Source file satml_types.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
open Format
open Options
module ME = Expr.Map
module E = Expr
module Hs = Hstring
module type ATOM = sig
type var =
{ vid : int;
pa : atom;
na : atom;
mutable weight : float;
mutable sweight : int;
mutable seen : bool;
mutable level : int;
mutable index : int;
mutable reason: reason;
mutable vpremise : premise}
and atom =
{ var : var;
lit : E.t;
neg : atom;
mutable watched : clause Vec.t;
mutable is_true : bool;
mutable timp : int;
aid : int }
and clause =
{ name : string;
mutable atoms : atom Vec.t ;
mutable activity : float;
mutable removed : bool;
learnt : bool;
cpremise : premise;
form : E.t}
and reason = clause option
and premise = clause list
type hcons_env
val empty_hcons_env : unit -> hcons_env
val copy_hcons_env : hcons_env -> hcons_env
val nb_made_vars : hcons_env -> int
val pr_atom : Format.formatter -> atom -> unit
val pr_clause : Format.formatter -> clause -> unit
val get_atom : hcons_env -> E.t -> atom
val literal : atom -> E.t
val weight : atom -> float
val is_true : atom -> bool
val neg : atom -> atom
val vrai_atom : atom
val faux_atom : atom
val level : atom -> int
val index : atom -> int
val reason : atom -> reason
val reason_atoms : atom -> atom list
val dummy_var : var
val dummy_atom : atom
val dummy_clause : clause
val to_float : int -> float
val to_int : float -> int
val fresh_name : unit -> string
val fresh_lname : unit -> string
val fresh_dname : unit -> string
val make_clause : string -> atom list -> E.t -> int -> bool ->
premise-> clause
val cmp_atom : atom -> atom -> int
val eq_atom : atom -> atom -> bool
val hash_atom : atom -> int
val tag_atom : atom -> int
val add_atom : hcons_env -> E.t -> var list -> atom * var list
module Set : Set.S with type elt = atom
module Map : Map.S with type key = atom
end
module Atom : ATOM = struct
type var =
{ vid : int;
pa : atom;
na : atom;
mutable weight : float;
mutable sweight : int;
mutable seen : bool;
mutable level : int;
mutable index : int;
mutable reason: reason;
mutable vpremise : premise}
and atom =
{ var : var;
lit : E.t;
neg : atom;
mutable watched : clause Vec.t;
mutable is_true : bool;
mutable timp : int;
aid : int }
and clause =
{ name : string;
mutable atoms : atom Vec.t ;
mutable activity : float;
mutable removed : bool;
learnt : bool;
cpremise : premise;
form : E.t}
and reason = clause option
and premise = clause list
let dummy_lit = E.vrai
let vraie_form = E.vrai
let rec dummy_var =
{ vid = -101;
pa = dummy_atom;
na = dummy_atom;
level = -1;
index = -1;
reason = None;
weight = -1.;
sweight = 0;
seen = false;
vpremise = [] }
and dummy_atom =
{ var = dummy_var;
timp = 0;
lit = dummy_lit;
watched = {Vec.dummy=dummy_clause; data=[||]; sz=0};
neg = dummy_atom;
is_true = false;
aid = -102 }
and dummy_clause =
{ name = "";
atoms = {Vec.dummy=dummy_atom; data=[||]; sz=0};
activity = -1.;
removed = false;
learnt = false;
cpremise = [];
form = vraie_form }
module Debug = struct
let sign a = if a==a.var.pa then "" else "-"
let level a =
match a.var.level, a.var.reason with
| n, _ when n < 0 -> assert false
| 0, Some c -> sprintf "->0/%s" c.name
| 0, None -> "@0"
| n, Some c -> sprintf "->%d/%s" n c.name
| n, None -> sprintf "@@%d" n
let value a =
if a.is_true then sprintf "[T%s]" (level a)
else if a.neg.is_true then sprintf "[F%s]" (level a)
else ""
let premise fmt v =
List.iter (fun { name = name; _ } -> fprintf fmt "%s," name) v
let atom fmt a =
fprintf fmt "%s%d%s [index=%d | lit:%a] vpremise={{%a}}"
(sign a) (a.var.vid+1) (value a) a.var.index E.print a.lit
premise a.var.vpremise
let atoms_vec fmt vec =
for i = 0 to Vec.size vec - 1 do
fprintf fmt "%a ; " atom (Vec.get vec i)
done
let clause fmt { name; atoms=arr; cpremise=cp; _ } =
fprintf fmt "%s:{ %a} cpremise={{%a}}" name atoms_vec arr premise cp
end
let pr_atom = Debug.atom
let pr_clause = Debug.clause
let normal_form lit =
let is_pos = E.is_positive lit in
(if is_pos then lit else E.neg lit), not is_pos
let max_depth a = E.depth a
let literal a = a.lit
let weight a = a.var.weight
let is_true a = a.is_true
let level a = a.var.level
let index a = a.var.index
let neg a = a.neg
module HT = Hashtbl.Make(E)
type hcons_env = { tbl : var HT.t ; cpt : int ref }
let make_var =
fun hcons lit acc ->
let lit, negated = normal_form lit in
try HT.find hcons.tbl lit, negated, acc
with Not_found ->
let cpt = !(hcons.cpt) in
let cpt_fois_2 = cpt * 2 in
let rec var =
{ vid = cpt;
pa = pa;
na = na;
level = -1;
index = -1;
reason = None;
weight = 0.;
sweight = max_depth lit;
seen = false;
vpremise = [];
}
and pa =
{ var = var;
lit = lit;
watched = Vec.make 10 dummy_clause;
neg = na;
is_true = false;
timp = 0;
aid = cpt_fois_2 }
and na =
{ var = var;
lit = E.neg lit;
watched = Vec.make 10 dummy_clause;
neg = pa;
is_true = false;
timp = 0;
aid = cpt_fois_2 + 1 } in
HT.add hcons.tbl lit var;
incr hcons.cpt;
var, negated, var :: acc
let add_atom hcons lit acc =
let var, negated, acc = make_var hcons lit acc in
(if negated then var.na else var.pa), acc
let copy_hcons_env hcons =
{ tbl = HT.copy hcons.tbl ; cpt = ref !(hcons.cpt) }
let empty_hcons_env, vrai_atom =
let empty_hcons = { tbl= HT.create 5048 ; cpt = ref (-1) } in
let a, _ = add_atom empty_hcons E.vrai [] in
a.is_true <- true;
a.var.level <- 0;
a.var.reason <- None;
let f_empty_hashcons () = copy_hcons_env empty_hcons in
f_empty_hashcons, a
let faux_atom = vrai_atom.neg
let nb_made_vars hcons = !(hcons.cpt)
let get_atom hcons lit =
try (HT.find hcons.tbl lit).pa
with Not_found ->
try (HT.find hcons.tbl (E.neg lit)).na
with Not_found -> assert false
let make_clause name ali f sz_ali is_learnt premise =
let atoms = Vec.from_list ali sz_ali dummy_atom in
{ name = name;
atoms = atoms;
removed = false;
learnt = is_learnt;
activity = 0.;
cpremise = premise;
form = f}
let fresh_lname =
let cpt = ref 0 in
fun () -> incr cpt; "L" ^ (string_of_int !cpt)
let fresh_dname =
let cpt = ref 0 in
fun () -> incr cpt; "D" ^ (string_of_int !cpt)
let fresh_name =
let cpt = ref 0 in
fun () -> incr cpt; "C" ^ (string_of_int !cpt)
let to_float i = float_of_int i
let to_int f = int_of_float f
let cmp_atom a1 a2 = a1.aid - a2.aid
let eq_atom a1 a2 = a1.aid - a2.aid = 0
let hash_atom a1 = a1.aid
let tag_atom a1 = a1.aid
let reason a =
a.var.reason
let reason_atoms a =
match a.var.reason with
None -> []
| Some c ->
let cpt = ref 0 in
let l = ref [] in
for i = 0 to Vec.size c.atoms - 1 do
let b = Vec.get c.atoms i in
if eq_atom a b then incr cpt
else l := b :: !l
done;
if !cpt <> 1 then begin
fprintf fmt "cpt = %d@." !cpt;
fprintf fmt "a = %a@." pr_atom a;
fprintf fmt "c = %a@." pr_clause c;
assert false
end;
!l
module Set = Set.Make(struct type t=atom let compare=cmp_atom end)
module Map = Map.Make(struct type t=atom let compare=cmp_atom end)
end
module type FLAT_FORMULA = sig
type t
type view = private UNIT of Atom.atom | AND of t list | OR of t list
type hcons_env
val equal : t -> t -> bool
val compare : t -> t -> int
val print : Format.formatter -> t -> unit
val print_stats : Format.formatter -> unit
val vrai : t
val faux : t
val view : t -> view
val mk_lit : hcons_env -> E.t -> Atom.var list -> t * Atom.var list
val mk_and : hcons_env -> t list -> t
val mk_or : hcons_env -> t list -> t
val mk_not : t -> t
val empty_hcons_env : unit -> hcons_env
val nb_made_vars : hcons_env -> int
val get_atom : hcons_env -> E.t -> Atom.atom
val simplify :
hcons_env ->
E.t ->
(E.t -> t * 'a) ->
Atom.var list ->
t * (E.t * (t * Atom.atom)) list
* Atom.var list
val get_proxy_of : t ->
(Atom.atom * Atom.atom list * bool) Util.MI.t -> Atom.atom option
val cnf_abstr :
hcons_env ->
t ->
(Atom.atom * Atom.atom list * bool) Util.MI.t ->
Atom.var list ->
Atom.atom
* (Atom.atom * Atom.atom list * bool) list
* (Atom.atom * Atom.atom list * bool) Util.MI.t
* Atom.var list
val expand_proxy_defn :
Atom.atom list list ->
Atom.atom * Atom.atom list * bool -> Atom.atom list list
module Set : Set.S with type elt = t
module Map : Map.S with type key = t
end
module Flat_Formula : FLAT_FORMULA = struct
type view = UNIT of Atom.atom | AND of t list | OR of t list
and t =
{view : view;
tag : int;
neg : t
}
let mk_not f = f.neg
let cpt = ref 0
let sp() = let s = ref "" in for _ = 1 to !cpt do s := " " ^ !s done; !s ^ !s
let rec print fmt fa = match fa.view with
| UNIT a -> fprintf fmt "%a" Atom.pr_atom a
| AND s ->
incr cpt;
fprintf fmt "(and%a" print_list s;
decr cpt;
fprintf fmt "@.%s)" (sp())
| OR s ->
incr cpt;
fprintf fmt "(or%a" print_list s;
decr cpt;
fprintf fmt "@.%s)" (sp())
and print_list fmt l =
match l with
| [] -> assert false
| e::l ->
fprintf fmt "@.%s%a" (sp()) print e;
List.iter(fprintf fmt "@.%s%a" (sp()) print) l
let print fmt f = cpt := 0; print fmt f
let print_stats _ = ()
let compare f1 f2 = f1.tag - f2.tag
let equal f1 f2 = f1.tag == f2.tag
let view f = f.view
let is_positive pos = match pos with
| AND _ -> true
| OR _ -> false
| UNIT at -> at == at.Atom.var.Atom.pa
module HT =
Hashtbl.Make
(struct
type nonrec t = t
let hash f =
let h_aux f = match f with
| UNIT a -> Atom.hash_atom a
| AND l -> List.fold_left (fun acc f -> acc * 19 + f.tag) 1 l
| OR l -> List.fold_left (fun acc f -> acc * 23 + f.tag) 1 l
in
let h = h_aux f.view in
match f.view with
| UNIT _ -> abs (3 * h)
| AND _ -> abs (3 * h + 1)
| OR _ -> abs (3 * h + 2)
let equal f1 f2 =
let eq_aux c1 c2 = match c1, c2 with
| UNIT x , UNIT y -> Atom.eq_atom x y
| AND u , AND v | OR u , OR v ->
(try
List.iter2
(fun x y -> if x.tag <> y.tag then raise Exit) u v; true
with
| Exit -> false
| Invalid_argument s ->
assert (String.compare s "List.iter2" = 0);
false)
| _, _ -> false
in
eq_aux f1.view f2.view
end)
type hcons_env = { tbl : t HT.t ; cpt : int ref ;
atoms : Atom.hcons_env}
let make hcons pos neg =
let is_pos = is_positive pos in
let pos, neg = if is_pos then pos, neg else neg, pos in
let rec p =
{
view = pos;
tag = 2 * !(hcons.cpt);
neg = n;
}
and n =
{
view = neg;
tag = 2 * !(hcons.cpt) + 1;
neg = p;
}
in
let res =
try HT.find hcons.tbl p
with Not_found ->
incr hcons.cpt;
HT.add hcons.tbl p p;
p
in
if is_pos then res else mk_not res
let aaz a = assert (a.Atom.var.Atom.level = 0)
let complements f1 f2 = f1.tag == f2.neg.tag
let mk_lit hcons a acc =
let at, acc = Atom.add_atom hcons.atoms a acc in
let at =
if disable_flat_formulas_simplification () then at
else
if at.Atom.var.Atom.level = 0 then
if at.Atom.is_true then Atom.vrai_atom
else begin
if at.Atom.neg.Atom.is_true then Atom.faux_atom else at
end
else at
in
make hcons (UNIT at) (UNIT at.Atom.neg), acc
let empty_hcons_env, vrai =
let empty_hcons =
{ tbl = HT.create 4096 ;
cpt = ref 0 ;
atoms = Atom.empty_hcons_env () }
in
let vrai = mk_lit empty_hcons E.vrai [] |> fst in
let f_empty_hcons () =
{ tbl = HT.copy empty_hcons.tbl ;
cpt = ref !(empty_hcons.cpt) ;
atoms = Atom.copy_hcons_env empty_hcons.atoms }
in
f_empty_hcons, vrai
let faux = mk_not vrai
let nb_made_vars hcons = Atom.nb_made_vars hcons.atoms
let merge_and_check l1 l2 =
let rec merge_rec l1 l2 hd =
match l1, l2 with
| [], l2 -> l2
| l1, [] -> l1
| h1 :: t1, h2 :: t2 ->
let c = compare h1 h2 in
if c = 0 then merge_rec l1 t2 hd
else
if compare h1 h2 < 0
then begin
if complements hd h1 then raise Exit;
h1 :: merge_rec t1 l2 h1
end
else begin
if complements hd h2 then raise Exit;
h2 :: merge_rec l1 t2 h2
end
in
match l1, l2 with
| [], l2 -> l2
| l1, [] -> l1
| h1 :: t1, h2 :: _ ->
let c = compare h1 h2 in
if c = 0 then merge_rec t1 l2 h1
else
if compare h1 h2 < 0
then merge_rec l1 l2 h1
else merge_rec l1 l2 h2
let mk_and hcons l =
try
let so, nso =
List.fold_left
(fun ((so,nso) as acc) e ->
match e.view with
| AND l -> merge_and_check so l, nso
| UNIT a when
not (disable_flat_formulas_simplification ()) &&
a.Atom.var.Atom.level = 0 ->
begin
if a.Atom.neg.Atom.is_true then (aaz a; raise Exit);
if a.Atom.is_true then (aaz a; acc)
else so, e::nso
end
| _ -> so, e::nso
)([],[]) l
in
let delta_inv = List.fast_sort (fun a b -> compare b a) nso in
let delta_u = match delta_inv with
| [] -> delta_inv
| e::l ->
let _, delta_u =
List.fold_left
(fun ((c,l) as acc) e ->
if complements c e then raise Exit;
if equal c e then acc
else (e, e::l)
)(e,[e]) l
in
delta_u
in
match merge_and_check so delta_u with
| [] -> vrai
| [e]-> e
| l -> make hcons (AND l) (OR (List.rev (List.rev_map mk_not l)))
with Exit -> faux
let intersect_list l1 l2 =
let rec inter l1 l2 acc =
match l1, l2 with
| [], _ | _ , [] -> List.rev acc
| f1::r1, f2::r2 ->
let c = compare f1 f2 in
if c = 0 then inter r1 r2 (f1::acc)
else if c > 0 then inter l1 r2 acc else inter r1 l2 acc
in
inter l1 l2 []
exception Not_included
let remove_elt e l =
let rec relt l acc =
match l with
| [] -> raise Not_included
| f::r ->
let c = compare f e in
if c = 0 then List.rev_append acc r
else if c < 0 then relt r (f::acc)
else raise Not_included
in
relt l []
let diff_list to_exclude l =
let rec diff l1 l2 acc =
match l1, l2 with
| [], [] -> List.rev acc
| [], r -> List.rev_append acc r
| _ , [] -> raise Not_included
| f1::r1, f2::r2 ->
let c = compare f1 f2 in
if c = 0 then diff r1 r2 acc
else if c > 0 then diff l1 r2 (f2::acc)
else raise Not_included
in
diff to_exclude l []
let l =
let atoms, ands =
List.fold_left
(fun (atoms, ands) f ->
match view f with
| OR _ -> assert false
| UNIT _ -> f::atoms, ands
| AND l -> atoms, l::ands
)([],[]) l
in
match atoms, ands with
| [], [] -> assert false
| _::_::_, _ ->
if debug () then
fprintf fmt "Failure: many distinct atoms@.";
None
| [_] as common, _ ->
if debug () then
fprintf fmt "TODO: Should have one toplevel common atom@.";
begin
try
ignore (List.rev_map (diff_list common) ands);
Some (common, [[]])
with Not_included -> None
end
| [], ad::ands' ->
if debug () then
fprintf fmt "Should look for internal common parts@.";
let common = List.fold_left intersect_list ad ands' in
match common with
[] -> None
| _ ->
try Some (common, List.rev_map (diff_list common) ands)
with Not_included -> assert false
let rec mk_or hcons l =
try
let so, nso =
List.fold_left
(fun ((so,nso) as acc) e ->
match e.view with
| OR l -> merge_and_check so l, nso
| UNIT a when
not (disable_flat_formulas_simplification ()) &&
a.Atom.var.Atom.level = 0 ->
begin
if a.Atom.is_true then (aaz a; raise Exit);
if a.Atom.neg.Atom.is_true then (aaz a; acc)
else so, e::nso
end
| _ -> so, e::nso
)([],[]) l
in
let delta_inv = List.fast_sort (fun a b -> compare b a) nso in
let delta_u = match delta_inv with
| [] -> delta_inv
| e::l ->
let _, delta_u =
List.fold_left
(fun ((c,l) as acc) e ->
if complements c e then raise Exit;
if equal c e then acc
else (e, e::l)
)(e,[e]) l
in
delta_u
in
match merge_and_check so delta_u with
| [] -> faux
| [e]-> e
| l ->
match extract_common l with
| None ->
begin match l with
| [{ view = UNIT _; _ } as fa; { view = AND ands; _ }] ->
begin
try
mk_or hcons
[fa ; (mk_and hcons (remove_elt (mk_not fa) ands))]
with Not_included ->
make hcons (OR l) (AND (List.rev (List.rev_map mk_not l)))
end
| _ ->
make hcons (OR l) (AND (List.rev (List.rev_map mk_not l)))
end
| Some (com,ands) ->
let ands = List.rev_map (mk_and hcons) ands in
mk_and hcons ((mk_or hcons ands) :: com)
with Exit -> vrai
let abstract_lemma hcons abstr (f: E.t) tl lem new_vars =
try fst (abstr f)
with Not_found ->
try fst (snd (List.find (fun (x,_) -> E.equal f x) !lem))
with Not_found ->
if tl then begin
lem := (f, (vrai, Atom.vrai_atom)) :: !lem;
vrai
end
else
let lit = E.fresh_name Ty.Tbool in
let xlit, new_v = mk_lit hcons lit !new_vars in
let at_lit, new_v = Atom.add_atom hcons.atoms lit new_v in
new_vars := new_v;
lem := (f, (xlit, at_lit)) :: !lem
[@ocaml.ppwarning "xlit or at_lit is probably redundant"]
;
xlit
let simplify hcons f abstr new_vars =
let lem = ref [] in
let new_vars = ref new_vars in
let rec simp topl ~parent_disj f =
match E.form_view f with
| E.Not_a_form -> assert false
| E.Literal a ->
let ff, l = mk_lit hcons a !new_vars in
new_vars := l;
ff
| E.Lemma _ -> abstract_lemma hcons abstr f topl lem new_vars
| E.Skolem _ ->
mk_not (simp false ~parent_disj:false (E.neg f))
| E.Unit(f1, f2) ->
let x1 = simp topl ~parent_disj:false f1 in
let x2 = simp topl ~parent_disj:false f2 in
begin match x1.view , x2.view with
| AND l1, AND l2 -> mk_and hcons (List.rev_append l1 l2)
| AND l1, _ -> mk_and hcons (x2 :: l1)
| _ , AND l2 -> mk_and hcons (x1 :: l2)
| _ -> mk_and hcons [x1; x2]
end
| E.Clause(f1, f2, _) ->
let x1 = simp false ~parent_disj:true f1 in
let x2 = simp false ~parent_disj:true f2 in
begin match x1.view, x2.view with
| OR l1, OR l2 -> mk_or hcons (List.rev_append l1 l2)
| OR l1, _ -> mk_or hcons (x2 :: l1)
| _ , OR l2 -> mk_or hcons (x1 :: l2)
| _ -> mk_or hcons [x1; x2]
end
| E.Iff(f1, f2) ->
simp topl ~parent_disj @@
E.elim_iff f1 f2 (E.id f) ~with_conj:(not parent_disj)
| E.Xor(f1, f2) ->
let g = E.neg @@ E.elim_iff f1 f2 (E.id f) ~with_conj:parent_disj in
simp topl ~parent_disj g
| E.Let letin -> simp false ~parent_disj:false (E.elim_let letin)
in
let res = simp true ~parent_disj:false f in
res, !lem, !new_vars
let atom_of_lit hcons lit is_neg new_vars =
let a, l = Atom.add_atom hcons.atoms lit !new_vars in
new_vars := l;
if is_neg then a.Atom.neg else a
let mk_new_proxy n =
let hs = Hs.make ("PROXY__" ^ (string_of_int n)) in
let sy = Symbols.Name(hs, Symbols.Other) in
E.mk_term sy [] Ty.Tbool
let get_proxy_of f proxies_mp =
try let p, _, _ = Util.MI.find f.tag proxies_mp in Some p
with Not_found ->
try let p, _, _ = Util.MI.find f.neg.tag proxies_mp in Some p.Atom.neg
with Not_found -> None
let expand_proxy_defn acc (p, l, is_and) =
if is_and then
let np = p.Atom.neg in
let cl, acc =
List.fold_left
(fun (cl,acc) a -> (a.Atom.neg :: cl), [np; a] :: acc)([p],acc) l
in
cl :: acc
else
let acc = List.fold_left (fun acc a -> [p;a.Atom.neg]::acc) acc l in
((p.Atom.neg) :: l) :: acc
let cnf_abstr hcons f proxies_mp new_vars =
let proxies_mp = ref proxies_mp in
let new_proxies = ref [] in
let new_vars = ref new_vars in
let rec abstr f = match f.view with
| UNIT a -> a
| AND l | OR l ->
match get_proxy_of f !proxies_mp with
| Some p -> p
| None ->
let l = List.rev (List.rev_map abstr l) in
let p = atom_of_lit hcons (mk_new_proxy f.tag) false new_vars in
let is_and = match f.view with
| AND _ -> true | OR _ -> false | UNIT _ -> assert false
in
new_proxies := (p, l, is_and) :: !new_proxies;
proxies_mp := Util.MI.add f.tag (p, l, is_and) !proxies_mp;
p
in
let abstr_f = abstr f in
abstr_f, !new_proxies, !proxies_mp, !new_vars
let get_atom hcons a = Atom.get_atom hcons.atoms a
module Set = Set.Make(struct type t'=t type t=t' let compare=compare end)
module Map = Map.Make(struct type t'=t type t=t' let compare=compare end)
end
module Proxy_formula = struct
let get_proxy_of f proxies =
try Some (ME.find f proxies)
with Not_found -> None
let atom_of_lit hcons lit is_neg new_vars =
let a, l = Atom.add_atom hcons lit new_vars in
if is_neg then a.Atom.neg,l else a,l
let mk_new_proxy n =
let sy = Symbols.name @@ "PROXY__" ^ (string_of_int n) in
E.mk_term sy [] Ty.Tbool
let rec mk_cnf hcons f ((proxies, inv_proxies, new_vars, cnf) as accu) =
match get_proxy_of f proxies with
| Some p -> p, accu
| None ->
let nf = E.neg f in
match get_proxy_of nf proxies with
| Some p -> Atom.neg p, accu
| None ->
let a, new_vars =
atom_of_lit hcons (mk_new_proxy (E.hash f)) false new_vars in
let na = Atom.neg a in
let proxies = ME.add f a proxies in
let proxies = ME.add nf na proxies in
let inv_proxies = Atom.Map.add a f inv_proxies in
let inv_proxies = Atom.Map.add na nf inv_proxies in
match E.form_view f with
| E.Unit (f1,f2) ->
let accu = (proxies, inv_proxies, new_vars, cnf) in
let a1, accu = mk_cnf hcons f1 accu in
let a2, (proxies, inv_proxies, new_vars, cnf) =
mk_cnf hcons f2 accu in
let cnf =
[na; a1] :: [na; a2] :: [a; Atom.neg a1; Atom.neg a2] :: cnf in
a, (proxies, inv_proxies, new_vars, cnf)
| E.Clause (f1, f2, _) ->
let accu = (proxies, inv_proxies, new_vars, cnf) in
let a1, accu = mk_cnf hcons f1 accu in
let a2, (proxies, inv_proxies, new_vars, cnf) =
mk_cnf hcons f2 accu in
let cnf =
[a; Atom.neg a1] :: [a; Atom.neg a2] :: [na; a1; a2] :: cnf in
a, (proxies, inv_proxies, new_vars, cnf)
| E.Let _ | E.Skolem _ | E.Lemma _ | E.Literal _ | E.Iff _
| E.Xor _ ->
a, (proxies, inv_proxies, new_vars, cnf)
| E.Not_a_form -> assert false
end