match (Ast.ScopeVarMap.find var ctx.scope_var_mapping, state) with
                     | WholeVar v, None -> v
                     | States states, Some state -> List.assoc state states
                     | _ -> failwith "should not happen"
                   in
                   [
                     Scopelang.Ast.Definition
                       ( ( Scopelang.Ast.ScopeVar
                             ( scope_var,
                               Pos.get_position (Scopelang.Ast.ScopeVar.get_info scope_var) ),
                           Pos.get_position (Scopelang.Ast.ScopeVar.get_info scope_var) ),
                         var_typ,
                         scope_def.Ast.scope_def_io,
                         expr_def );
                   ])
           | Dependency.Vertex.SubScope sub_scope_index ->
               (* Before calling the sub_scope, we need to include all the re-definitions of
                  subscope parameters*)
               let sub_scope =
                 Scopelang.Ast.SubScopeMap.find sub_scope_index scope.scope_sub_scopes
               in
               let sub_scope_vars_redefs_candidates =
                 Ast.ScopeDefMap.filter
                   (fun def_key scope_def ->
                     match def_key with
                     | Ast.ScopeDef.Var _ -> false
                     | Ast.ScopeDef.SubScopeVar (sub_scope_index', _) ->
                         sub_scope_index = sub_scope_index'
                         (* We exclude subscope variables that have 0 re-definitions and are not
                            visible in the input of the subscope *)
                         && not
                              ((match Pos.unmark scope_def.Ast.scope_def_io.io_input with
                               | Scopelang.Ast.NoInput -> true
                               | _ -> false)
                              && Ast.RuleMap.is_empty scope_def.scope_def_rules))
                   scope.scope_defs
               in
               let sub_scope_vars_redefs =
                 Ast.ScopeDefMap.mapi
                   (fun def_key scope_def ->
                     let def = scope_def.Ast.scope_def_rules in
                     let def_typ = scope_def.scope_def_typ in
                     let is_cond = scope_def.scope_def_is_condition in
                     match def_key with
                     | Ast.ScopeDef.Var _ -> assert false (* should not happen *)
                     | Ast.ScopeDef.SubScopeVar (_, sub_scope_var) ->
                         (* This definition redefines a variable of the correct subscope. But we
                            have to check that this redefinition is allowed with respect to the io
                            parameters of that subscope variable. *)
                         (match Pos.unmark scope_def.Ast.scope_def_io.io_input with
                         | Scopelang.Ast.NoInput ->
                             Errors.raise_multispanned_error
                               "It is impossible to give a definition to a subscope variable not \
                                tagged as input or context."
                               ((Some "Incriminated subscope:", Ast.ScopeDef.get_position def_key)
                               :: ( Some "Incriminated variable:",
                                    Pos.get_position (Ast.ScopeVar.get_info sub_scope_var) )
                               :: List.map
                                    (fun (rule, _) ->
                                      ( Some "Incriminated subscope variable definition:",
                                        Pos.get_position (Ast.RuleName.get_info rule) ))
                                    (Ast.RuleMap.bindings def))
                         | OnlyInput when Ast.RuleMap.is_empty def && not is_cond ->
                             (* If the subscope variable is tagged as input, then it shall be
                                defined. *)
                             Errors.raise_multispanned_error
                               "This subscope variable is a mandatory input but no definition was \
                                provided."
                               [
                                 (Some "Incriminated subscope:", Ast.ScopeDef.get_position def_key);
                                 ( Some "Incriminated variable:",
                                   Pos.get_position (Ast.ScopeVar.get_info sub_scope_var) );
                               ]
                         | _ -> ());
                         (* Now that all is good, we can proceed with translating this redefinition
                            to a proper Scopelang term. *)
                         let expr_def =
                           translate_def ctx def_key def def_typ scope_def.Ast.scope_def_io ~is_cond
                             ~is_subscope_var:true
                         in
                         let subscop_real_name =
                           Scopelang.Ast.SubScopeMap.find sub_scope_index scope.scope_sub_scopes
                         in
                         let var_pos = Pos.get_position (Ast.ScopeVar.get_info sub_scope_var) in
                         Scopelang.Ast.Definition
                           ( ( Scopelang.Ast.SubScopeVar
                                 ( subscop_real_name,
                                   (sub_scope_index, var_pos),
                                   match
                                     Ast.ScopeVarMap.find sub_scope_var ctx.scope_var_mapping
                                   with
                                   | WholeVar v -> (v, var_pos)
                                   | States states ->
                                       (* When defining a sub-scope variable, we always define its
                                          first state in the sub-scope. *)
                                       (snd (List.hd states), var_pos) ),
                               var_pos ),
                             def_typ,
                             scope_def.Ast.scope_def_io,
                             expr_def ))
                   sub_scope_vars_redefs_candidates
               in
               let sub_scope_vars_redefs =
                 List.map snd (Ast.ScopeDefMap.bindings sub_scope_vars_redefs)
               in
               sub_scope_vars_redefs @ [ Scopelang.Ast.Call (sub_scope, sub_scope_index) ])
         scope_ordering)
  in
  (* Then, after having computed all the scopes variables, we add the assertions. TODO: the
     assertions should be interleaved with the definitions! *)
  let scope_decl_rules =
    scope_decl_rules
    @ List.map
        (fun e ->
          let scope_e = translate_expr ctx e in
          Bindlib.unbox (Bindlib.box_apply (fun scope_e -> Scopelang.Ast.Assertion scope_e) scope_e))
        (Bindlib.unbox (Bindlib.box_list scope.Ast.scope_assertions))
  in
  let scope_sig =
    Ast.ScopeVarMap.fold
      (fun var (states : Ast.var_or_states) acc ->
        match states with
        | WholeVar ->
            let scope_def = Ast.ScopeDefMap.find (Ast.ScopeDef.Var (var, None)) scope.scope_defs in
            let typ = scope_def.scope_def_typ in
            Scopelang.Ast.ScopeVarMap.add
              (match Ast.ScopeVarMap.find var ctx.scope_var_mapping with
              | WholeVar v -> v
              | States _ -> failwith "should not happen")
              (typ, scope_def.scope_def_io) acc
        | States states ->
            (* What happens in the case of variables with multiple states is interesting. We need to
               create as many Scopelang.Var entries in the scope signature as there are states. *)
            List.fold_left
              (fun acc (state : Ast.StateName.t) ->
                let scope_def =
                  Ast.ScopeDefMap.find (Ast.ScopeDef.Var (var, Some state)) scope.scope_defs
                in
                Scopelang.Ast.ScopeVarMap.add
                  (match Ast.ScopeVarMap.find var ctx.scope_var_mapping with
                  | WholeVar _ -> failwith "should not happen"
                  | States states' -> List.assoc state states')
                  (scope_def.scope_def_typ, scope_def.scope_def_io)
                  acc)
              acc states)
      scope.scope_vars Scopelang.Ast.ScopeVarMap.empty
  in
  {
    Scopelang.Ast.scope_decl_name = scope.scope_uid;
    Scopelang.Ast.scope_decl_rules;
    Scopelang.Ast.scope_sig;
  }

(** {1 API} *)

let translate_program (pgrm : Ast.program) : Scopelang.Ast.program =
  (* First we give mappings to all the locations between Desugared and Scopelang. This involves
     creating a new Scopelang scope variable for every state of a Desugared variable. *)
  let ctx =
    Scopelang.Ast.ScopeMap.fold
      (fun _scope scope_decl ctx ->
        Ast.ScopeVarMap.fold
          (fun scope_var (states : Ast.var_or_states) ctx ->
            match states with
            | Ast.WholeVar ->
                {
                  ctx with
                  scope_var_mapping =
                    Ast.ScopeVarMap.add scope_var
                      (WholeVar (Scopelang.Ast.ScopeVar.fresh (Ast.ScopeVar.get_info scope_var)))
                      ctx.scope_var_mapping;
                }
            | States states ->
                {
                  ctx with
                  scope_var_mapping =
                    Ast.ScopeVarMap.add scope_var
                      (States
                         (List.map
                            (fun state ->
                              ( state,
                                Scopelang.Ast.ScopeVar.fresh
                                  (let state_name, state_pos = Ast.StateName.get_info state in
                                   ( Pos.unmark (Ast.ScopeVar.get_info scope_var) ^ "_" ^ state_name,
                                     state_pos )) ))
                            states))
                      ctx.scope_var_mapping;
                })
          scope_decl.Ast.scope_vars ctx)
      pgrm.Ast.program_scopes
      { scope_var_mapping = Ast.ScopeVarMap.empty; var_mapping = Ast.VarMap.empty }
  in
  {
    Scopelang.Ast.program_scopes =
      Scopelang.Ast.ScopeMap.map (translate_scope ctx) pgrm.program_scopes;
    Scopelang.Ast.program_structs = pgrm.program_structs;
    Scopelang.Ast.program_enums = pgrm.program_enums;
  }
OCaml

Innovation. Community. Security.