package binsec

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file smt2_solver.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
(**************************************************************************)
(*  This file is part of BINSEC.                                          *)
(*                                                                        *)
(*  Copyright (C) 2016-2022                                               *)
(*    CEA (Commissariat à l'énergie atomique et aux énergies              *)
(*         alternatives)                                                  *)
(*                                                                        *)
(*  you can redistribute it and/or modify it under the terms of the GNU   *)
(*  Lesser General Public License as published by the Free Software       *)
(*  Foundation, version 2.1.                                              *)
(*                                                                        *)
(*  It is distributed in the hope that it will be useful,                 *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *)
(*  GNU Lesser General Public License for more details.                   *)
(*                                                                        *)
(*  See the GNU Lesser General Public License version 2.1                 *)
(*  for more details (enclosed in the file licenses/LGPLv2.1).            *)
(*                                                                        *)
(**************************************************************************)

let byte_size = Natural.to_int Basic_types.Constants.bytesize

module Session = struct
  let n = ref 0

  type state = Dead | Assert | Sat | Unsat

  type session = {
    solver : Prover.t;
    mutable state : state;
    pid : Subprocess.t;
    stdin : out_channel;
    stdout : in_channel;
    stderr : in_channel;
    stdlog : out_channel option;
    fdlog : out_channel option;
    formatter : Format.formatter;
  }

  let close t =
    ignore @@ Subprocess.close t.pid;
    match t.fdlog with None -> () | Some fd -> close_out fd

  let start ?stdlog timeout solver =
    Options.Logger.debug "Openning session %d" !n;
    let fdlog =
      match Smt_options.SMT_dir.get_opt () with
      | None -> None
      | Some dir ->
          if not (Sys.file_exists dir) then Unix.mkdir dir 0o777;
          let filename =
            Filename.concat dir (Printf.sprintf "query_%d.smt2" !n)
          in
          Some (open_out filename)
    in
    incr n;
    let cmd = Prover.command ~incremental:true timeout solver in
    let pid = Subprocess.spawn ~pdeathsig:Sys.sigkill cmd in
    let stdin = Subprocess.stdin pid
    and stdout = Subprocess.stdout pid
    and stderr = Subprocess.stderr pid in
    let formatter =
      match (stdlog, fdlog) with
      | None, None -> Format.formatter_of_out_channel stdin
      | Some stdlog, None ->
          let output str pos len =
            output_substring stdlog str pos len;
            output_substring stdin str pos len
          and flush () =
            flush stdlog;
            flush stdin
          in
          Format.make_formatter output flush
      | None, Some fdlog ->
          let output str pos len =
            output_substring fdlog str pos len;
            output_substring stdin str pos len
          and flush () =
            flush fdlog;
            flush stdin
          in
          Format.make_formatter output flush
      | Some stdlog, Some fdlog ->
          let output str pos len =
            output_substring stdlog str pos len;
            output_substring fdlog str pos len;
            output_substring stdin str pos len
          and flush () =
            flush stdlog;
            flush fdlog;
            flush stdin
          in
          Format.make_formatter output flush
    in
    Format.fprintf formatter
      "@[<v 0>(set-option :print-success false)@ (set-info :smt-lib-version \
       2.5)@ (set-logic QF_ABV)@ @]";
    {
      solver;
      state = Assert;
      pid;
      stdin;
      stdout;
      stderr;
      stdlog;
      fdlog;
      formatter;
    }

  type status = SAT | UNSAT | UNKNOWN

  let check_sat t =
    Format.fprintf t.formatter "(check-sat)@.";
    match input_line t.stdout with
    | "sat" ->
        t.state <- Sat;
        SAT
    | "unsat" ->
        t.state <- Unsat;
        UNSAT
    | "unknown" ->
        t.state <- Assert;
        UNKNOWN
    | s -> Options.Logger.fatal "Solver returned: %s" s
    | exception End_of_file ->
        t.state <- Dead;
        UNKNOWN

  let value_of_constant cst =
    let open Smtlib in
    match cst with
    | CstBool false -> Z.zero
    | CstBool true -> Z.one
    | CstBinary b -> Z.of_string_base 2 b
    | CstDecimal d | CstDecimalSize (d, _) -> Z.of_string_base 10 d
    | CstHexadecimal x -> Z.of_string_base 16 x
    | CstNumeral _ | CstString _ ->
        Options.Logger.fatal
          "Model construction: unexpected constant %a as bitvector value"
          Smtlib_pp.pp_spec_constant cst

  let get_value t pp x =
    assert (t.state = Sat);
    Format.fprintf t.formatter "(get-value (%a))@." pp x;
    let lexbuf = Lexing.from_channel t.stdout in
    let open Smtlib in
    match Smtlib_parser.ivalue Smtlib_lexer.token lexbuf with
    | [ (_, { term_desc = TermSpecConstant cst; _ }) ] -> value_of_constant cst
    | _ -> assert false

  let put t pp x =
    pp t.formatter x;
    Format.pp_print_space t.formatter ();
    t.state <- Assert
end

(* utils *)
let pp_int_as_bv ppf x = function
  | 1 -> Format.fprintf ppf "#b%d" (x land 1)
  | 4 -> Format.fprintf ppf "#x%01x" (x land 0xf)
  | 8 -> Format.fprintf ppf "#x%02x" (x land 0xff)
  | 12 -> Format.fprintf ppf "#x%03x" (x land 0xfff)
  | 16 -> Format.fprintf ppf "#x%04x" (x land 0xffff)
  | 20 -> Format.fprintf ppf "#x%05x" (x land 0xfffff)
  | 24 -> Format.fprintf ppf "#x%06x" (x land 0xffffff)
  | 28 -> Format.fprintf ppf "#x%07x" (x land 0xfffffff)
  | 32 -> Format.fprintf ppf "#x%08x" (x land 0xffffffff)
  | sz when x < 0 ->
      Format.fprintf ppf "(_ bv%a %d)" Z.pp_print
        (Z.extract (Z.of_int x) 0 sz)
        sz
  | sz -> Format.fprintf ppf "(_ bv%d %d)" x sz

let pp_bv ppf value size =
  try pp_int_as_bv ppf (Z.to_int value) size
  with Z.Overflow ->
    Format.fprintf ppf "(_ bv%a %d)" Z.pp_print
      (if Z.lt value Z.zero then Z.extract value 0 size else value)
      size

module Printer = struct
  open Sexpr

  type term = string * int

  type access = Select of term * int | Store of term * int

  and def = Bl of Expr.t | Bv of Expr.t | Ax of Memory.t

  and t = {
    mutable id : Suid.t;
    bv_decl : string BvTbl.t;
    bl_cons : string BvTbl.t;
    bv_cons : string BvTbl.t;
    ax_cons : string AxTbl.t;
    ax_root : Memory.t AxTbl.t;
    ordered_defs : def Queue.t;
    ordered_mem : access Queue.t AxTbl.t;
    word_size : int;
    debug : name:string -> label:string -> string;
  }

  let create ?(word_size = Kernel_options.Machine.word_size ())
      ?(debug = fun ~name ~label:_ -> name) ~next_id () =
    let bv_cons = BvTbl.create 128 and bl_cons = BvTbl.create 32 in
    BvTbl.add bl_cons Expr.zero "false";
    BvTbl.add bv_cons Expr.zero "#b0";
    BvTbl.add bl_cons Expr.one "true";
    BvTbl.add bv_cons Expr.one "#b1";
    {
      id = next_id;
      bv_decl = BvTbl.create 16;
      bl_cons;
      bv_cons;
      ax_cons = AxTbl.create 64;
      ax_root = AxTbl.create 64;
      ordered_defs = Queue.create ();
      ordered_mem = AxTbl.create 4;
      word_size;
      debug;
    }

  let pp_int_as_offset size ppf i = pp_bv ppf i size

  let once = ""

  let rec visit_bl ctx bl =
    try
      if BvTbl.find ctx.bl_cons bl == once then (
        let name = Suid.to_string ctx.id in
        ctx.id <- Suid.incr ctx.id;
        BvTbl.replace ctx.bl_cons bl name)
    with Not_found -> (
      match bl with
      | Cst _ -> ()
      | Load _ (* cannot be a bl<1> *) -> assert false
      | Unary { f = Not; x; _ } ->
          BvTbl.add ctx.bl_cons bl once;
          visit_bl ctx x;
          Queue.push (Bl bl) ctx.ordered_defs
      | Binary { f = And | Or; x; y; _ } ->
          BvTbl.add ctx.bl_cons bl once;
          visit_bl ctx x;
          visit_bl ctx y;
          Queue.push (Bl bl) ctx.ordered_defs
      | Binary
          {
            f = Eq | Diff | Uge | Ule | Ugt | Ult | Sge | Sle | Sgt | Slt;
            x;
            y;
            _;
          } ->
          BvTbl.add ctx.bl_cons bl once;
          visit_bv ctx x;
          visit_bv ctx y;
          Queue.push (Bl bl) ctx.ordered_defs
      | Ite { c; t; e; _ } ->
          BvTbl.add ctx.bl_cons bl once;
          visit_bl ctx c;
          visit_bl ctx t;
          visit_bl ctx e;
          Queue.push (Bl bl) ctx.ordered_defs
      | Var _ | Unary _ | Binary _ -> visit_bv ctx bl)

  and visit_bv ctx bv =
    try
      if BvTbl.find ctx.bv_cons bv == once then (
        let name = Suid.to_string ctx.id in
        ctx.id <- Suid.incr ctx.id;
        BvTbl.replace ctx.bv_cons bv name)
    with Not_found -> (
      match bv with
      | Var { name; size; label; _ } ->
          let name = ctx.debug ~name ~label in
          BvTbl.add ctx.bv_cons bv name;
          if size = 1 then
            BvTbl.add ctx.bl_cons bv (Printf.sprintf "(= %s #b1)" name);
          BvTbl.add ctx.bv_decl bv
            (Format.sprintf "(declare-fun %s () (_ BitVec %d))" name size)
      | Load { len; addr; label; _ } ->
          BvTbl.add ctx.bv_cons bv once;
          visit_bv ctx addr;
          visit_bv ctx addr;
          visit_ax ctx label;
          if len > 1 then visit_ax ctx label;
          Queue.push (Bv bv) ctx.ordered_defs;
          let root = AxTbl.find ctx.ax_root label in
          let ordered_mem = AxTbl.find ctx.ordered_mem root in
          Queue.push
            (Select ((BvTbl.find ctx.bv_cons addr, Expr.sizeof addr), len))
            ordered_mem
      | Cst _ ->
          BvTbl.add ctx.bv_cons bv once;
          Queue.push (Bv bv) ctx.ordered_defs
      | Unary { x; _ } ->
          BvTbl.add ctx.bv_cons bv once;
          visit_bv ctx x;
          Queue.push (Bv bv) ctx.ordered_defs
      | Binary
          { f = Eq | Diff | Uge | Ule | Ugt | Ult | Sge | Sle | Sgt | Slt; _ }
        ->
          BvTbl.add ctx.bv_cons bv once;
          visit_bl ctx bv;
          Queue.push (Bv bv) ctx.ordered_defs
      | Binary
          {
            f = Rol | Ror;
            x;
            y = (Load _ | Unary _ | Binary _ | Ite _) as y;
            _;
          } ->
          BvTbl.add ctx.bv_cons bv once;
          visit_bv ctx x;
          visit_bv ctx x;
          visit_bv ctx y;
          visit_bv ctx y;
          Queue.push (Bv bv) ctx.ordered_defs
      | Binary { x; y; _ } ->
          BvTbl.add ctx.bv_cons bv once;
          visit_bv ctx x;
          visit_bv ctx y;
          Queue.push (Bv bv) ctx.ordered_defs
      | Ite { c; t; e; _ } ->
          BvTbl.add ctx.bv_cons bv once;
          visit_bl ctx c;
          visit_bv ctx t;
          visit_bv ctx e;
          Queue.push (Bv bv) ctx.ordered_defs)

  and visit_ax ctx (ax : Memory.t) =
    try
      if AxTbl.find ctx.ax_cons ax == once then (
        let name = Suid.to_string ctx.id in
        ctx.id <- Suid.incr ctx.id;
        AxTbl.replace ctx.ax_cons ax name)
    with Not_found -> (
      match ax with
      | Root ->
          AxTbl.add ctx.ax_cons ax
            (ctx.debug ~name:Suid.(to_string zero) ~label:"memory");
          AxTbl.add ctx.ax_root ax ax;
          AxTbl.add ctx.ordered_mem ax (Queue.create ())
      | Symbol name ->
          AxTbl.add ctx.ax_cons ax name;
          AxTbl.add ctx.ax_root ax ax;
          AxTbl.add ctx.ordered_mem ax (Queue.create ())
      | Layer { addr = Cst _; store; over; _ }
      | Overlay { addr = Cst _; store; over; _ } ->
          AxTbl.add ctx.ax_cons ax once;
          Store.iter
            (fun _ bv ->
              visit_bv ctx bv;
              if Expr.sizeof bv > 1 then visit_bv ctx bv)
            store;
          visit_ax ctx over;
          let root = AxTbl.find ctx.ax_root over in
          AxTbl.add ctx.ax_root ax root;
          Queue.push (Ax ax) ctx.ordered_defs;
          let ordered_mem = AxTbl.find ctx.ordered_mem root in
          Store.iter
            (fun i bv ->
              let index =
                Format.asprintf "%a" (pp_int_as_offset ctx.word_size) i
              in
              Queue.push
                (Store ((index, ctx.word_size), Expr.sizeof bv))
                ordered_mem)
            store
      | Layer { addr; store; over; _ } | Overlay { addr; store; over; _ } ->
          AxTbl.add ctx.ax_cons ax once;
          visit_bv ctx addr;
          visit_bv ctx addr;
          Store.iter
            (fun _ bv ->
              visit_bv ctx bv;
              if Expr.sizeof bv > 1 then visit_bv ctx bv)
            store;
          visit_ax ctx over;
          let root = AxTbl.find ctx.ax_root over in
          AxTbl.add ctx.ax_root ax root;
          Queue.push (Ax ax) ctx.ordered_defs;
          let ordered_mem = AxTbl.find ctx.ordered_mem root in
          let index = BvTbl.find ctx.bv_cons addr in
          Store.iter
            (fun i bv ->
              let index =
                Format.asprintf "(bvadd %s %a)" index
                  (pp_int_as_offset ctx.word_size)
                  i
              in
              Queue.push
                (Store ((index, ctx.word_size), Expr.sizeof bv))
                ordered_mem)
            store)

  let pp_unop ppf (op : Term.unary Term.operator) =
    match op with
    | Not -> Format.pp_print_string ppf "bvnot"
    | Minus -> Format.pp_print_string ppf "bvneg"
    | Uext n -> Format.fprintf ppf "(_ zero_extend %d)" n
    | Sext n -> Format.fprintf ppf "(_ sign_extend %d)" n
    | Restrict { Interval.hi; lo } ->
        Format.fprintf ppf "(_ extract %d %d)" hi lo

  let pp_binop =
    let string_of_binop (op : Term.binary Term.operator) =
      match op with
      | Plus -> "bvadd"
      | Minus -> "bvsub"
      | Mul -> "bvmul"
      | Udiv -> "bvudiv"
      | Sdiv -> "bvsdiv"
      | Umod -> "bvurem"
      | Smod -> "bvsrem"
      | Or -> "bvor"
      | And -> "bvand"
      | Xor -> "bvxor"
      | Concat -> "concat"
      | Lsl -> "bvshl"
      | Lsr -> "bvlshr"
      | Asr -> "bvashr"
      | Rol -> "rotate_left"
      | Ror -> "rotate_right"
      | Eq -> "="
      | Diff -> assert false
      | Ule -> "bvule"
      | Ult -> "bvult"
      | Uge -> "bvuge"
      | Ugt -> "bvugt"
      | Sle -> "bvsle"
      | Slt -> "bvslt"
      | Sge -> "bvsge"
      | Sgt -> "bvsgt"
    in
    fun ppf f -> Format.pp_print_string ppf (string_of_binop f)

  let rec print_bl ctx ppf bl =
    try
      let name = BvTbl.find ctx.bl_cons bl in
      if name == once then print_bl_no_cons ctx ppf bl
      else Format.pp_print_string ppf name
    with Not_found ->
      Format.pp_print_string ppf "(= ";
      Format.pp_print_space ppf ();
      print_bv ctx ppf bl;
      Format.pp_print_string ppf " #b1)"

  and print_bl_no_cons ctx ppf bl =
    match bl with
    | Cst _ (* true and false should already be in the cache *)
    | Load _ (* cannot be a bl<1> *) ->
        assert false
    | Unary { f = Not; x; _ } ->
        Format.pp_print_string ppf "(not";
        Format.pp_print_space ppf ();
        print_bl ctx ppf x;
        Format.pp_print_char ppf ')'
    | Binary { f = (And | Or) as f; x; y; _ } ->
        Format.pp_print_char ppf '(';
        (Format.pp_print_string ppf
        @@ match f with And -> "and" | Or -> "or" | _ -> assert false);
        Format.pp_print_space ppf ();
        print_bl ctx ppf x;
        Format.pp_print_space ppf ();
        print_bl ctx ppf y;
        Format.pp_print_char ppf ')'
    | Binary { f = Diff; x; y; _ } ->
        Format.pp_print_string ppf "(not";
        Format.pp_print_space ppf ();
        Format.pp_print_string ppf "(=";
        Format.pp_print_space ppf ();
        print_bv ctx ppf x;
        Format.pp_print_space ppf ();
        print_bv ctx ppf y;
        Format.pp_print_string ppf "))"
    | Binary
        {
          f = (Eq | Uge | Ule | Ugt | Ult | Sge | Sle | Sgt | Slt) as f;
          x;
          y;
          _;
        } ->
        Format.pp_print_char ppf '(';
        pp_binop ppf f;
        Format.pp_print_space ppf ();
        print_bv ctx ppf x;
        Format.pp_print_space ppf ();
        print_bv ctx ppf y;
        Format.pp_print_char ppf ')'
    | Ite { c; t; e; _ } ->
        Format.pp_print_string ppf "(ite";
        Format.pp_print_space ppf ();
        print_bl ctx ppf c;
        Format.pp_print_space ppf ();
        print_bl ctx ppf t;
        Format.pp_print_space ppf ();
        print_bl ctx ppf e;
        Format.pp_print_char ppf ')'
    | Var _ | Unary _ | Binary _ ->
        Format.pp_print_string ppf "(=";
        Format.pp_print_space ppf ();
        print_bv ctx ppf bl;
        Format.pp_print_space ppf ();
        Format.pp_print_string ppf "#b1)"

  and print_bv ctx ppf bv =
    let name = BvTbl.find ctx.bv_cons bv in
    if name == once then print_bv_no_cons ctx ppf bv
    else Format.pp_print_string ppf name

  and print_bv_no_cons ctx ppf bv =
    match bv with
    | Var { name; _ } -> Format.pp_print_string ppf name
    | Load { len = 1; addr; label; _ } ->
        Format.pp_print_string ppf "(select";
        Format.pp_print_space ppf ();
        print_ax ctx ppf label;
        Format.pp_print_space ppf ();
        print_bv ctx ppf addr;
        Format.pp_print_char ppf ')'
    | Load { len; dir; addr; label; _ } ->
        Format.pp_print_string ppf "(concat";
        print_multi_select dir ppf len
          (AxTbl.find ctx.ax_cons label)
          (BvTbl.find ctx.bv_cons addr)
          (Expr.sizeof addr);
        Format.pp_print_char ppf ')'
    | Cst bv ->
        let size = Bv.size_of bv and value = Bv.value_of bv in
        pp_bv ppf value size
    | Unary { f; x; _ } ->
        Format.pp_print_char ppf '(';
        pp_unop ppf f;
        Format.pp_print_space ppf ();
        print_bv ctx ppf x;
        Format.pp_print_char ppf ')'
    | Binary { f = Eq | Uge | Ule | Ugt | Ult | Sge | Sle | Sgt | Slt; _ } ->
        Format.pp_print_string ppf "(ite";
        Format.pp_print_space ppf ();
        print_bl ctx ppf bv;
        Format.pp_print_space ppf ();
        Format.pp_print_string ppf "#b1";
        Format.pp_print_space ppf ();
        Format.pp_print_string ppf "#b0)"
    | Binary { f = Diff; x; y; _ } ->
        Format.pp_print_string ppf "(ite (=";
        Format.pp_print_space ppf ();
        print_bv ctx ppf x;
        Format.pp_print_space ppf ();
        print_bv ctx ppf y;
        Format.pp_print_char ppf ')';
        Format.pp_print_space ppf ();
        Format.pp_print_string ppf "#b0";
        Format.pp_print_space ppf ();
        Format.pp_print_string ppf "#b1)"
    | Binary { f = (Rol | Ror) as f; x; y = Cst bv; _ } ->
        Format.pp_print_string ppf "((_";
        Format.pp_print_space ppf ();
        pp_binop ppf f;
        Format.pp_print_space ppf ();
        Z.pp_print ppf (Bv.value_of bv);
        Format.pp_print_char ppf ')';
        Format.pp_print_space ppf ();
        print_bv ctx ppf x;
        Format.pp_print_char ppf ')'
    | Binary { f = (Rol | Ror) as f; x; y; _ } ->
        Format.pp_print_string ppf "(bvor";
        Format.pp_print_space ppf ();
        Format.pp_print_char ppf '(';
        pp_binop ppf
          (match f with Rol -> Lsl | Ror -> Lsr | _ -> assert false);
        Format.pp_print_space ppf ();
        Format.pp_print_string ppf (BvTbl.find ctx.bv_cons x);
        Format.pp_print_space ppf ();
        Format.pp_print_string ppf (BvTbl.find ctx.bv_cons y);
        Format.pp_print_char ppf ')';
        Format.pp_print_space ppf ();
        Format.pp_print_char ppf '(';
        pp_binop ppf
          (match f with Rol -> Lsr | Ror -> Lsl | _ -> assert false);
        Format.pp_print_space ppf ();
        Format.pp_print_string ppf (BvTbl.find ctx.bv_cons x);
        Format.pp_print_space ppf ();
        Format.pp_print_string ppf "(bvsub";
        Format.pp_print_space ppf ();
        pp_int_as_bv ppf (Expr.sizeof x) (Expr.sizeof x);
        Format.pp_print_space ppf ();
        Format.pp_print_string ppf (BvTbl.find ctx.bv_cons y);
        Format.pp_print_string ppf ")))"
    | Binary { f; x; y; _ } ->
        Format.pp_print_char ppf '(';
        pp_binop ppf f;
        Format.pp_print_space ppf ();
        print_bv ctx ppf x;
        Format.pp_print_space ppf ();
        print_bv ctx ppf y;
        Format.pp_print_char ppf ')'
    | Ite { c; t; e; _ } ->
        Format.pp_print_string ppf "(ite";
        Format.pp_print_space ppf ();
        print_bl ctx ppf c;
        Format.pp_print_space ppf ();
        print_bv ctx ppf t;
        Format.pp_print_space ppf ();
        print_bv ctx ppf e;
        Format.pp_print_char ppf ')'

  and print_ax ctx ppf ax =
    let name = AxTbl.find ctx.ax_cons ax in
    if name == once then print_ax_no_cons ctx ppf ax
    else Format.pp_print_string ppf name

  and print_ax_no_cons ctx ppf (ax : Memory.t) =
    match ax with
    | Root -> Suid.pp ppf Suid.zero
    | Symbol _ -> assert false
    | Layer { addr; store; over; _ } | Overlay { addr; store; over; _ } ->
        Store.iter
          (fun _ value ->
            for _ = 1 to Expr.sizeof value lsr 3 do
              Format.pp_print_string ppf "(store";
              Format.pp_print_space ppf ()
            done)
          store;
        print_ax ctx ppf over;
        let addr_space = ctx.word_size in
        let rebase, idx =
          match addr with
          | Cst _ -> (false, "")
          | _ -> (true, BvTbl.find ctx.bv_cons addr)
        in
        let rec unroll_store lo i bv =
          Format.pp_print_space ppf ();
          if rebase then
            if Z.zero = i then (
              Format.pp_print_string ppf idx;
              Format.pp_print_space ppf ())
            else (
              Format.pp_print_string ppf "(bvadd";
              Format.pp_print_space ppf ();
              Format.pp_print_string ppf idx;
              Format.pp_print_space ppf ();
              pp_bv ppf i addr_space;
              Format.pp_print_char ppf ')')
          else pp_bv ppf i addr_space;
          Format.pp_print_space ppf ();
          let size = Expr.sizeof bv in
          if size > 8 then (
            Format.fprintf ppf "((_ extract %d %d)" (lo + 7) lo;
            Format.pp_print_space ppf ();
            print_bv ctx ppf bv;
            Format.pp_print_string ppf "))";
            let lo' = lo + 8 in
            if lo' < size then unroll_store lo' (Z.succ i) bv)
          else (
            print_bv ctx ppf bv;
            Format.pp_print_char ppf ')')
        in
        Store.iter (unroll_store 0) store

  and print_multi_select =
    let rec print_multi_select_le ppf len ax bv size =
      if len = 1 then Format.fprintf ppf " (select@ %s@ %s)" ax bv
      else
        let len = len - 1 in
        Format.fprintf ppf " (select@ %s@ (bvadd@ %s@ " ax bv;
        pp_int_as_bv ppf len size;
        Format.pp_print_string ppf "))";
        print_multi_select_le ppf len ax bv size
    in
    let rec print_multi_select_be i ppf len ax bv size =
      if i = 0 then (
        Format.fprintf ppf "@ (select@ %s@ %s)" ax bv;
        print_multi_select_be 1 ppf len ax bv size)
      else if i < len then (
        Format.fprintf ppf " (select@ %s@ (bvadd@ %s@ " ax bv;
        pp_int_as_bv ppf i size;
        Format.pp_print_string ppf "))";
        print_multi_select_be (i + 1) ppf len ax bv size)
    in
    function
    | LittleEndian -> print_multi_select_le
    | BigEndian -> print_multi_select_be 0

  let pp_print_decls ppf ctx =
    BvTbl.iter
      (fun _ decl ->
        Format.pp_print_string ppf decl;
        Format.pp_print_space ppf ())
      ctx.bv_decl;
    AxTbl.iter
      (fun (ax : Memory.t) ordered_mem ->
        match ax with
        | Root ->
            Format.fprintf ppf
              "(declare-fun %s () (Array (_ BitVec %d) (_ BitVec %d)))@ "
              (ctx.debug ~name:Suid.(to_string zero) ~label:"memory")
              ctx.word_size byte_size
        | Symbol name ->
            if not (Queue.is_empty ordered_mem) then
              Format.fprintf ppf
                "(declare-fun %s () (Array (_ BitVec %d) (_ BitVec %d)))@ " name
                ctx.word_size byte_size
        | _ -> assert false)
      ctx.ordered_mem

  let pp_print_defs ppf ctx =
    Queue.iter
      (function
        | Bl bl ->
            let name = BvTbl.find ctx.bl_cons bl in
            if name != once then (
              Format.fprintf ppf "@[<h>(define-fun %s () Bool " name;
              print_bl_no_cons ctx ppf bl;
              Format.fprintf ppf ")@]@ ")
        | Bv bv ->
            let name = BvTbl.find ctx.bv_cons bv in
            if name != once then (
              Format.fprintf ppf "@[<h>(define-fun %s () (_ BitVec %d) " name
                (Expr.sizeof bv);
              print_bv_no_cons ctx ppf bv;
              Format.fprintf ppf ")@]@ ")
        | Ax ax ->
            let name = AxTbl.find ctx.ax_cons ax in
            if name != once then (
              Format.fprintf ppf
                "@[<h>(define-fun %s () (Array (_ BitVec %d) (_ BitVec %d)) "
                name
                (Kernel_options.Machine.word_size ())
                byte_size;
              print_ax_no_cons ctx ppf ax;
              Format.fprintf ppf ")@]@ "))
      ctx.ordered_defs

  let pp_print_bl = print_bl

  let pp_print_bv = print_bv

  let pp_print_ax = print_ax
end

module Cross = struct
  open Sexpr

  type k =
    | Bl of Expr.t
    | Bv of Expr.t
    | Ax of Memory.t
    | Assert of Expr.t
    | BvDefine of Formula.bv_var * Expr.t
    | AxDefine of Formula.ax_var * Memory.t

  and t = {
    mutable id : Suid.t;
    bv_decl : Formula.decl BvTbl.t;
    ax_decl : Formula.decl AxTbl.t;
    bl_cons : Formula.bl_var BvTbl.t;
    bv_cons : Formula.bv_var BvTbl.t;
    ax_cons : Formula.ax_var AxTbl.t;
    ordered : k Queue.t;
    word_size : int;
    debug : name:string -> label:string -> string;
  }

  let create ?(word_size = Kernel_options.Machine.word_size ())
      ?(debug = fun ~name ~label:_ -> name) ~next_id () =
    {
      id = next_id;
      bv_decl = BvTbl.create 16;
      ax_decl = AxTbl.create 1;
      bl_cons = BvTbl.create 32;
      bv_cons = BvTbl.create 128;
      ax_cons = AxTbl.create 64;
      ordered = Queue.create ();
      word_size;
      debug;
    }

  let bl_once = Formula.bl_var "!"

  let bv_once = Formula.bv_var "!" 1

  let ax_once = Formula.ax_var "!" 1 1

  let rec visit_bl ctx bl =
    try
      if BvTbl.find ctx.bl_cons bl == bl_once then (
        let name = Suid.to_string ctx.id in
        ctx.id <- Suid.incr ctx.id;
        BvTbl.replace ctx.bl_cons bl (Formula.bl_var name))
    with Not_found -> (
      match bl with
      | Cst _ -> ()
      | Load _ (* cannot be a bl<1> *) -> assert false
      | Unary { f = Not; x; _ } ->
          BvTbl.add ctx.bl_cons bl bl_once;
          visit_bl ctx x;
          Queue.push (Bl bl) ctx.ordered
      | Binary { f = And | Or; x; y; _ } ->
          BvTbl.add ctx.bl_cons bl bl_once;
          visit_bl ctx x;
          visit_bl ctx y;
          Queue.push (Bl bl) ctx.ordered
      | Binary
          {
            f = Eq | Diff | Uge | Ule | Ugt | Ult | Sge | Sle | Sgt | Slt;
            x;
            y;
            _;
          } ->
          BvTbl.add ctx.bl_cons bl bl_once;
          visit_bv ctx x;
          visit_bv ctx y;
          Queue.push (Bl bl) ctx.ordered
      | Ite { c; t; e; _ } ->
          BvTbl.add ctx.bl_cons bl bl_once;
          visit_bl ctx c;
          visit_bl ctx t;
          visit_bl ctx e;
          Queue.push (Bl bl) ctx.ordered
      | Var _ | Unary _ | Binary _ -> visit_bv ctx bl)

  and visit_bv ctx bv =
    try
      if BvTbl.find ctx.bv_cons bv == bv_once then (
        let name = Suid.to_string ctx.id in
        ctx.id <- Suid.incr ctx.id;
        BvTbl.replace ctx.bv_cons bv (Formula.bv_var name (Expr.sizeof bv)))
    with Not_found -> (
      match bv with
      | Var { name; size; label; _ } ->
          let name = ctx.debug ~name ~label in
          let var = Formula.bv_var name size in
          BvTbl.add ctx.bv_cons bv var;
          BvTbl.add ctx.bv_decl bv (Formula.mk_bv_decl var [])
      | Load { addr; label; _ } ->
          BvTbl.add ctx.bv_cons bv bv_once;
          visit_bv ctx addr;
          visit_ax ctx label;
          Queue.push (Bv bv) ctx.ordered
      | Cst _ ->
          BvTbl.add ctx.bv_cons bv bv_once;
          Queue.push (Bv bv) ctx.ordered
      | Unary { x; _ } ->
          BvTbl.add ctx.bv_cons bv bv_once;
          visit_bv ctx x;
          Queue.push (Bv bv) ctx.ordered
      | Binary
          { f = Eq | Diff | Uge | Ule | Ugt | Ult | Sge | Sle | Sgt | Slt; _ }
        ->
          BvTbl.add ctx.bv_cons bv bv_once;
          visit_bl ctx bv;
          Queue.push (Bv bv) ctx.ordered
      | Binary { x; y; _ } ->
          BvTbl.add ctx.bv_cons bv bv_once;
          visit_bv ctx x;
          visit_bv ctx y;
          Queue.push (Bv bv) ctx.ordered
      | Ite { c; t; e; _ } ->
          BvTbl.add ctx.bv_cons bv bv_once;
          visit_bl ctx c;
          visit_bv ctx t;
          visit_bv ctx e;
          Queue.push (Bv bv) ctx.ordered)

  and visit_ax ctx ax =
    try
      if AxTbl.find ctx.ax_cons ax == ax_once then (
        let name = Suid.to_string ctx.id in
        ctx.id <- Suid.incr ctx.id;
        AxTbl.replace ctx.ax_cons ax (Formula.ax_var name ctx.word_size 8))
    with Not_found -> (
      match ax with
      | Memory.Root ->
          let var =
            Formula.ax_var
              (ctx.debug ~name:Suid.(to_string zero) ~label:"memory")
              ctx.word_size 8
          in
          AxTbl.add ctx.ax_cons ax var;
          AxTbl.add ctx.ax_decl ax (Formula.mk_ax_decl var [])
      | Memory.Symbol name ->
          let var =
            Formula.ax_var (ctx.debug ~name ~label:"") ctx.word_size 8
          in
          AxTbl.add ctx.ax_cons ax var;
          AxTbl.add ctx.ax_decl ax (Formula.mk_ax_decl var [])
      | Memory.Layer { addr; store; over; _ }
      | Memory.Overlay { addr; store; over; _ } ->
          AxTbl.add ctx.ax_cons ax ax_once;
          visit_bv ctx addr;
          Store.iter (fun _ bv -> visit_bv ctx bv) store;
          visit_ax ctx over;
          Queue.push (Ax ax) ctx.ordered)

  let assert_bl ctx bl =
    visit_bl ctx bl;
    Queue.push (Assert bl) ctx.ordered

  let define_bv ctx name bv =
    visit_bv ctx bv;
    let var = Formula.bv_var name (Expr.sizeof bv) in
    Queue.push (BvDefine (var, bv)) ctx.ordered

  let define_ax ctx name ax =
    visit_ax ctx ax;
    let var = Formula.ax_var name ctx.word_size 8 in
    Queue.push (AxDefine (var, ax)) ctx.ordered

  let mk_unop (op : Term.unary Term.operator) =
    match op with
    | Not -> Formula.BvNot
    | Minus -> Formula.BvNeg
    | Uext n -> Formula.BvZeroExtend n
    | Sext n -> Formula.BvSignExtend n
    | Restrict i -> Formula.BvExtract i

  let mk_comp (op : Term.binary Term.operator) =
    match op with
    | Eq -> Formula.BvEqual
    | Diff -> Formula.BvDistinct
    | Uge -> Formula.BvUge
    | Ule -> Formula.BvUle
    | Ugt -> Formula.BvUgt
    | Ult -> Formula.BvUlt
    | Sge -> Formula.BvSge
    | Sle -> Formula.BvSle
    | Sgt -> Formula.BvSgt
    | Slt -> Formula.BvSlt
    | Plus | Minus | Mul | Udiv | Sdiv | Umod | Smod | Or | And | Xor | Concat
    | Lsl | Lsr | Asr | Rol | Ror ->
        assert false

  let mk_bnop (op : Term.binary Term.operator) =
    match op with
    | Eq | Diff | Uge | Ule | Ugt | Ult | Sge | Sle | Sgt | Slt -> assert false
    | Plus -> Formula.BvAdd
    | Minus -> Formula.BvSub
    | Mul -> Formula.BvMul
    | Udiv -> Formula.BvUdiv
    | Sdiv -> Formula.BvSdiv
    | Umod -> Formula.BvUrem
    | Smod -> Formula.BvSmod
    | Or -> Formula.BvOr
    | And -> Formula.BvAnd
    | Xor -> Formula.BvXor
    | Concat -> Formula.BvConcat
    | Lsl -> Formula.BvShl
    | Lsr -> Formula.BvLshr
    | Asr -> Formula.BvAshr
    | Rol | Ror -> assert false

  let rec mk_bl ctx bl =
    try
      let var = BvTbl.find ctx.bl_cons bl in
      if var == bl_once then mk_bl_no_cons ctx bl else Formula.mk_bl_var var
    with Not_found -> Formula.mk_bv_equal (mk_bv ctx bl) Formula.mk_bv_one

  and mk_bl_no_cons ctx bl =
    match bl with
    | Cst bv ->
        if Bitvector.is_one bv then Formula.mk_bl_true else Formula.mk_bl_false
    | Load _ (* cannot be a bl<1> *) -> assert false
    | Unary { f = Not; x; _ } -> Formula.mk_bl_not (mk_bl ctx x)
    | Binary { f = And; x; y; _ } ->
        Formula.mk_bl_and (mk_bl ctx x) (mk_bl ctx y)
    | Binary { f = Or; x; y; _ } -> Formula.mk_bl_or (mk_bl ctx x) (mk_bl ctx y)
    | Binary
        {
          f = (Eq | Diff | Uge | Ule | Ugt | Ult | Sge | Sle | Sgt | Slt) as f;
          x;
          y;
          _;
        } ->
        Formula.mk_bv_comp (mk_comp f) (mk_bv ctx x) (mk_bv ctx y)
    | Ite { c; t; e; _ } ->
        Formula.mk_bl_ite (mk_bl ctx c) (mk_bl ctx t) (mk_bl ctx e)
    | Var _ | Unary _ | Binary _ ->
        Formula.mk_bv_equal (mk_bv ctx bl) Formula.mk_bv_one

  and mk_bv ctx bv =
    let var = BvTbl.find ctx.bv_cons bv in
    if var == bv_once then mk_bv_no_cons ctx bv else Formula.mk_bv_var var

  and mk_bv_no_cons ctx bv =
    match bv with
    | Var _ -> assert false
    | Load { len; dir = LittleEndian; addr; label; _ } ->
        Formula.mk_select len (mk_ax ctx label) (mk_bv ctx addr)
    | Load { len; dir = BigEndian; addr; label; _ } ->
        mk_select_be len (mk_ax ctx label) (mk_bv ctx addr)
    | Cst bv -> Formula.mk_bv_cst bv
    | Unary { f; x; _ } -> Formula.mk_bv_unop (mk_unop f) (mk_bv ctx x)
    | Binary
        { f = Eq | Diff | Uge | Ule | Ugt | Ult | Sge | Sle | Sgt | Slt; _ } ->
        Formula.mk_bv_ite (mk_bl ctx bv) Formula.mk_bv_one Formula.mk_bv_zero
    | Binary { f = Rol; x; y = Cst bv; _ } ->
        Formula.mk_bv_rotate_left (Bv.to_uint bv) (mk_bv ctx x)
    | Binary { f = Ror; x; y = Cst bv; _ } ->
        Formula.mk_bv_rotate_right (Bv.to_uint bv) (mk_bv ctx x)
    | Binary { f = Rol; x; y; _ } ->
        Formula.mk_bv_or
          (Formula.mk_bv_shl (mk_bv ctx x) (mk_bv ctx y))
          (Formula.mk_bv_lshr (mk_bv ctx x)
             (Formula.mk_bv_sub_int (mk_bv ctx y) (Expr.sizeof x)))
    | Binary { f = Ror; x; y; _ } ->
        Formula.mk_bv_or
          (Formula.mk_bv_lshr (mk_bv ctx x) (mk_bv ctx y))
          (Formula.mk_bv_shl (mk_bv ctx x)
             (Formula.mk_bv_sub_int (mk_bv ctx y) (Expr.sizeof x)))
    | Binary { f; x; y; _ } ->
        Formula.mk_bv_bnop (mk_bnop f) (mk_bv ctx x) (mk_bv ctx y)
    | Ite { c; t; e; _ } ->
        Formula.mk_bv_ite (mk_bl ctx c) (mk_bv ctx t) (mk_bv ctx e)

  and mk_ax ctx ax =
    let var = AxTbl.find ctx.ax_cons ax in
    if var == ax_once then mk_ax_no_cons ctx ax else Formula.mk_ax_var var

  and mk_ax_no_cons ctx ax =
    match ax with
    | Memory.Root | Memory.Symbol _ -> assert false
    | Memory.Layer { addr; store; over; _ }
    | Memory.Overlay { addr; store; over; _ } ->
        let addr = mk_bv ctx addr in
        Store.fold
          (fun i bv store ->
            Formula.mk_store 1 store
              (Formula.mk_bv_add addr
                 (Formula.mk_bv_cst (Bitvector.create i ctx.word_size)))
              (mk_bv ctx bv))
          (mk_ax ctx over) store

  and mk_select_be =
    let rec mk_select_be len ax bv sel =
      if len = 0 then sel
      else
        let len = len - 1 in
        mk_select_be len ax bv
          (Formula.mk_bv_concat sel
             (Formula.mk_select 1 ax (Formula.mk_bv_add_int bv len)))
    in
    fun len ax bv ->
      let len = len - 1 in
      mk_select_be len ax bv
        (Formula.mk_select 1 ax (Formula.mk_bv_add_int bv len))

  let to_formula ctx =
    Queue.fold
      (fun formula -> function
        | Bl bl ->
            let var = BvTbl.find ctx.bl_cons bl in
            if var != bl_once then
              Formula.push_front_define
                (Formula.mk_bl_def var [] (mk_bl_no_cons ctx bl))
                formula
            else formula
        | Bv bv ->
            let var = BvTbl.find ctx.bv_cons bv in
            if var != bv_once then
              Formula.push_front_define
                (Formula.mk_bv_def var [] (mk_bv_no_cons ctx bv))
                formula
            else formula
        | Ax ax ->
            let var = AxTbl.find ctx.ax_cons ax in
            if var != ax_once then
              Formula.push_front_define
                (Formula.mk_ax_def var [] (mk_ax_no_cons ctx ax))
                formula
            else formula
        | Assert bl -> Formula.push_front_assert (mk_bl ctx bl) formula
        | BvDefine (var, bv) ->
            Formula.push_front_define
              (Formula.mk_bv_def var [] (mk_bv ctx bv))
              formula
        | AxDefine (var, ax) ->
            Formula.push_front_define
              (Formula.mk_ax_def var [] (mk_ax ctx ax))
              formula)
      (BvTbl.fold
         (fun _ decl formula -> Formula.push_front_declare decl formula)
         ctx.bv_decl
         (AxTbl.fold
            (fun _ decl formula -> Formula.push_front_declare decl formula)
            ctx.ax_decl Formula.empty))
      ctx.ordered
end

module Solver () : Solver_sig.S = struct
  open Sexpr

  type result = Sat | Unsat | Unknown

  type term = Printer.term

  let put (ctx : Printer.t) ppf constraints =
    Format.pp_open_vbox ppf 0;
    (* visit assertions *)
    List.iter (Printer.visit_bl ctx) constraints;
    (* print declarations *)
    Printer.pp_print_decls ppf ctx;
    (* print assertions *)
    Format.pp_open_hovbox ppf 0;
    Printer.pp_print_defs ppf ctx;
    List.iter
      (fun bl ->
        Format.pp_print_string ppf "(assert ";
        Printer.print_bl ctx ppf bl;
        Format.pp_print_char ppf ')';
        Format.pp_print_space ppf ())
      constraints;
    Format.pp_close_box ppf ();
    Format.pp_close_box ppf ()

  let session =
    Session.start (* ~stdlog:stderr *)
      (Formula_options.Solver.Timeout.get ())
      (Formula_options.Solver.get ())

  let ctx = ref None

  let bind fid e constraints =
    let ctx =
      let x = Printer.create ~next_id:fid () in
      ctx := Some x;
      x
    in
    Printer.visit_ax ctx Memory.Root;
    Printer.visit_bv ctx e;
    Printer.visit_bv ctx e;
    put ctx session.formatter constraints;
    (BvTbl.find ctx.bv_cons e, Expr.sizeof e)

  let put fid constraints =
    let ctx =
      let x = Printer.create ~next_id:fid () in
      ctx := Some x;
      x
    in
    Printer.visit_ax ctx Memory.Root;
    put ctx session.formatter constraints

  let get e = (BvTbl.find (Option.get !ctx).bv_cons e, Expr.sizeof e)

  let set_memory ~addr y =
    Session.put session
      (fun ppf () ->
        Format.fprintf ppf "(assert (= (select %s " Suid.(to_string zero);
        Format.pp_print_char ppf ' ';
        pp_bv ppf addr (Option.get !ctx).Printer.word_size;
        Format.pp_print_string ppf ") ";
        pp_bv ppf y 8;
        Format.pp_print_string ppf "))")
      ()

  let neq (e, s) x =
    Session.put session
      (fun ppf () ->
        Format.fprintf ppf "(assert (not (= %s " e;
        pp_bv ppf x s;
        Format.pp_print_string ppf ")))")
      ()

  let get_value (x, _) = Session.get_value session Format.pp_print_string x

  let get_at name x s =
    Session.get_value session
      (fun ppf x ->
        Format.pp_print_string ppf "(select ";
        Format.pp_print_string ppf name;
        Format.pp_print_char ppf ' ';
        pp_bv ppf x s;
        Format.pp_print_char ppf ')')
      x

  let get_array ar =
    match AxTbl.find (Option.get !ctx).ordered_mem ar with
    | exception Not_found -> [||]
    | history ->
        if Queue.is_empty history then [||]
        else
          let dirty = BiTbl.create (Queue.length history) in
          let name =
            Format.asprintf "%a" (Printer.pp_print_ax (Option.get !ctx)) ar
          and addr_space = (Option.get !ctx).word_size in
          let binding =
            Queue.fold
              (fun binding (access : Printer.access) ->
                match access with
                | Select (index, len) ->
                    let index = get_value index in
                    let rec fold index len binding =
                      if len = 0 then binding
                      else if BiTbl.mem dirty index then
                        fold (Z.succ index) (len - 1) binding
                      else
                        let k = get_at name index addr_space in
                        fold (Z.succ index) (len - 1)
                          ((index, Char.unsafe_chr (Z.to_int k)) :: binding)
                    in
                    fold index len binding
                | Store (index, len) ->
                    let index = get_value index in
                    let rec loop index len =
                      if len <> 0 then (
                        BiTbl.replace dirty index ();
                        loop (Z.succ index) (len - 1))
                    in
                    loop index len;
                    binding)
              [] history
          in
          Array.of_list binding

  let check_sat () =
    match Session.check_sat session with
    | UNKNOWN -> Unknown
    | UNSAT -> Unsat
    | SAT -> Sat

  let close () = Session.close session
end
OCaml

Innovation. Community. Security.