package binsec

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file sexpr.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
(**************************************************************************)
(*  This file is part of BINSEC.                                          *)
(*                                                                        *)
(*  Copyright (C) 2016-2022                                               *)
(*    CEA (Commissariat à l'énergie atomique et aux énergies              *)
(*         alternatives)                                                  *)
(*                                                                        *)
(*  you can redistribute it and/or modify it under the terms of the GNU   *)
(*  Lesser General Public License as published by the Free Software       *)
(*  Foundation, version 2.1.                                              *)
(*                                                                        *)
(*  It is distributed in the hope that it will be useful,                 *)
(*  but WITHOUT ANY WARRANTY; without even the implied warranty of        *)
(*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *)
(*  GNU Lesser General Public License for more details.                   *)
(*                                                                        *)
(*  See the GNU Lesser General Public License version 2.1                 *)
(*  for more details (enclosed in the file licenses/LGPLv2.1).            *)
(*                                                                        *)
(**************************************************************************)

module Bv = Bitvector
module BiMap = Basic_types.BigInt.Map

exception Non_mergeable = Types.Non_mergeable

module rec Expr : (Term.S with type a := string and type b := Memory.t) =
  Term.Make
    (struct
      type t = string

      let compare _ _ = 0

      let equal _ _ = true

      let hash _ = 0
    end)
    (Memory)

and Chunk : sig
  include Lmap.Value

  type buffer =
    (int, Bigarray.int8_unsigned_elt, Bigarray.c_layout) Bigarray.Array1.t

  val of_buf : buffer -> t

  val of_expr : Expr.t -> t

  val to_expr : t -> Expr.t

  val is_exported : t -> bool

  val equal : t -> t -> bool
end = struct
  type t

  type buffer =
    (int, Bigarray.int8_unsigned_elt, Bigarray.c_layout) Bigarray.Array1.t

  external is_unboxed : t -> bool = "%obj_is_int"

  external still_unboxed : Bv.t -> bool = "%obj_is_int"

  external to_bv : t -> Bv.t = "%identity"

  external of_bv : Bv.t -> t = "%identity"

  external to_expr : t -> Expr.t = "%identity"

  external of_expr : Expr.t -> t = "%identity"

  external to_buf : t -> buffer = "%identity"

  external of_buf : buffer -> t = "%identity"

  let is_buf x = Obj.tag (Obj.repr x) = Obj.custom_tag

  let of_bv bv =
    if still_unboxed bv then of_bv bv else of_expr (Expr.constant bv)

  let equal x y =
    x == y
    || (not (is_unboxed x))
       && (not (is_buf x))
       && (not (is_unboxed y))
       && (not (is_buf y))
       && Expr.is_equal (to_expr x) (to_expr y)

  let len x =
    if is_unboxed x then Bv.size_of (to_bv x) lsr 3
    else if is_buf x then Bigarray.Array1.dim (to_buf x)
    else Expr.sizeof (to_expr x) lsr 3

  let crop ~lo ~hi x =
    if is_buf x then of_buf (Bigarray.Array1.sub (to_buf x) lo (hi - lo + 1))
    else
      let lo = lo lsl 3 and hi = (hi lsl 3) + 7 in
      if is_unboxed x then of_bv (Bv.extract (to_bv x) { lo; hi })
      else of_expr (Expr.restrict ~lo ~hi (to_expr x))

  let buf_to_bv x =
    let x = to_buf x in
    let s = Bigarray.Array1.dim x in
    Bv.create
      (Z.of_bits
         (String.init (Bigarray.Array1.dim x) (fun i ->
              Char.unsafe_chr (Bigarray.Array1.unsafe_get x i))))
      (s lsl 3)

  let concat x y =
    if is_unboxed x then
      if is_unboxed y then of_bv (Bv.append (to_bv x) (to_bv y))
      else if is_buf y then of_bv (Bv.append (to_bv x) (buf_to_bv y))
      else of_expr (Expr.append (Expr.constant (to_bv x)) (to_expr y))
    else if is_buf x then
      if is_unboxed y then of_bv (Bv.append (buf_to_bv x) (to_bv y))
      else if is_buf y then of_bv (Bv.append (buf_to_bv x) (buf_to_bv y))
      else of_expr (Expr.append (Expr.constant (buf_to_bv x)) (to_expr y))
    else if is_unboxed y then
      of_expr (Expr.append (to_expr x) (Expr.constant (to_bv y)))
    else if is_buf y then
      of_expr (Expr.append (to_expr x) (Expr.constant (buf_to_bv y)))
    else of_expr (Expr.append (to_expr x) (to_expr y))

  let to_expr x =
    if is_unboxed x then Expr.constant (to_bv x)
    else if is_buf x then Expr.constant (buf_to_bv x)
    else to_expr x

  let of_expr (x : Expr.t) = match x with Cst bv -> of_bv bv | x -> of_expr x

  let is_exported x = not (is_buf x)
end

and Store : sig
  type t

  val empty : t

  val singleton : Bv.t -> Chunk.t -> t

  val store : Bv.t -> Chunk.t -> t -> t

  val select : (Z.t -> int -> Chunk.t) -> Bv.t -> int -> t -> Chunk.t

  val iter : (Z.t -> Expr.t -> unit) -> t -> unit

  val fold : (Z.t -> Expr.t -> 'a -> 'a) -> 'a -> t -> 'a

  val map : (Z.t -> Chunk.t -> Chunk.t) -> t -> t

  val merge :
    (Z.t -> Chunk.t option -> Chunk.t option -> Chunk.t option) -> t -> t -> t
end = struct
  include Lmap.Make (Chunk)

  let singleton k v =
    let z = Bv.value_of k and s = Chunk.len v in
    let u = Z.add z (Z.of_int s) in
    let n = Bv.size_of k in
    if Z.numbits u > n && Z.popcount u > 1 then
      let o = Z.to_int (Z.extract u 0 n) in
      store z
        (Chunk.crop ~hi:(s - o - 1) ~lo:0 v)
        (singleton Z.zero (Chunk.crop ~hi:(s - 1) ~lo:(s - o) v))
    else singleton z v

  let store k v t =
    let z = Bv.value_of k and s = Chunk.len v in
    let u = Z.add z (Z.of_int s) in
    let n = Bv.size_of k in
    if Z.numbits u > n && Z.popcount u > 1 then
      let o = Z.to_int (Z.extract u 0 n) in
      store z
        (Chunk.crop ~hi:(s - o - 1) ~lo:0 v)
        (store Z.zero (Chunk.crop ~hi:(s - 1) ~lo:(s - o) v) t)
    else store z v t

  let select f k s t =
    let z = Bv.value_of k in
    let u = Z.add z (Z.of_int s) in
    let n = Bv.size_of k in
    if Z.numbits u > n && Z.popcount u > 1 then
      let o = Z.to_int (Z.extract u 0 n) in
      Chunk.concat (select f Z.zero o t) (select f z (s - o) t)
    else select f z s t

  let iter f t =
    iter (fun k v -> if Chunk.is_exported v then f k (Chunk.to_expr v)) t

  let fold f b t =
    fold
      (fun k v b -> if Chunk.is_exported v then f k (Chunk.to_expr v) b else b)
      b t
end

and Memory : sig
  type t =
    | Root
    | Symbol of string
    | Layer of { id : int; over : t; addr : Expr.t; store : Store.t }
    | Overlay of { id : int; over : t; addr : Expr.t; store : Store.t }

  val compare : t -> t -> int

  val equal : t -> t -> bool

  val hash : t -> int

  val source : addr:Expr.t -> len:int -> Loader_buf.t -> t -> t

  val write : addr:Expr.t -> Expr.t -> Expr.endianness -> t -> t

  val read : addr:Expr.t -> int -> Expr.endianness -> t -> Expr.t * t

  val merge : Expr.t -> t -> t -> t

  val bswap : Expr.t -> Expr.t
end = struct
  let bswap =
    let rec iter e i r =
      if i = 0 then r
      else
        iter e (i - 8) (Expr.append (Expr.restrict ~hi:(i - 1) ~lo:(i - 8) e) r)
    in
    fun e ->
      let size = Expr.sizeof e in
      assert (size land 0x7 = 0);
      iter e (size - 8) (Expr.restrict ~hi:(size - 1) ~lo:(size - 8) e)

  type t =
    | Root
    | Symbol of string
    | Layer of { id : int; over : t; addr : Expr.t; store : Store.t }
    | Overlay of { id : int; over : t; addr : Expr.t; store : Store.t }

  exception Writeback of (Expr.t * t)

  let id = ref 0

  let hash = function
    | Root -> 0
    | Symbol name -> Hashtbl.hash name
    | Layer { id; _ } | Overlay { id; _ } -> id

  let compare t t' = hash t - hash t'

  let equal t t' =
    match (t, t') with
    | Root, Root -> true
    | Symbol id, Symbol id' -> id = id'
    | ( (Layer { id; _ } | Overlay { id; _ }),
        (Layer { id = id'; _ } | Overlay { id = id'; _ }) ) ->
        id = id'
    | ( (Root | Symbol _ | Layer _ | Overlay _),
        (Root | Symbol _ | Layer _ | Overlay _) ) ->
        false

  let rebase (addr : Expr.t) =
    match addr with
    | Cst bv -> (Expr.zeros (Bv.size_of bv), bv)
    | Binary { f = Plus; x; y = Cst bv; _ } -> (x, bv)
    | Binary { f = Minus; x; y = Cst bv; _ } -> (x, Bv.neg bv)
    | _ -> (addr, Bv.zeros (Expr.sizeof addr))

  let blit offset buf len over =
    let s = Bigarray.Array1.dim buf in
    if len <= s then
      let buf = Bigarray.Array1.sub buf 0 len in
      Store.store offset (Chunk.of_buf buf) over
    else
      let buf' =
        Bigarray.Array1.create Bigarray.int8_unsigned Bigarray.C_layout (len - s)
      in
      Bigarray.Array1.fill buf' 0;
      if s = 0 then Store.store offset (Chunk.of_buf buf') over
      else
        Store.store (Bv.add_int offset s) (Chunk.of_buf buf')
          (Store.store offset (Chunk.of_buf buf) over)

  let fill addr len orig over =
    let addr, offset = rebase addr in
    incr id;
    Overlay { id = !id; over; addr; store = blit offset orig len Store.empty }

  let source ~addr ~len orig over =
    match over with
    | Root | Symbol _ | Layer _ -> fill addr len orig over
    | Overlay { id = id'; addr = addr'; store = store'; over = over' } -> (
        match Expr.sub addr addr' with
        | Expr.Cst bv ->
            let store = blit bv orig len store' in
            incr id;
            Overlay { id = !id; over = over'; addr = addr'; store }
        | _ ->
            fill addr len orig
              (Layer { id = id'; addr = addr'; store = store'; over = over' }))

  let overlay addr value over =
    let addr, offset = rebase addr in
    incr id;
    Overlay
      {
        id = !id;
        over;
        addr;
        store = Store.singleton offset (Chunk.of_expr value);
      }

  let write ~addr value (dir : Expr.endianness) over =
    let value =
      match dir with LittleEndian -> value | BigEndian -> bswap value
    in
    match over with
    | Root | Symbol _ | Layer _ -> overlay addr value over
    | Overlay { id = id'; addr = addr'; store = store'; over = over' } -> (
        match Expr.sub addr addr' with
        | Expr.Cst bv ->
            let store = Store.store bv (Chunk.of_expr value) store' in
            incr id;
            Overlay { id = !id; over = over'; addr = addr'; store }
        | _ ->
            overlay addr value
              (Layer { id = id'; addr = addr'; store = store'; over = over' }))

  let rec read ~addr bytes (dir : Expr.endianness) memory =
    match memory with
    | Root | Symbol _ -> Expr.load bytes dir addr memory
    | Layer { id; addr = addr'; store; over }
    | Overlay { id; addr = addr'; store; over } -> (
        match Expr.sub addr addr' with
        | Expr.Cst bv -> (
            let miss i s =
              Chunk.of_expr
                (read ~addr:(Expr.addz addr' i) s Expr.LittleEndian over)
            in
            let bytes = Chunk.to_expr (Store.select miss bv bytes store) in
            match dir with LittleEndian -> bytes | BigEndian -> bswap bytes)
        | _ -> (
            let bytes = Expr.load bytes dir addr memory in
            match memory with
            | Overlay _ ->
                raise_notrace
                  (Writeback (bytes, Layer { id; addr = addr'; store; over }))
            | _ -> bytes))

  let rec merge c t t' =
    if t == t' then t
    else
      match (t, t') with
      | Overlay { over; addr; store; _ }, t' when over == t' ->
          incr id;
          let id = !id
          and store =
            Store.map
              (fun offset chunk ->
                if Chunk.is_exported chunk then
                  let value = Chunk.to_expr chunk in
                  let size = Expr.sizeof value in
                  Chunk.of_expr
                    (Expr.ite c value
                       (read ~addr:(Expr.addz addr offset) (size / 8)
                          LittleEndian over))
                else raise_notrace Non_mergeable)
              store
          in
          Overlay { id; over; addr; store }
      | t, Overlay { over; _ } when t == over -> merge (Expr.lognot c) t' t
      | ( Overlay { over; addr; store; _ },
          Overlay { over = over'; addr = addr'; store = store'; _ } )
        when Expr.is_equal addr addr' && over == over' ->
          incr id;
          let id = !id
          and store =
            Store.merge
              (fun offset o0 o1 ->
                match (o0, o1) with
                | Some c0, Some c1 ->
                    if Chunk.equal c0 c1 then o0
                    else
                      Some
                        (Chunk.of_expr
                           (Expr.ite c (Chunk.to_expr c0) (Chunk.to_expr c1)))
                | Some c0, None ->
                    let value = Chunk.to_expr c0 in
                    let size = Expr.sizeof value in
                    Some
                      (Chunk.of_expr
                         (Expr.ite c value
                            (read ~addr:(Expr.addz addr offset) (size / 8)
                               LittleEndian over)))
                | None, Some c1 ->
                    let value = Chunk.to_expr c1 in
                    let size = Expr.sizeof value in
                    Some
                      (Chunk.of_expr
                         (Expr.ite c
                            (read ~addr:(Expr.addz addr offset) (size / 8)
                               LittleEndian over)
                            value))
                | None, None -> None)
              store store'
          in
          Overlay { id; over; addr; store }
      | ( (Root | Symbol _ | Layer _ | Overlay _),
          (Root | Symbol _ | Layer _ | Overlay _) ) ->
          raise_notrace Non_mergeable

  let read ~addr bytes dir memory =
    try (read ~addr bytes dir memory, memory) with Writeback r -> r
end

module BvTbl = Hashtbl.Make (struct
  include Expr

  let equal = is_equal
end)

module AxTbl = Hashtbl.Make (Memory)
module BiTbl = Basic_types.BigInt.Htbl
module StTbl = Basic_types.String.Htbl
module S = Basic_types.String.Map

module I = Map.Make (struct
  type t = Z.t

  let compare x y = -Z.compare x y
end)

module Model = struct
  type t = Bv.t BvTbl.t * char BiTbl.t * char BiTbl.t StTbl.t

  let empty () = (BvTbl.create 0, BiTbl.create 0, StTbl.create 0)

  let maybe_pp_char ppf c =
    if String_utils.is_char_printable c then Format.fprintf ppf " (%c)" c

  let pp_variables ppf vars values =
    if S.is_empty vars = false then (
      Format.pp_print_string ppf "# Variables";
      Format.pp_print_cut ppf ();
      S.iter
        (fun name list ->
          let list = List.rev list in
          Format.fprintf ppf "%s : @[<hov>%a@]@ " name
            (Format.pp_print_list ~pp_sep:Format.pp_print_space (fun ppf var ->
                 match BvTbl.find values var with
                 | exception Not_found -> Format.pp_print_string ppf "--"
                 | bv -> Bitvector.pp_hex_or_bin ppf bv))
            list;
          match list with
          | var :: _ :: _ when Expr.sizeof var = 8 ->
              Format.pp_print_string ppf "  [as ascii] ";
              List.iter
                (fun var ->
                  match BvTbl.find values var with
                  | exception Not_found -> Format.pp_print_string ppf "."
                  | bv -> Format.pp_print_char ppf (Bitvector.to_char bv))
                list;
              Format.pp_print_space ppf ()
          | _ -> ())
        vars)

  let pp_int_as_bv ppf x = function
    | 1 -> Format.fprintf ppf "#b%d" x
    | 4 -> Format.fprintf ppf "#x%01x" x
    | 8 -> Format.fprintf ppf "#x%02x" x
    | 12 -> Format.fprintf ppf "#x%03x" x
    | 16 -> Format.fprintf ppf "#x%04x" x
    | 20 -> Format.fprintf ppf "#x%05x" x
    | 24 -> Format.fprintf ppf "#x%06x" x
    | 28 -> Format.fprintf ppf "#x%07x" x
    | 32 -> Format.fprintf ppf "#x%08x" x
    | 64 when x >= 0 -> Format.fprintf ppf "#x%016x" x
    | sz -> Format.fprintf ppf "(_ bv%d %d)" x sz

  let pp_bv ppf value size =
    try pp_int_as_bv ppf (Z.to_int value) size
    with Z.Overflow -> Format.fprintf ppf "(_ bv%a %d)" Z.pp_print value size

  let pp_memory ppf memory addr_space =
    if BiTbl.length memory = 0 then
      Format.pp_print_string ppf "-- empty memory --"
    else (
      Format.pp_print_string ppf "# Memory";
      Format.pp_print_cut ppf ();
      let img = Kernel_functions.get_img () in
      let noname = "" in
      let section_name addr =
        let address = Virtual_address.to_int (Virtual_address.of_bigint addr) in
        match Loader_utils.find_section_by_address ~address img with
        | None -> noname
        | Some section -> Loader.Section.name section
      in
      let pp_section ppf name =
        if name == noname then Format.pp_print_string ppf "unamed section"
        else Format.fprintf ppf "section %s" name
      in
      let last_section = ref "--" in
      I.iter (fun addr byte ->
          let name = section_name addr in
          if name <> !last_section then (
            Format.fprintf ppf "; %a@ " pp_section name;
            last_section := name);
          pp_bv ppf addr addr_space;
          Format.fprintf ppf " : %02x %a@ " (Char.code byte) maybe_pp_char byte)
      @@ BiTbl.fold I.add memory I.empty)

  let pp_array ppf name array addr_space =
    Format.pp_print_string ppf "# Array ";
    Format.pp_print_string ppf name;
    Format.pp_print_cut ppf ();
    I.iter (fun addr byte ->
        pp_bv ppf addr addr_space;
        Format.fprintf ppf " : %02x %a@ " (Char.code byte) maybe_pp_char byte)
    @@ BiTbl.fold I.add array I.empty

  let pp ppf vars addr_space (values, memory, arrays) =
    if S.is_empty vars && BiTbl.length memory = 0 && StTbl.length arrays = 0
    then Format.fprintf ppf "@[<h>--- Empty model ---@]"
    else (
      Format.fprintf ppf "@[<v 0>--- Model ---@ ";
      pp_variables ppf vars values;
      Format.pp_print_space ppf ();
      pp_memory ppf memory addr_space;
      StTbl.iter
        (fun name array ->
          if BiTbl.length array <> 0 then (
            Format.pp_print_space ppf ();
            pp_array ppf name array addr_space))
        arrays;
      Format.pp_close_box ppf ())

  let rec eval ((vars, _, _) as m) = function
    | Expr.Cst bv -> bv
    | e -> (
        try BvTbl.find vars e
        with Not_found ->
          let size = Expr.sizeof e in
          let value =
            match e with
            | Expr.Cst _ -> assert false
            | Expr.Var _ -> Bitvector.create (Z.of_int (Expr.hash e)) size
            | Expr.Load { addr; len; dir; label; _ } ->
                eval_load m (eval m addr) len dir label
            | Expr.Unary { f; x; _ } -> Term.Bv.unary f (eval m x)
            | Expr.Binary { f; x; y; _ } ->
                Term.Bv.binary f (eval m x) (eval m y)
            | Expr.Ite { c; t; e; _ } ->
                if Bv.zero = eval m c then eval m e else eval m t
          in
          BvTbl.add vars e value;
          value)

  and eval_load ((_, cache, arrays) as t) ptr len dir (memory : Memory.t) =
    match memory with
    | Root ->
        let index =
          match dir with
          | LittleEndian -> Bv.add_int ptr
          | BigEndian ->
              let hi = Bv.add_int ptr (len - 1) in
              fun i -> Bv.add_int hi (-i)
        in
        let bits =
          String.init len (fun i ->
              try BiTbl.find cache (Bv.value_of (index i))
              with Not_found -> '\x00')
        in
        Bv.create (Z.of_bits bits) (len lsl 3)
    | Symbol n ->
        let index =
          match dir with
          | LittleEndian -> Bv.add_int ptr
          | BigEndian ->
              let hi = Bv.add_int ptr (len - 1) in
              fun i -> Bv.add_int hi (-i)
        in
        let bits =
          String.init len (fun i ->
              try BiTbl.find (StTbl.find arrays n) (Bv.value_of (index i))
              with Not_found -> '\x00')
        in
        Bv.create (Z.of_bits bits) (len lsl 3)
    | Layer { addr; store; over; _ } | Overlay { addr; store; over; _ } ->
        let addr = eval t addr in
        let size = Bv.size_of addr in
        let offset = Bv.sub ptr addr in
        let miss i s =
          Chunk.of_expr
            (Expr.load s Expr.LittleEndian
               (Expr.constant (Bv.add addr (Bv.create i size)))
               over)
        in
        let bytes = Chunk.to_expr (Store.select miss offset len store) in
        let bytes =
          match dir with
          | LittleEndian -> bytes
          | BigEndian -> Memory.bswap bytes
        in
        eval t bytes
end
OCaml

Innovation. Community. Security.