Source file expr.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
open Format
open Hconsing
open Options
module Sy = Symbols
module SMap = Sy.Map
module SSet = Sy.Set
(** Data structures *)
type binders = (Ty.t * int) SMap.t
type decl_kind =
| Dtheory
| Daxiom
| Dgoal
| Dpredicate of string
| Dfunction of string
type t = view
and view = {
f: Sy.t;
xs: t list;
ty: Ty.t;
bind : bind_kind;
tag: int;
vars : (Ty.t * int) SMap.t;
vty : Ty.Svty.t;
depth: int;
nb_nodes : int;
pure : bool;
mutable neg : t option
}
and bind_kind =
| B_none
| B_lemma of quantified
| B_skolem of quantified
| B_let of letin
and quantified = {
name : string;
main : t;
toplevel : bool;
user_trs : trigger list;
binders : binders;
sko_v : t list;
sko_vty : Ty.t list;
loc : Loc.t;
kind : decl_kind;
}
and letin = {
let_v: Sy.t;
let_e : t;
in_e : t;
let_sko : t;
is_bool : bool;
}
and semantic_trigger =
| Interval of t * Sy.bound * Sy.bound
| MapsTo of Var.t * t
| NotTheoryConst of t
| IsTheoryConst of t
| LinearDependency of t * t
and trigger = {
content : t list;
semantic : semantic_trigger list;
hyp : t list;
t_depth : int;
from_user : bool;
guard : t option
}
type expr = t
type subst = expr SMap.t * Ty.subst
type term_view =
| Term of view
| Not_a_term of {is_lit : bool}
type lit_view =
| Eq of t * t
| Eql of t list
| Distinct of t list
| Builtin of bool * Sy.builtin * t list
| Pred of t * bool
| Not_a_lit of { is_form : bool }
type form_view =
| Unit of t*t
| Clause of t*t*bool
| Iff of t * t
| Xor of t * t
| Literal of t
| Lemma of quantified
| Skolem of quantified
| Let of letin
| Not_a_form
(** Comparison and hashing functions *)
let compare t1 t2 =
if t1 == t2 then 0
else
let c = t1.depth - t2.depth in
if c <> 0 then c
else t2.tag - t1.tag
let equal t1 t2 = t1 == t2
let hash t = t.tag
let uid t = t.tag
let compare_subst (s_t1, s_ty1) (s_t2, s_ty2) =
let c = Ty.compare_subst s_ty1 s_ty2 in
if c<>0 then c else SMap.compare compare s_t1 s_t2
let equal_subst (s_t1, s_ty1) (s_t2, s_ty2) =
Ty.equal_subst s_ty1 s_ty2 || SMap.equal equal s_t1 s_t2
let compare_let let1 let2 =
let c = Sy.compare let1.let_v let2.let_v in
if c <> 0 then c
else
let c = compare let1.let_e let2.let_e in
if c <> 0 then c
else compare let1.in_e let2.in_e
let compare_binders b1 b2 =
SMap.compare (fun (ty1,i) (ty2,j) ->
let c = i - j in if c <> 0 then c else Ty.compare ty1 ty2)
b1 b2
let [@inline always] compare_sko_xxx sk1 sk2 cmp_xxx =
try
List.iter2
(fun s t ->
let c = cmp_xxx s t in
if c <> 0 then raise (Util.Cmp c)
)sk1 sk2;
0
with
| Util.Cmp c -> c
| Invalid_argument _ -> List.length sk1 - List.length sk2
let compare_sko_vars sk1 sk2 = compare_sko_xxx sk1 sk2 compare
let compare_sko_vty sk1 sk2 = compare_sko_xxx sk1 sk2 Ty.compare
let compare_lists l1 l2 cmp_elts =
let res = Util.cmp_lists l1 l2 cmp_elts in
if res <> 0 then raise (Util.Cmp res)
let compare_triggers _f1 _f2 trs1 trs2 =
try
List.iter2
(fun tr1 tr2 ->
compare_lists tr1.content tr2.content compare;
compare_lists tr1.hyp tr2.hyp compare;
compare_lists tr1.semantic tr2.semantic
(fun a b ->
Util.compare_algebraic a b
(function
| Interval (s, b1, b2), Interval (t, c1, c2) ->
let c = compare s t in
if c <> 0 then c
else
let c = Sy.compare_bounds b1 c1 in
if c <> 0 then c else Sy.compare_bounds b2 c2
| MapsTo (h1, t1), MapsTo (h2, t2) ->
let c = compare t1 t2 in
if c <> 0 then c else Var.compare h1 h2
| NotTheoryConst a, NotTheoryConst b
| IsTheoryConst a , IsTheoryConst b -> compare a b
| LinearDependency (s1, t1), LinearDependency (s2, t2) ->
let c = compare s1 s2 in
if c <> 0 then c else compare t1 t2
| _, (Interval _ | MapsTo _ | NotTheoryConst _
| IsTheoryConst _ | LinearDependency _) ->
assert false
)
)
) trs1 trs2;
0
with
| Util.Cmp c -> c
| Invalid_argument _ -> List.length trs1 - List.length trs2
let compare_quant
{main=f1; binders=b1; sko_v=sko_v1; sko_vty=free_vty1; user_trs=trs1; _}
{main=f2; binders=b2; sko_v=sko_v2; sko_vty=free_vty2; user_trs=trs2; _}
=
let c = compare f1 f2 in
if c <> 0 then c
else
let c = compare_binders b1 b2 in
if c <> 0 then c
else
let c = compare_sko_vars sko_v1 sko_v2 in
if c <> 0 then c
else
let c = compare_sko_vty free_vty1 free_vty2 in
if c <> 0 then c
else compare_triggers f1 f2 trs1 trs2
module Msbt : Map.S with type key = expr SMap.t =
Map.Make
(struct
type t = expr SMap.t
let compare a b = SMap.compare compare a b
end)
module Msbty : Map.S with type key = Ty.t Ty.M.t =
Map.Make
(struct
type t = Ty.t Ty.M.t
let compare a b = Ty.M.compare Ty.compare a b
end)
module TSet : Set.S with type elt = expr =
Set.Make (struct type t = expr let compare = compare end)
module TMap : Map.S with type key = expr =
Map.Make (struct type t = expr let compare = compare end)
module H = struct
type elt = t
type t = elt
let eq t1 t2 = try
Sy.equal t1.f t2.f
&& List.for_all2 (==) t1.xs t2.xs
&& Ty.equal t1.ty t2.ty
&&
Util.compare_algebraic t1.bind t2.bind
(function
| B_lemma q1, B_lemma q2
| B_skolem q1, B_skolem q2 -> compare_quant q1 q2
| B_let a, B_let b -> compare_let a b
| _, (B_none | B_lemma _ | B_skolem _ | B_let _) -> assert false
) = 0
with Invalid_argument _ -> false
let equal = eq
let hash t =
abs @@
List.fold_left
(fun acc x-> acc * 23 + x.tag)
(7 * Hashtbl.hash t.bind + 5 * Sy.hash t.f + Ty.hash t.ty)
t.xs
let set_id tag x = {x with tag = tag}
let initial_size = 9001
let disable_weaks () = Options.disable_weaks ()
end
module Labels = Hashtbl.Make(H)
module HC = Make(H)
module Hsko = Hashtbl.Make(H)
module F_Htbl : Hashtbl.S with type key = t =
Hashtbl.Make(struct
type t'=t
type t = t'
let hash = hash
let equal = equal
end)
(** different views of an expression *)
let lit_view t =
let { f; xs; ty; _ } = t in
if ty != Ty.Tbool then Not_a_lit {is_form = false}
else
match f with
| Sy.Form _ -> Not_a_lit {is_form = true}
| Sy.Lit lit ->
begin match lit, xs with
| (Sy.L_eq | Sy.L_neg_eq), ([] | [_]) -> assert false
| Sy.L_eq, [a;b] -> Eq (a, b)
| Sy.L_eq, l -> Eql l
| Sy.L_neg_eq, l -> Distinct l
| Sy.L_built x, l -> Builtin(true, x, l)
| Sy.L_neg_built x, l -> Builtin(false, x, l)
| Sy.L_neg_pred, [a] -> Pred(a, true)
| Sy.L_neg_pred, _ -> assert false
end
| _ -> Pred(t, false)
let form_view t =
let { f; xs; bind; _ } = t in
if t.ty != Ty.Tbool then Not_a_form
else
match f, xs, bind with
| Sy.Form (Sy.F_Unit _), [a;b], _ -> Unit (a, b)
| Sy.Form (Sy.F_Clause i), [a;b], _ -> Clause (a, b, i)
| Sy.Form Sy.F_Iff, [a;b], _ -> Iff(a, b)
| Sy.Form Sy.F_Xor, [a;b], _ -> Xor(a, b)
| Sy.Form Sy.F_Lemma, [], B_lemma lem -> Lemma lem
| Sy.Form Sy.F_Skolem, [], B_skolem sko -> Skolem sko
| Sy.Lit (Sy.L_eq | Sy.L_neg_eq | Sy.L_neg_pred |
Sy.L_built _ | Sy.L_neg_built _), _, _ ->
Literal t
| Sy.Let, [], B_let ({ is_bool = true; _ } as x) -> Let x
| _ -> Literal t
let term_view t =
let { f; ty; _ } = t in
if ty != Ty.Tbool then Term t
else match f with
| Sy.Form _ -> Not_a_term {is_lit = false}
| Sy.Lit _ -> Not_a_term {is_lit = true}
| _ -> Term t
(** pretty printing *)
let print_binders =
let print_one fmt (sy, (ty, _)) =
fprintf fmt "%a:%a" Sy.print sy Ty.print ty
in fun fmt b ->
match SMap.bindings b with
| [] ->
fprintf fmt "(no term variables)"
| e::l ->
print_one fmt e;
List.iter (fun e -> fprintf fmt ", %a" print_one e) l
let rec print_silent fmt t =
let { f ; xs ; ty; bind; _ } = t in
match f, xs with
| Sy.Form form, xs ->
begin
match form, xs, bind with
| Sy.F_Unit _, [f1; f2], _ ->
fprintf fmt "@[(%a /\\@ %a)@]" print_silent f1 print_silent f2
| Sy.F_Iff, [f1; f2], _ ->
fprintf fmt "@[(%a <->@ %a)@]" print_silent f1 print_silent f2
| Sy.F_Xor, [f1; f2], _ ->
fprintf fmt "@[(%a xor@ %a)@]" print_silent f1 print_silent f2
| Sy.F_Clause _, [f1; f2], _ ->
fprintf fmt "@[(%a \\/@ %a)@]" print_silent f1 print_silent f2
| Sy.F_Lemma, [], B_lemma { user_trs ; main ; name ; binders; _ } ->
if verbose () then
fprintf fmt "(lemma: %s forall %a[%a].@ %a)"
name
print_binders binders
print_triggers user_trs print_silent main
else
fprintf fmt "(lem %s)" name
| Sy.F_Skolem, [], B_skolem { main; binders; _ } ->
fprintf fmt "(<sko exists %a.> %a)"
print_binders binders print_silent main
| _ -> assert false
end
| Sy.Let, [] ->
let x = match bind with B_let x -> x | _ -> assert false in
fprintf fmt
"(let%a %a =@ %a in@ %a)"
(fun fmt x -> if Options.verbose () then
fprintf fmt " [sko = %a]" print x.let_sko) x
Sy.print x.let_v print x.let_e print_silent x.in_e
| Sy.Lit lit, xs ->
begin
match lit, xs with
| Sy.L_eq, a::l ->
fprintf fmt "(%a%a)"
print a (fun fmt -> List.iter (fprintf fmt " = %a" print)) l
| Sy.L_neg_eq, [a; b] ->
fprintf fmt "(%a <> %a)" print a print b
| Sy.L_neg_eq, a::l ->
fprintf fmt "distinct(%a%a)"
print a (fun fmt -> List.iter (fprintf fmt ", %a" print)) l
| Sy.L_built Sy.LE, [a;b] ->
fprintf fmt "(%a <= %a)" print a print b
| Sy.L_built Sy.LT, [a;b] ->
fprintf fmt "(%a < %a)" print a print b
| Sy.L_neg_built Sy.LE, [a; b] ->
fprintf fmt "(%a > %a)" print a print b
| Sy.L_neg_built Sy.LT, [a; b] ->
fprintf fmt "(%a >= %a)" print a print b
| Sy.L_neg_pred, [a] ->
fprintf fmt "(not %a)" print a
| Sy.L_built (Sy.IsConstr hs), [e] ->
fprintf fmt "(%a ? %a)" print e Hstring.print hs
| Sy.L_neg_built (Sy.IsConstr hs), [e] ->
fprintf fmt "not (%a ? %a)" print e Hstring.print hs
| (Sy.L_built (Sy.LT | Sy.LE) | Sy.L_neg_built (Sy.LT | Sy.LE)
| Sy.L_neg_pred | Sy.L_eq | Sy.L_neg_eq
| Sy.L_built (Sy.IsConstr _)
| Sy.L_neg_built (Sy.IsConstr _)) , _ ->
assert false
end
| Sy.Op Sy.Get, [e1; e2] ->
fprintf fmt "%a[%a]" print e1 print e2
| Sy.Op Sy.Set, [e1; e2; e3] ->
fprintf fmt "%a[%a<-%a]" print e1 print e2 print e3
| Sy.Op Sy.Concat, [e1; e2] ->
fprintf fmt "%a@@%a" print e1 print e2
| Sy.Op Sy.Extract, [e1; e2; e3] ->
fprintf fmt "%a^{%a,%a}" print e1 print e2 print e3
| Sy.Op (Sy.Access field), [e] ->
fprintf fmt "%a.%s" print e (Hstring.view field)
| Sy.Op (Sy.Record), _ ->
begin match ty with
| Ty.Trecord { Ty.lbs = lbs; _ } ->
assert (List.length xs = List.length lbs);
fprintf fmt "{";
ignore (List.fold_left2 (fun first (field,_) e ->
fprintf fmt "%s%s = %a" (if first then "" else "; ")
(Hstring.view field) print e;
false
) true lbs xs);
fprintf fmt "}";
| _ -> assert false
end
| Sy.Op op, [e1; e2] when op == Sy.Pow_real_int || op == Sy.Max_real ||
op == Sy.Max_int || op == Sy.Min_real ||
op == Sy.Min_int ||
op == Sy.Pow_real_real ||
op == Sy.Integer_round ->
fprintf fmt "%a(%a,%a)" Sy.print f print e1 print e2
| Sy.Op (Sy.Constr hs), ((_::_) as l) ->
fprintf fmt "%a(%a)" Hstring.print hs print_list l
| Sy.Op _, [e1; e2] ->
fprintf fmt "(%a %a %a)" print e1 Sy.print f print e2
| Sy.Op Sy.Destruct (hs, grded), [e] ->
fprintf fmt "%a#%s%a"
print e (if grded then "" else "!") Hstring.print hs
| Sy.In(lb, rb), [t] ->
fprintf fmt "(%a in %a, %a)" print t Sy.print_bound lb Sy.print_bound rb
| _, [] ->
fprintf fmt "%a" Sy.print f
| _, _ ->
fprintf fmt "%a(%a)" Sy.print f print_list xs
and print_verbose fmt t =
fprintf fmt "(%a : %a)" print_silent t Ty.print t.ty
and print fmt t =
if Options.debug () then print_verbose fmt t
else print_silent fmt t
and print_list_sep sep fmt = function
| [] -> ()
| [t] -> print fmt t
| t::l -> Format.fprintf fmt "%a%s%a" print t sep (print_list_sep sep) l
and print_list fmt = print_list_sep "," fmt
and print_triggers fmt trs =
let first = ref true in
List.iter (fun { content = l; _ } ->
fprintf fmt "%s%a"
(if !first then "" else " | ") print_list l;
first := false;
) trs
(** Some auxiliary functions *)
let type_info t = t.ty
let mk_binders =
let cpt = ref 0 in
fun st ->
TSet.fold
(fun t sym ->
incr cpt;
match t with
| { f = (Sy.Var _) as v; ty; _ } -> SMap.add v (ty, !cpt) sym
| _ -> assert false
)st SMap.empty
let merge_vars acc b =
SMap.merge (fun sy a b ->
match a, b with
| None, None -> assert false
| Some _, None -> a
| None, Some _ -> b
| Some (ty, x), Some (ty', y) ->
assert (Ty.equal ty ty' || Sy.equal sy Sy.underscore);
Some (ty, x + y)
) acc b
let free_vars t acc = merge_vars acc t.vars
let free_type_vars t = t.vty
let is_ground t =
SMap.is_empty (free_vars t SMap.empty) &&
Ty.Svty.is_empty (free_type_vars t)
let id _ = 0
let size t = t.nb_nodes
let depth t = t.depth
let rec is_positive e =
let { f; bind; _ } = e in
match f, bind with
| Sy.Lit (Sy.L_neg_pred | Sy.L_neg_eq | Sy.L_neg_built _), _ -> false
| Sy.Form (Sy.F_Clause _ | Sy.F_Skolem | Sy.F_Xor), _ -> false
| Sy.Let, B_let { in_e; is_bool = true; _ } -> is_positive in_e
| _ -> true
let neg t =
match t with
| { ty = Ty.Tbool; neg = Some n; _ } -> n
| { f = _; _ } -> assert false
let is_int t = t.ty == Ty.Tint
let is_real t = t.ty == Ty.Treal
let is_fresh t =
match t with
| { f = Sy.Name (hs,_); xs = []; _ } ->
Hstring.is_fresh_string (Hstring.view hs)
| _ -> false
let is_fresh_skolem t =
match t with
| { f = Sy.Name (hs,_); _ } -> Hstring.is_fresh_skolem (Hstring.view hs)
| _ -> false
let name_of_lemma f =
match form_view f with
| Lemma { name; _ } -> name
| _ -> assert false
let name_of_lemma_opt opt =
match opt with
| None -> "(Lemma=None)"
| Some f -> name_of_lemma f
(** Labeling and models *)
let labels = Labels.create 107
let add_label =
let add_aux lbl t = Labels.replace labels t lbl in
fun lbl e ->
match e with
| { f = Sy.Form _; _ } -> ()
| { f = Sy.Lit _; _ } | { ty = Ty.Tbool; _ } ->
add_aux lbl e;
add_aux lbl (neg e)
| _ ->
add_aux lbl e
let label t = try Labels.find labels t with Not_found -> Hstring.empty
let is_model_label =
let model = "model:" in
fun h ->
try String.equal (String.sub (Hstring.view h) 0 6) model
with Invalid_argument _ -> false
let rec is_in_model_rec depth { f = f; xs = xs ; _ } =
let lb = Sy.label f in
(is_model_label lb
&&
(try depth <= Scanf.sscanf (Hstring.view lb) "model:%d" (fun x -> x)
with Scanf.Scan_failure _ | End_of_file-> true))
||
List.exists (is_in_model_rec (depth +1)) xs
let rec is_in_model e =
is_model_label (label e) ||
match e with
| { f = Sy.Form _; _ } -> false
| { f = Sy.Lit _ ; xs; _ } -> List.exists is_in_model xs
| _ -> is_in_model_rec 0 e
let print_tagged_classes =
let is_labeled t = not (Hstring.equal (label t) Hstring.empty) in
fun fmt l ->
List.iter (fun cl ->
let cl = List.filter is_labeled (TSet.elements cl) in
if cl != [] then
fprintf fmt "\n{ %a }" (print_list_sep " , ") cl) l
(** smart constructors for terms *)
let free_vars_non_form s l ty =
match s, l with
| Sy.Var _, [] -> SMap.singleton s (ty, 1)
| Sy.Var _, _ -> assert false
| Sy.Form _, _ -> assert false
| _, [] -> SMap.empty
| _, e::r -> List.fold_left (fun s t -> merge_vars s t.vars) e.vars r
let free_type_vars_non_form l ty =
List.fold_left (fun acc t -> Ty.Svty.union acc t.vty) (Ty.vty_of ty) l
let is_ite s = match s with
| Sy.Op Sy.Tite -> true
| _ -> false
let mk_term s l ty =
assert (match s with Sy.Lit _ | Sy.Form _ -> false | _ -> true);
let d = 1 + List.fold_left (fun z t -> max z t.depth) 0 l in
let nb_nodes = List.fold_left (fun z t -> z + t.nb_nodes) 1 l in
let vars = free_vars_non_form s l ty in
let vty = free_type_vars_non_form l ty in
let pure = List.for_all (fun e -> e.pure) l && not (is_ite s) in
let pos =
HC.make {f=s; xs=l; ty=ty; depth=d; tag= -42; vars; vty;
nb_nodes; neg = None; bind = B_none; pure}
in
if ty != Ty.Tbool then pos
else if pos.neg != None then pos
else
let neg_s = Sy.Lit Sy.L_neg_pred in
let neg =
HC.make {f=neg_s; xs=[pos]; ty=ty; depth=d; tag= -42;
vars; vty; nb_nodes; neg = None; bind = B_none; pure = false}
in
assert (neg.neg == None);
pos.neg <- Some neg;
neg.neg <- Some pos;
pos
let vrai =
let res =
let nb_nodes = 0 in
let vars = SMap.empty in
let vty = Ty.Svty.empty in
let faux =
HC.make
{f = Sy.False; xs = []; ty = Ty.Tbool; depth = -2;
tag = -42; vars; vty; nb_nodes; neg = None; bind = B_none;
pure = true}
in
let vrai =
HC.make
{f = Sy.True; xs = []; ty = Ty.Tbool; depth = -1;
tag= -42; vars; vty; nb_nodes; neg = None; bind = B_none;
pure = true}
in
assert (vrai.neg == None);
assert (faux.neg == None);
vrai.neg <- Some faux;
faux.neg <- Some vrai;
vrai
in
res
let faux = neg (vrai)
let void = mk_term (Sy.Void) [] Ty.Tunit
let fresh_name ty = mk_term (Sy.name (Hstring.fresh_string())) [] ty
let positive_int i = mk_term (Sy.int i) [] Ty.Tint
let int i =
let len = String.length i in
assert (len >= 1);
match i.[0] with
| '-' ->
assert (len >= 2);
let pi = String.sub i 1 (len - 1) in
mk_term (Sy.Op Sy.Minus) [ positive_int "0"; positive_int pi ] Ty.Tint
| _ -> positive_int i
let positive_real i = mk_term (Sy.real i) [] Ty.Treal
let real r =
let len = String.length r in
assert (len >= 1);
match r.[0] with
| '-' ->
assert (len >= 2);
let pi = String.sub r 1 (len - 1) in
mk_term (Sy.Op Sy.Minus) [ positive_real "0"; positive_real pi ] Ty.Treal
| _ -> positive_real r
let bitv bt ty = mk_term (Sy.Bitv bt) [] ty
let pred t = mk_term (Sy.Op Sy.Minus) [t;int "1"] Ty.Tint
(** simple smart constructors for formulas *)
let mk_or f1 f2 is_impl _id =
if equal f1 (neg f2) then vrai
else
if equal f1 f2 then f1
else if equal f1 (faux) then f2
else if equal f2 (faux) then f1
else if (equal f1 (vrai)) || (equal f2 (vrai)) then vrai
else
let f1, f2 = if is_impl || compare f1 f2 < 0 then f1, f2 else f2, f1 in
let d = (max f1.depth f2.depth) in
let nb_nodes = f1.nb_nodes + f2.nb_nodes + 1 in
let vars = merge_vars f1.vars f2.vars in
let vty = Ty.Svty.union f1.vty f2.vty in
let pos =
HC.make {f=Sy.Form (Sy.F_Clause is_impl); xs=[f1; f2]; ty=Ty.Tbool;
depth=d; tag= -42; vars; vty; nb_nodes; neg = None;
bind = B_none; pure = false}
in
if pos.neg != None then pos
else
let neg =
HC.make
{f=Sy.Form (Sy.F_Unit is_impl); xs=[neg f1; neg f2]; ty=Ty.Tbool;
depth=d; tag= -42; vars; vty; nb_nodes; neg = None;
bind = B_none; pure = false}
in
assert (neg.neg == None);
pos.neg <- Some neg;
neg.neg <- Some pos;
pos
let mk_iff f1 f2 _id =
if equal f1 (neg f2) then faux
else if equal f1 f2 then vrai
else if equal f1 faux then neg f2
else if equal f2 faux then neg f1
else if equal f1 vrai then f2
else if equal f2 vrai then f1
else
let d = (max f1.depth f2.depth) in
let nb_nodes = f1.nb_nodes + f2.nb_nodes + 1 in
let vars = merge_vars f1.vars f2.vars in
let vty = Ty.Svty.union f1.vty f2.vty in
let pos =
HC.make {f=Sy.Form Sy.F_Iff; xs=[f1; f2]; ty=Ty.Tbool;
depth=d; tag= -42; vars; vty; nb_nodes; neg = None;
bind = B_none; pure = false}
in
if pos.neg != None then pos
else
let neg =
HC.make
{f=Sy.Form Sy.F_Xor; xs=[f1; f2]; ty=Ty.Tbool;
depth=d; tag= -42; vars; vty; nb_nodes; neg = None;
bind = B_none; pure = false}
in
assert (neg.neg == None);
pos.neg <- Some neg;
neg.neg <- Some pos;
pos
let mk_and f1 f2 is_impl id =
neg @@ mk_or (neg f1) (neg f2) is_impl id
let mk_imp f1 f2 id = mk_or (neg f1) f2 true id
let mk_xor f1 f2 id =
neg (mk_iff f1 f2 id)
let mk_if cond f2 f3 id =
mk_or
(mk_and cond f2 true id) (mk_and (neg cond) f3 true id) false id
let mk_ite cond th el id =
let ty = type_info th in
if ty == Ty.Tbool then mk_if cond th el id
else mk_term (Sy.Op Sy.Tite) [cond; th; el] ty
let not_an_app e =
match e with
| { f = (Sy.Form _ | Sy.Lit _ | Sy.Let); _ } -> false
| { xs = []; _ } -> assert (depth e <= 1); true
| _ -> false
let mk_forall_ter =
let env = F_Htbl.create 101 in
fun new_q _id ->
let { name; main = f; _ } = new_q in
assert (SMap.for_all (fun sy _ -> SMap.mem sy f.vars) new_q.binders);
if is_ground f then f
else
try
let lem = F_Htbl.find env f in
let q = match form_view lem with Lemma q -> q | _ -> assert false in
assert (equal q.main f );
if compare_quant q new_q <> 0 then raise Exit;
if debug_warnings () then
eprintf "[warning] (sub) axiom %s replaced with %s@." name q.name;
lem
with Not_found | Exit ->
let d = new_q.main.depth in
let nb_nodes = new_q.main.nb_nodes + 1 in
let vty =
if new_q.toplevel then Ty.Svty.empty
else free_type_vars new_q.main
in
let vars =
SMap.filter (fun v _ -> not (SMap.mem v new_q.binders))
(free_vars f SMap.empty)
in
let sko = { new_q with main = neg f} in
let pos =
HC.make {f=Sy.Form Sy.F_Lemma; xs=[]; ty=Ty.Tbool;
depth=d; tag= -42; vars; vty; nb_nodes; neg = None;
bind = B_lemma new_q; pure = false}
in
let neg =
HC.make {f=Sy.Form Sy.F_Skolem; xs=[]; ty=Ty.Tbool;
depth=d; tag= -42; vars; vty; nb_nodes; neg = None;
bind = B_skolem sko; pure = false}
in
pos.neg <- Some neg;
neg.neg <- Some pos;
F_Htbl.add env f pos;
pos
let has_semantic_triggers trs =
List.exists (fun tr -> tr.semantic != []) trs
let has_hypotheses trs =
List.exists (fun tr -> tr.hyp != []) trs
let no_occur_check v e =
not (SMap.mem v e.vars)
let no_vtys l =
List.for_all (fun e -> Ty.Svty.is_empty e.vty) l
(** smart constructors for literals *)
let mk_positive_lit s neg_s l =
let ty = Ty.Tbool in
assert (
let open Sy in
match s with
| Lit (L_eq | L_built _) -> true
| Lit (L_neg_eq | L_neg_pred | L_neg_built _) | Form _
| True | False | Void | Name _ | Int _ | Real _ | Bitv _
| Op _ | Var _ | In _ | MapsTo _ | Let -> false
);
let d = 1 + List.fold_left (fun z t -> max z t.depth) 0 l in
let nb_nodes = List.fold_left (fun z t -> z + t.nb_nodes) 1 l in
let vars = free_vars_non_form s l ty in
let vty = free_type_vars_non_form l ty in
let pos =
HC.make {f=s; xs=l; ty=ty; depth=d; tag= -42; vars; vty;
nb_nodes; neg = None;
bind = B_none; pure = false}
in
if pos.neg != None then pos
else
let neg =
HC.make {f=neg_s; xs=l; ty=ty; depth=d; tag= -42;
vars; vty; nb_nodes; neg = None;
bind = B_none; pure = false}
in
assert (neg.neg == None);
pos.neg <- Some neg;
neg.neg <- Some pos;
pos
let mk_eq ~iff t1 t2 =
let c = compare t1 t2 in
if c = 0 then vrai
else
let t1, t2 = if c < 0 then t1, t2 else t2, t1 in
if type_info t1 == Ty.Tbool then
if t1 == neg t2 then faux
else
let res = mk_iff t1 t2 0 in
match res.f with
| Sy.Form _ when not iff ->
mk_positive_lit (Sy.Lit Sy.L_eq) (Sy.Lit Sy.L_neg_eq) [t1; t2]
| _ ->
res
else
mk_positive_lit (Sy.Lit Sy.L_eq) (Sy.Lit Sy.L_neg_eq) [t1; t2]
let mk_nary_eq ~iff l =
let l = List.fast_sort (fun a b -> compare b a) l in
match l with
| [] | [_] | [_;_] -> assert false
| _ ->
let _, l =
List.fold_left
(fun ((last, acc) as accu) e ->
match last with
| Some d -> if equal d e then accu else Some e, e :: acc
| None -> Some e, e :: acc
)(None, []) l
in
match l with
| [] -> assert false
| [_] -> vrai
| [a; b] -> mk_eq ~iff a b
| (e :: r) as l ->
if type_info e == Ty.Tbool then
List.fold_left (fun x y -> mk_iff x y 0) e r
else
mk_positive_lit (Sy.Lit Sy.L_eq) (Sy.Lit Sy.L_neg_eq) l
let mk_distinct ~iff tl =
match tl with
| [a; b] -> neg (mk_eq ~iff a b)
| _ -> neg (mk_nary_eq ~iff tl)
let mk_builtin ~is_pos n l =
let pos =
mk_positive_lit (Sy.Lit (Sy.L_built n)) (Sy.Lit (Sy.L_neg_built n)) l
in
if is_pos then pos else neg pos
(** Substitutions *)
let is_skolem_cst v =
try String.equal (String.sub (Sy.to_string v.f) 0 4) "_sko"
with Invalid_argument _ -> false
let get_skolem =
let hsko = Hsko.create 17 in
let gen_sko ty = mk_term (Sy.fresh "@sko") [] ty in
fun v ty ->
try Hsko.find hsko v
with Not_found ->
let c = gen_sko ty in Hsko.add hsko v c; c
let no_capture_issue s_t binders =
let new_v =
SMap.fold (fun _ t acc -> merge_vars acc t.vars) s_t SMap.empty
in
let capt_bind = SMap.filter (fun sy _ -> SMap.mem sy new_v) binders in
if SMap.is_empty capt_bind then true
else
begin
eprintf "captures between@.%aand%a!@.(captured = %a)@.@."
(SMap.print print) s_t print_binders binders print_binders capt_bind;
false
end
let rec apply_subst_aux (s_t, s_ty) t =
if is_ground t || (SMap.is_empty s_t && Ty.M.is_empty s_ty) then t
else
let { f; xs; ty; vars; vty; bind; _ } = t in
let s_t = SMap.filter (fun sy _ -> SMap.mem sy vars) s_t in
let s_ty = Ty.M.filter (fun tvar _ -> Ty.Svty.mem tvar vty) s_ty in
if SMap.is_empty s_t && Ty.M.is_empty s_ty then t
else
let s = s_t, s_ty in
let xs', same = Lists.apply (apply_subst_aux s) xs in
let ty' = Ty.apply_subst s_ty ty in
assert (xs == [] || not same || not (Ty.equal ty ty'));
match f, bind with
| Sy.Var _, _ ->
assert (xs == []);
begin
try
let v = SMap.find f s_t in
if is_skolem_cst v then get_skolem v ty else v
with Not_found ->
mk_term f [] ty'
end
| Sy.Form (Sy.F_Lemma | Sy.F_Skolem), (B_lemma q | B_skolem q) ->
assert (xs == []);
let { main; user_trs = trs; binders; sko_v; sko_vty; _ } = q
in
assert (no_capture_issue s_t binders);
assert (
not (Options.enable_assertions ()) ||
SMap.for_all (fun sy _ -> not (SMap.mem sy s_t)) binders
);
let main = apply_subst_aux s main in
let trs = List.map (apply_subst_trigger s) trs in
let binders =
SMap.fold
(fun sy (ty,i) bders ->
let ty' = Ty.apply_subst s_ty ty in
if Ty.equal ty ty' then bders
else SMap.add sy (ty', i) bders
)binders binders
in
let sko_v = List.map (apply_subst_aux s) sko_v in
let sko_vty = List.map (Ty.apply_subst s_ty) sko_vty in
let q = {q with
main; user_trs = trs; binders = binders; sko_v;
sko_vty}
in
begin match f with
| Sy.Form Sy.F_Lemma ->
mk_forall_bis q 0
| Sy.Form Sy.F_Skolem ->
neg @@ mk_forall_bis {q with main = neg main} 0
| _ -> assert false
end
| Sy.Let, B_let {let_v; let_e; in_e ; let_sko; is_bool} ->
assert (xs == []);
assert (no_capture_issue s_t (SMap.singleton let_v (let_e.ty, 0)));
let let_e2 = apply_subst_aux s let_e in
let let_sko2 = apply_subst_aux s let_sko in
assert (not (SMap.mem let_v s_t));
let in_e2 = apply_subst_aux (SMap.remove let_v s_t, s_ty) in_e in
assert (let_e != let_e2 || in_e != in_e2);
mk_let_aux {let_v; let_e=let_e2; in_e=in_e2; let_sko=let_sko2; is_bool}
| Sy.Lit Sy.L_eq, _ ->
begin match xs' with
| [] | [_] -> assert false
| [a; b] -> mk_eq ~iff:true a b
| _ -> mk_nary_eq ~iff:true xs'
end
| Sy.Lit Sy.L_neg_eq, _ ->
mk_distinct ~iff:true xs'
| Sy.Lit Sy.L_neg_pred, _ ->
neg (match xs' with [e] -> e | _ -> assert false)
| Sy.Lit (Sy.L_built n), _ ->
mk_builtin ~is_pos:true n xs'
| Sy.Lit (Sy.L_neg_built n), _ ->
mk_builtin ~is_pos:false n xs'
| Sy.Form (Sy.F_Unit _), _ ->
begin match xs' with
| [u; v] -> mk_and u v false 0
| _ -> assert false
end
| Sy.Form (Sy.F_Clause b), _ ->
begin match xs' with
| [u; v] -> mk_or u v b 0
| _ -> assert false
end
| Sy.Form Sy.F_Iff, _ ->
begin match xs' with
| [u; v] -> mk_iff u v 0
| _ -> assert false
end
| Sy.Form Sy.F_Xor, _ ->
begin match xs' with
| [u; v] -> mk_xor u v 0
| _ -> assert false
end
| _ ->
mk_term f xs' ty'
and apply_subst_trigger subst ({ content; guard; _ } as tr) =
{tr with
content = List.map (apply_subst_aux subst) content;
guard =
match guard with
| None -> guard
| Some g -> Some (apply_subst_aux subst g)
}
and mk_let_aux ({ let_v; let_e; in_e; _ } as x) =
try
let _, nb_occ = SMap.find let_v in_e.vars in
if nb_occ = 1 && (let_e.pure || Sy.equal let_v in_e.f) ||
not_an_app let_e then
apply_subst_aux (SMap.singleton let_v let_e, Ty.esubst) in_e
else
let ty = type_info in_e in
let d = max let_e.depth in_e.depth in
let nb_nodes = let_e.nb_nodes + in_e.nb_nodes + 1 in
let vars = merge_vars let_e.vars (SMap.remove let_v in_e.vars) in
let vty = Ty.Svty.union let_e.vty in_e.vty in
let pos =
HC.make {f=Sy.Let; xs=[]; ty;
depth=d; tag= -42; vars; vty; nb_nodes; neg = None;
bind = B_let x; pure = false}
in
if pos.neg != None || not x.is_bool then pos
else
let y = {x with in_e = neg in_e} in
let neg =
HC.make {f=Sy.Let; xs=[]; ty;
depth=d; tag= -42; vars; vty; nb_nodes; neg = None;
bind = B_let y; pure = false}
in
pos.neg <- Some neg;
neg.neg <- Some pos;
pos
with Not_found -> in_e
and mk_forall_bis (q : quantified) id =
let binders =
SMap.filter (fun sy _ -> SMap.mem sy q.main.vars) q.binders
in
if SMap.is_empty binders && Ty.Svty.is_empty q.main.vty then q.main
else
let q = {q with binders} in
match find_particular_subst binders q.user_trs q.main with
| None -> mk_forall_ter q 0
| Some sbs ->
let subst = sbs, Ty.esubst in
let f = apply_subst_aux subst q.main in
if is_ground f then f
else
let trs = List.map (apply_subst_trigger subst) q.user_trs in
let sko_v = List.map (apply_subst_aux subst) q.sko_v in
let binders = SMap.filter (fun x _ -> not (SMap.mem x sbs)) binders in
let q = {q with binders; user_trs = trs; sko_v; main = f } in
mk_forall_bis q id
and find_particular_subst =
let exception Found of Sy.t * t in
let rec find_subst v tv f =
match form_view f with
| Not_a_form -> assert false
| Unit _ | Lemma _ | Skolem _ | Let _ | Iff _ | Xor _ -> ()
| Clause(f1, f2,_) -> find_subst v tv f1; find_subst v tv f2
| Literal a ->
match lit_view a with
| Distinct [a;b] when
equal tv a && no_occur_check v b && no_vtys [tv;a] ->
raise (Found (v, b))
| Distinct [a;b] when
equal tv b && no_occur_check v a && no_vtys [tv; b] ->
raise (Found (v, a))
| Pred (t, is_neg) when equal tv t ->
raise (Found (v, if is_neg then vrai else faux))
| _ -> ()
in
fun binders trs f ->
if not (Ty.Svty.is_empty f.vty) || has_hypotheses trs ||
has_semantic_triggers trs
then
None
else
begin
assert (not (SMap.is_empty binders));
let sbt =
SMap.fold
(fun v (ty, _) sbt ->
try
let f = apply_subst_aux (sbt, Ty.esubst) f in
find_subst v (mk_term v [] ty) f;
sbt
with Found (x, t) ->
assert (not (SMap.mem x sbt));
let one_sbt = SMap.singleton x t, Ty.esubst in
let sbt = SMap.map (apply_subst_aux one_sbt) sbt in
SMap.add x t sbt
)binders SMap.empty
in
if SMap.is_empty sbt then None else Some sbt
end
let apply_subst =
let (cache : t Msbty.t Msbt.t TMap.t ref) = ref TMap.empty in
fun ((sbt, sbty) as s) f ->
let ch = !cache in
try TMap.find f ch |> Msbt.find sbt |> Msbty.find sbty
with Not_found ->
let nf = apply_subst_aux s f in
let c_sbt = try TMap.find f ch with Not_found -> Msbt.empty in
let c_sbty = try Msbt.find sbt c_sbt with Not_found -> Msbty.empty in
cache := TMap.add f (Msbt.add sbt (Msbty.add sbty nf c_sbty) c_sbt) ch;
nf
let apply_subst s t =
if Options.timers() then
try
Timers.exec_timer_start Timers.M_Expr Timers.F_apply_subst;
let res = apply_subst s t in
Timers.exec_timer_pause Timers.M_Expr Timers.F_apply_subst;
res
with e ->
Timers.exec_timer_pause Timers.M_Expr Timers.F_apply_subst;
raise e
else apply_subst s t
(** Subterms, and related stuff *)
let max_pure_subterms =
let args_of e =
match e.bind with
| B_lemma q | B_skolem q -> [q.main]
| B_let { let_e; in_e; _ } -> [let_e; in_e]
| _ -> e.xs
in
let rec aux acc e =
if e.pure then TSet.add e acc
else List.fold_left aux acc (args_of e)
in
fun e -> aux TSet.empty e
let rec sub_terms acc e =
match e.f with
| Sy.Form _ | Sy.Lit _ -> acc
| _ -> List.fold_left sub_terms (TSet.add e acc) e.xs
let args_of_lit e = match e.f with
| Sy.Form _ -> assert false
| Sy.Lit _ -> e.xs
| _ when e.ty == Ty.Tbool -> [e]
| _ -> assert false
let max_terms_of_lit e =
TSet.of_list @@ args_of_lit e
let max_ground_terms_of_lit =
let rec max_sub_ground acc e =
match e.f with
| Sy.Form _ | Sy.Lit _ -> assert false
| _ ->
if is_ground e then TSet.add e acc
else List.fold_left max_sub_ground acc e.xs
in
fun e -> List.fold_left max_sub_ground TSet.empty (args_of_lit e)
let atoms_rec_of_form =
let rec atoms only_ground acc f =
match form_view f with
| Not_a_form -> assert false
| Literal a ->
if not only_ground || is_ground a then TSet.add a acc else acc
| Lemma { main = f; _ } | Skolem { main = f; _ } ->
atoms only_ground acc f
| Unit(f1,f2) | Clause(f1,f2,_) | Iff (f1, f2) | Xor (f1, f2) ->
atoms only_ground (atoms only_ground acc f1) f2
| Let { let_e; in_e; _ } ->
let acc = atoms only_ground acc in_e in
if let_e.ty == Ty.Tbool then atoms only_ground acc let_e else acc
[@ocaml.ppwarning "TODO: add some stuff from let_e"]
in
fun ~only_ground f acc ->
atoms only_ground acc f
let max_ground_terms_rec_of_form f =
TSet.fold
(fun a acc -> TSet.union acc (max_ground_terms_of_lit a))
(atoms_rec_of_form ~only_ground:false f TSet.empty) TSet.empty
(** Other smart constructors and skolemization functions **)
let resolution_of_literal a binders free_vty acc =
match lit_view a with
| Pred(t, _) ->
let cond =
Ty.Svty.subset free_vty (free_type_vars t) &&
let vars = free_vars t SMap.empty in
SMap.for_all (fun sy _ -> SMap.mem sy vars) binders
in
if cond then TSet.add t acc else acc
| _ -> acc
let rec resolution_of_disj is_back f binders free_vty acc =
match form_view f with
| Literal a -> resolution_of_literal a binders free_vty acc
| Clause(g,f, true) ->
if is_back then resolution_of_disj is_back f binders free_vty acc
else resolution_of_disj is_back g binders free_vty acc
| _ -> acc
let rec resolution_of_toplevel_conj is_back f binders free_vty acc =
match form_view f with
| Unit(f1, f2) ->
resolution_of_toplevel_conj is_back f2 binders free_vty
(resolution_of_toplevel_conj is_back f1 binders free_vty acc)
| _ -> resolution_of_disj is_back f binders free_vty acc
let sub_terms_of_formula f =
let rec aux f acc =
match form_view f with
| Literal a -> List.fold_left sub_terms acc (args_of_lit a)
| Unit(f1, f2)
| Iff(f1, f2)
| Xor(f1, f2)
| Clause(f1, f2, _) -> aux f2 (aux f1 acc)
| Skolem q | Lemma q -> aux q.main acc
| Let xx ->
let acc = aux xx.in_e acc in
if type_info xx.let_e == Ty.Tbool then aux xx.let_e acc
else sub_terms acc xx.let_e
| Not_a_form -> assert false
in
aux f TSet.empty
let cand_is_more_general cand other =
let rec matches cand other =
match cand, other with
| { f = Sy.Var _; _ }, _ -> ()
| { f = f1; xs=xs1; _}, { f = f2; xs = xs2; _ } when Sy.equal f1 f2 ->
List.iter2 matches xs1 xs2
| _ -> raise Exit
in
try matches cand other; true
with Exit -> false
let resolution_triggers ~is_back { main = f; binders; _ } =
if Options.no_backward () then []
else
let free_vty = f.vty in
let cand =
resolution_of_toplevel_conj is_back f binders free_vty TSet.empty in
let others =
TSet.filter (fun t -> not (TSet.mem t cand))
(sub_terms_of_formula f)
in
TSet.fold
(fun t acc ->
if TSet.exists (cand_is_more_general t) others then acc
else
{ content = [t];
hyp = [];
semantic = [];
t_depth = t.depth;
from_user = false;
guard = None
} :: acc
)cand []
let free_type_vars_as_types e =
Ty.Svty.fold
(fun i z -> Ty.Set.add (Ty.Tvar {Ty.v=i; value = None}) z)
(free_type_vars e) Ty.Set.empty
let mk_let let_v let_e in_e _id =
let let_e_ty = type_info let_e in
let free_vars = let_e.vars in
let free_v_as_terms =
SMap.fold (fun sy (ty ,_) acc -> (mk_term sy [] ty)::acc) free_vars []
in
let let_sko = mk_term (Sy.fresh "_let") free_v_as_terms let_e_ty in
let is_bool = type_info in_e == Ty.Tbool in
mk_let_aux {let_v; let_e; in_e; let_sko; is_bool}
let skolemize { main = f; binders; sko_v; sko_vty; _ } =
let tyvars =
ignore (flush_str_formatter ());
List.iter (fun ty ->
assert (Ty.Svty.is_empty (Ty.vty_of ty));
fprintf str_formatter "<%a>" Ty.print ty
) sko_vty;
flush_str_formatter ()
in
let mk_sym cpt s =
Sy.name (Format.sprintf "!?__%s%s!%d" s tyvars cpt)
in
let grounding_sbt =
List.fold_left
(fun g_sbt sk_t ->
SMap.fold
(fun sy (ty, _) g_sbt ->
if SMap.mem sy g_sbt then g_sbt
else SMap.add sy (fresh_name ty) g_sbt
) (free_vars sk_t SMap.empty) g_sbt
)SMap.empty sko_v
in
let sbt =
SMap.fold
(fun x (ty,i) m ->
let t = mk_term (mk_sym i "_sko") sko_v ty in
let t = apply_subst (grounding_sbt, Ty.esubst) t in
SMap.add x t m
) binders SMap.empty
in
let res = apply_subst_aux (sbt, Ty.esubst) f in
assert (is_ground res);
res
let rec mk_ite_eq x c th el =
if equal th el then mk_eq_aux x th
else if equal c vrai then mk_eq_aux x th
else if equal c faux then mk_eq_aux x el
else
let e1 = mk_eq_aux x th in
let e2 = mk_eq_aux x el in
mk_and (mk_imp c e1 0) (mk_imp (neg c) e2 0) false 0
and mk_eq_aux x e =
match e.xs with
| [c;th;el] when is_ite e.f -> mk_ite_eq x c th el
| _ -> mk_eq ~iff:true x e
let mk_let_equiv let_sko let_e id =
match let_e.xs with
| [_;_;_] when is_ite let_e.f -> mk_eq_aux let_sko let_e
| _ ->
if type_info let_e == Ty.Tbool then mk_iff let_sko let_e id
else mk_eq ~iff:true let_sko let_e
let elim_let =
let ground_sko sko =
if is_ground sko then sko
else
let sbt =
SMap.fold
(fun sy (ty, _) sbt -> SMap.add sy (fresh_name ty) sbt)
(free_vars sko SMap.empty) SMap.empty
in
apply_subst (sbt, Ty.esubst) sko
in
fun { let_v; let_e; in_e; let_sko; _ } ->
assert (SMap.mem let_v (free_vars in_e SMap.empty));
let let_sko = ground_sko let_sko in
if let_sko.nb_nodes >= let_e.nb_nodes && let_e.pure then
apply_subst_aux (SMap.singleton let_v let_e, Ty.esubst) in_e
[@ocaml.ppwarning "TODO: should also inline form in form. But \
not possible to detect if we are not \
inlining a form inside a term"]
else
let id = id in_e in
let f' = apply_subst_aux (SMap.singleton let_v let_sko, Ty.esubst) in_e in
let equiv = mk_let_equiv let_sko let_e id in
let res = mk_and equiv f' false id in
assert (is_ground res);
res
let elim_iff f1 f2 id ~with_conj =
if with_conj then
mk_and
(mk_imp f1 f2 id)
(mk_imp f2 f1 id) false id
else
mk_or
(mk_and f1 f2 false id)
(mk_and (neg f1) (neg f2) false id) false id
module Triggers = struct
module Svty = Ty.Svty
module STRS =
Set.Make(
struct
type t = expr * SSet.t * Svty.t
let compare (t1,_,_) (t2,_,_) = compare t1 t2
end)
let is_prefix v = match v with
| Sy.Op Sy.Minus -> true
| _ -> false
let is_infix v =
let open Sy in
match v with
| Op (Plus | Minus | Mult | Div | Modulo) -> true
| _ -> false
let rec score_term (t : expr) =
let open Sy in
match t with
| { f = (True | False | Void | Int _ | Real _ | Bitv _ | Var _); _ } -> 0
| { f; _ } when is_infix f || is_prefix f ->
0
| { f = Op (Get | Set) ; xs = [t1 ; t2]; _ } ->
max (score_term t1) (score_term t2)
| { f = Op (Access _ | Destruct _) ; xs = [t]; _ } -> 1 + score_term t
| { f = Op Record; xs; _ } ->
1 + (List.fold_left
(fun acc t -> max (score_term t) acc) 0 xs)
| { f = Op(Set | Extract) ; xs = [t1; t2; t3]; _ } ->
max (score_term t1) (max (score_term t2) (score_term t3))
| { f= (Op _ | Name _) ; xs = tl; _ } ->
1 + (List.fold_left
(fun acc t -> max (score_term t) acc) 0 tl)
| { f = (Sy.MapsTo _ | Sy.In _); xs = [e]; _ } -> score_term e
| { f = (Lit _ | Form _ | Sy.MapsTo _ | Sy.In _ | Sy.Let); _ } ->
assert false
let rec cmp_trig_term (t1 : expr) (t2 : expr) =
let compare_expr = compare in
let open Sy in
match t1, t2 with
| { f = (True | False | Void | Int _ | Real _ | Bitv _); _ },
{ f = (True | False | Void | Int _ | Real _ | Bitv _); _ } ->
compare_expr t1 t2
| { f = (True | False | Void | Int _ | Real _ | Bitv _); _ }, _ -> -1
| _, { f = (True | False | Void | Int _ | Real _ | Bitv _); _ } -> 1
| { f = (Var _) as v1; _ }, { f = (Var _) as v2; _ } -> Sy.compare v1 v2
| { f = Var _; _ }, _ -> -1
| _, { f = Var _; _ } -> 1
| { f = s; xs = l1; _ }, { f = s'; xs = l2; _ }
when is_infix s && is_infix s' ->
let c = (score_term t1) - (score_term t2) in
if c <> 0 then c
else
let c = Sy.compare s s' in
if c <> 0 then c else Util.cmp_lists l1 l2 cmp_trig_term
| { f = s; _ }, _ when is_infix s -> -1
| _ , { f = s'; _ } when is_infix s' -> 1
| { f = s1; xs =[t1]; _ }, { f = s2; xs = [t2]; _ }
when is_prefix s1 && is_prefix s2 ->
let c = Sy.compare s1 s2 in
if c<>0 then c else cmp_trig_term t1 t2
| { f = s1; _ }, _ when is_prefix s1 -> -1
| _, { f = s2; _ } when is_prefix s2 -> 1
| { f = (Name _) as s1; xs=tl1; _ }, { f = (Name _) as s2; xs=tl2; _ } ->
let l1 = List.map score_term tl1 in
let l2 = List.map score_term tl2 in
let l1 = List.fast_sort Stdlib.compare l1 in
let l2 = List.fast_sort Stdlib.compare l2 in
let c = Util.cmp_lists l1 l2 Stdlib.compare in
if c <> 0 then c
else
let c = Sy.compare s1 s2 in
if c <> 0 then c else Util.cmp_lists tl1 tl2 cmp_trig_term
| { f = Name _; _ }, _ -> -1
| _, { f = Name _; _ } -> 1
| { f = Op Get; xs = l1; _ }, { f = Op Get; xs = l2; _ } ->
Util.cmp_lists l1 l2 cmp_trig_term
| { f = Op Get; _ }, _ -> -1
| _, { f = Op Get; _ } -> 1
| { f = Op Set; xs = l1; _ }, { f = Op Set; xs = l2; _ } ->
Util.cmp_lists l1 l2 cmp_trig_term
| { f = Op Set; _ }, _ -> -1
| _, { f = Op Set; _ } -> 1
| { f= Op Extract; xs = l1; _ }, { f = Op Extract; xs = l2; _ } ->
Util.cmp_lists l1 l2 cmp_trig_term
| { f = Op Extract; _ }, _ -> -1
| _, { f = Op Extract; _ } -> 1
| { f = Op Concat; xs = l1; _ }, { f = Op Concat; xs = l2; _} ->
Util.cmp_lists l1 l2 cmp_trig_term
| { f = Op Concat; _ }, _ -> -1
| _, { f = Op Concat; _ } -> 1
| { f = Op (Access a1) ; xs=[t1]; _ },
{ f = Op (Access a2) ; xs=[t2]; _ } ->
let c = Stdlib.compare a1 a2 in
if c<>0 then c else cmp_trig_term t1 t2
| { f = Op (Access _); _ }, _ -> -1
| _, { f = Op (Access _); _ } -> 1
| { f = Op (Destruct (_,a1)) ; xs = [t1]; _ },
{ f = Op (Destruct (_,a2)) ; xs = [t2]; _ } ->
let c = Stdlib.compare a1 a2 in
if c<>0 then c else cmp_trig_term t1 t2
| { f = Op (Destruct _); _ }, _ -> -1
| _, { f =Op (Destruct _); _ } -> 1
| { f = Op Record ; xs= lbs1; _ }, { f = Op Record ; xs = lbs2; _ } ->
Util.cmp_lists lbs1 lbs2 cmp_trig_term
| { f = Op Record; _ }, _ -> -1
| _, { f = Op Record; _ } -> 1
| { f = (Op _) as s1; xs=tl1; _ }, { f = (Op _) as s2; xs=tl2; _ } ->
let l1 = List.map score_term tl1 in
let l2 = List.map score_term tl2 in
let l1 = List.fast_sort Stdlib.compare l1 in
let l2 = List.fast_sort Stdlib.compare l2 in
let c = Util.cmp_lists l1 l2 Stdlib.compare in
if c <> 0 then c
else
let c = Sy.compare s1 s2 in
if c <> 0 then c else Util.cmp_lists tl1 tl2 cmp_trig_term
| { f = Op _; _ }, _ -> -1
| _, { f = Op _; _ } -> 1
| { f = (Lit _ | Form _ | In _ | MapsTo _ | Let); _ },
{ f = (Lit _ | Form _ | In _ | MapsTo _ | Let); _ } -> assert false
let cmp_trig_term_list tl2 tl1 =
let l1 = List.map score_term tl1 in
let l2 = List.map score_term tl2 in
let l1 = List.rev (List.fast_sort Stdlib.compare l1) in
let l2 = List.rev (List.fast_sort Stdlib.compare l2) in
let c = Util.cmp_lists l1 l2 Stdlib.compare in
if c <> 0 then c else Util.cmp_lists tl1 tl2 cmp_trig_term
let unique_stable_sort =
let rec unique l acc =
match l with
| [] -> List.rev acc
| [e] -> List.rev @@ e :: acc
| a::((b::_) as l) ->
if cmp_trig_term_list a b = 0 then unique l acc
else unique l (a :: acc)
in
fun l ->
unique (List.stable_sort cmp_trig_term_list l) []
let vty_of_term acc t = Svty.union acc t.vty
let not_pure t = not t.pure
let vars_of_term bv acc t =
SMap.fold
(fun v _ acc ->
if SSet.mem v bv then SSet.add v acc else acc
)t.vars acc
let filter_good_triggers (bv, vty) trs =
List.filter
(fun { content = l; _ } ->
not (List.exists not_pure l) &&
let s1 = List.fold_left (vars_of_term bv) SSet.empty l in
let s2 = List.fold_left vty_of_term Svty.empty l in
SSet.subset bv s1 && Svty.subset vty s2 )
trs
let is_var t = match t.f with
| Sy.Var _ -> true
| _ -> false
let at_most =
let rec atmost acc n l =
match n, l with
| n, _ when n <= 0 -> acc
| _ , [] -> acc
| n, x::l -> atmost (x::acc) (n-1) l
in
fun n l ->
let l = unique_stable_sort l in
List.rev (atmost [] n l)
module SLLT =
Set.Make(
struct
type t = expr list * SSet.t * Svty.t
let compare (a, y1, _) (b, y2, _) =
let c = try compare_lists a b compare; 0 with Util.Cmp c -> c in
if c <> 0 then c else SSet.compare y1 y2
end)
let underscore =
let aux t s =
let sbt =
SMap.fold
(fun v (ty, _occ) sbt ->
if not (SSet.mem v s) then sbt
else SMap.add v (mk_term Sy.underscore [] ty) sbt
)t.vars SMap.empty
in
if SMap.is_empty sbt then t, true
else
apply_subst (sbt, Ty.esubst) t, false
in
fun bv ((t,vt,vty) as e) ->
let s = SSet.diff vt bv in
if SSet.is_empty s then e
else
let t,_ = aux t s in
let vt = SSet.add Sy.underscore (SSet.inter vt bv) in
t,vt,vty
let parties mconf bv vty l escaped_vars =
let l =
if mconf.Util.triggers_var then l
else List.filter (fun (t,_,_) -> not (is_var t)) l
in
let rec parties_rec (llt, llt_ok) l =
match l with
| [] -> llt_ok
| (t, bv1, vty1)::l ->
let llt, llt_ok =
SLLT.fold
(fun (l, bv2, vty2) (llt, llt_ok) ->
let bv3 = SSet.union bv2 bv1 in
let vty3 = Svty.union vty2 vty1 in
let e = t::l, bv3, vty3 in
if SSet.equal bv1 bv2 && Svty.equal vty1 vty2 then
llt, llt_ok
else
if SSet.subset bv bv3 && Svty.subset vty vty3 then
llt, SLLT.add e llt_ok
else
SLLT.add e llt, llt_ok)
llt (llt, llt_ok)
in
parties_rec (SLLT.add ([t], bv1, vty1) llt, llt_ok) l
in
let l = if escaped_vars then List.rev_map (underscore bv) l else l in
let s = List.fold_left (fun z e -> STRS.add e z) STRS.empty l in
let l = STRS.elements s in
SLLT.elements (parties_rec (SLLT.empty, SLLT.empty) l)
let simplification =
let strict_subset bv vty =
List.exists
(fun (_, bv',vty') ->
(SSet.subset bv bv' && not(SSet.equal bv bv')
&& Svty.subset vty vty')
|| (Svty.subset vty vty' && not(Svty.equal vty vty')
&& SSet.subset bv bv') )
in
let rec simpl_rec bv_a vty_a acc = function
| [] -> acc
| ((_, bv, vty) as e)::l ->
if strict_subset bv vty l || strict_subset bv vty acc ||
(SSet.subset bv_a bv && Svty.subset vty_a vty) ||
(SSet.equal (SSet.inter bv_a bv) SSet.empty &&
Svty.equal (Svty.inter vty_a vty) Svty.empty)
then simpl_rec bv_a vty_a acc l
else simpl_rec bv_a vty_a (e::acc) l
in fun bv_a vty_a l ->
simpl_rec bv_a vty_a [] l
let multi_triggers menv bv vty trs escaped_vars =
let terms = simplification bv vty trs in
let l_parties = parties menv bv vty terms escaped_vars in
let lm = List.map (fun (lt, _, _) -> lt) l_parties in
let mv , mt = List.partition (List.exists is_var) lm in
let mv = List.sort (fun l1 l2 -> List.length l1 - List.length l2) mv in
let mt = List.sort (fun l1 l2 -> List.length l1 - List.length l2) mt in
let lm = if menv.Util.triggers_var then mt@mv else mt in
let m = at_most menv.Util.nb_triggers lm in
at_most menv.Util.nb_triggers m
let mono_triggers menv vterm vtype trs =
let mono = List.filter
(fun (_, bv_t, vty_t) ->
SSet.subset vterm bv_t && Svty.subset vtype vty_t) trs
in
let trs_v, trs_nv = List.partition (fun (t, _, _) -> is_var t) mono in
let base = if menv.Util.triggers_var then trs_nv @ trs_v else trs_nv in
at_most menv.Util.nb_triggers (List.map (fun (t, _, _) -> [t]) base)
let filter_interpreted_arith mono =
let m =
List.filter
(fun t ->
match t with
| [{ f = Sy.Op Sy.Plus; _ }] -> false
| [{ f = Sy.Op Sy.Minus; _ }] -> false
| _ -> true
)mono
in
match m with
| [] -> mono
| _ -> m
let make_triggers menv vterm vtype (trs : STRS.t) ~escaped_vars =
let trs = STRS.elements trs in
let mono = mono_triggers menv vterm vtype trs in
let mono = filter_interpreted_arith mono in
if menv.Util.greedy then
mono @ multi_triggers menv vterm vtype trs escaped_vars, []
else
mono,
if mono != [] then []
else multi_triggers menv vterm vtype trs escaped_vars
let free_vars_as_set e =
SMap.fold (fun sy _ s -> SSet.add sy s) e.vars SSet.empty
let potential_triggers =
let has_bvar bv_lf bv =
SMap.exists (fun e _ -> SSet.mem e bv) bv_lf
in
let has_tyvar vty vty_lf =
Svty.exists (fun e -> Svty.mem e vty) vty_lf
in
let args_of e lets =
match e.bind with
| B_lemma q | B_skolem q -> lets, [q.main]
| B_let ({ let_v; let_e; in_e; _ } as x) ->
SMap.add let_v x lets, [let_e; in_e]
| _ -> lets, e.xs
in
let rec aux ((vterm, vtype) as vars) ((strs, lets) as acc) e =
let strs, lets =
if e.pure && (has_bvar e.vars vterm || has_tyvar e.vty vtype) &&
not (is_prefix e.f)
then
let vrs = free_vars_as_set e in
STRS.add (e, vrs, e.vty) strs, lets
else
acc
in
let lets, args = args_of e lets in
List.fold_left (aux vars) (strs, lets) args
in
fun vars e ->
aux vars (STRS.empty, SMap.empty) e
let triggers_of_list l =
List.map
(fun content ->
{ content;
semantic = [];
hyp = [];
from_user = false;
guard = None;
t_depth = List.fold_left (fun z t -> max z (depth t)) 0 content
}
) l
let is_literal e =
match lit_view e with
| Not_a_lit _ -> false
| _ -> true
let trs_in_scope full_trs f =
STRS.filter
(fun (e, _, _) ->
SMap.for_all
(fun sy (ty, _) ->
try
let ty', _ = Sy.Map.find sy f.vars
in Ty.equal ty ty'
with Not_found -> false
)e.vars
)full_trs
let max_terms f exclude =
let eq = equal in
let rec max_terms acc (e : t) =
let open Sy in
match e with
| { f = Sy.Form (
Sy.F_Unit _ | Sy.F_Clause _ | Sy.F_Xor | Sy.F_Iff); _ } ->
List.fold_left max_terms acc e.xs
| { f = Sy.Form (Sy.F_Lemma | Sy.F_Skolem) | Sy.Let; _ } -> raise Exit
| { f; _ } when is_infix f -> raise Exit
| { f = Op _; _ } ->
if eq exclude e then acc else e :: acc
| { f = Name (_, _); _ } ->
if eq exclude e then acc else e :: acc
| { f = ( True | False | Void | Int _ | Real _
| Bitv _ | In (_, _) | MapsTo _ ); _ } -> acc
| { f = Var _; _ } -> raise Exit
| { f = Lit L_neg_pred; _ } -> List.fold_left max_terms acc e.xs
| { f = Lit _; _ } -> raise Exit
in
try max_terms [] f with Exit -> []
let head_is_name s a =
match a.f with
| Sy.Name(hs, _) -> String.equal (Hstring.view hs) s
| _ -> false
let term_definition s e =
match e.f, e.xs with
| (Sy.Lit Sy.L_eq | Sy.Form Sy.F_Iff), [a;b] ->
if head_is_name s a then a
else if head_is_name s b then b
else assert false
| Sy.Lit Sy.L_neg_pred, [a] when head_is_name s a ->
a
| _ ->
if head_is_name s e then e
else
let s = TSet.filter (head_is_name s) (max_pure_subterms e) in
match TSet.elements s with
| [u] -> u
| _ -> assert false
let expand_lets terms lets =
let sbt =
SMap.fold
(fun sy { let_e; _ } sbt ->
let let_e = apply_subst (sbt, Ty.esubst) let_e in
if let_e.pure then SMap.add sy let_e sbt else sbt
[@ocaml.ppwarning "TODO: once 'let x = term in term' \
added, check that the resulting sbt \
is well normalized (may be not true \
depending on the ordering of vars in \
lets"]
)lets SMap.empty
in
let sbs = sbt, Ty.esubst in
STRS.fold
(fun (e, _, _) strs ->
let e = apply_subst sbs e in
STRS.add (e, free_vars_as_set e, e.vty) strs
)terms terms
let check_user_triggers f toplevel binders trs0 ~decl_kind =
if SMap.is_empty binders && Ty.Svty.is_empty f.vty then trs0
else
let vtype = if toplevel then f.vty else Ty.Svty.empty in
let vterm = SMap.fold (fun sy _ s -> SSet.add sy s) binders SSet.empty in
if decl_kind == Dtheory then
trs0
[@ocaml.ppwarning "TODO: filter_good_triggers for this \
case once free-vars issues of theories \
axioms with hypotheses fixed"]
[@ocaml.ppwarning "TODO: do it for this case once \
free-vars issues of theories axioms \
with hypotheses fixed"]
else
filter_good_triggers (vterm, vtype) trs0
let make f binders decl_kind mconf =
if SMap.is_empty binders && Ty.Svty.is_empty f.vty then []
else
let vtype = f.vty in
let vterm = SMap.fold (fun sy _ s -> SSet.add sy s) binders SSet.empty in
match decl_kind, f with
| Dtheory, _ -> assert false
| (Dpredicate s | Dfunction s), _ ->
let e = term_definition s f in
let defn = match f with
| { f = (Sy.Form Sy.F_Iff | Sy.Lit Sy.L_eq) ; xs = [e1; e2]; _ } ->
if equal e e1 then e2 else if equal e e2 then e1 else f
| _ -> f
in
let tt = max_terms defn e in
let tt = List.fast_sort (fun a b -> depth b - depth a) tt in
filter_good_triggers (vterm, vtype) @@ triggers_of_list [[e]; tt]
| _, { f = (Sy.Form Sy.F_Iff) ; xs = [e1; e2]; _ } when is_literal e1 ->
let f_trs1, lets = potential_triggers (vterm, vtype) e1 in
let f_trs1 = expand_lets f_trs1 lets in
let trs1 = trs_in_scope f_trs1 e1 in
let f_trs2, lets = potential_triggers (vterm, vtype) e2 in
let f_trs2 = expand_lets f_trs2 lets in
let trs2 = trs_in_scope f_trs2 e2 in
let mono_1, multi_1 =
make_triggers mconf vterm vtype trs1 ~escaped_vars:false
in
let mono_2, multi_2 =
make_triggers mconf vterm vtype trs2 ~escaped_vars:false
in
let mono = List.rev_append mono_1 mono_2 in
let multi = List.rev_append multi_1 multi_2 in
let res =
match mono with
| _::_ -> mono
| [] ->
let mono_11, multi_12 =
make_triggers mconf vterm vtype f_trs1 ~escaped_vars:true
in
let mono_21, multi_22 =
make_triggers mconf vterm vtype f_trs2 ~escaped_vars:true
in
let mono' = List.rev_append mono_11 mono_21 in
let multi' = List.rev_append multi_12 multi_22 in
if mono' != [] then mono'
else if multi != [] then multi
else multi'
in
triggers_of_list res
| _ ->
let f_trs, lets = potential_triggers (vterm, vtype) f in
let f_trs = expand_lets f_trs lets in
let trs = trs_in_scope f_trs f in
let mono, multi =
make_triggers mconf vterm vtype trs ~escaped_vars:false
in
triggers_of_list @@
match mono with
| _::_ -> mono
| [] ->
let mono', multi' =
make_triggers mconf vterm vtype f_trs ~escaped_vars:true
in
if mono' != [] then mono'
else if multi != [] then multi
else multi'
end
let make_triggers = Triggers.make
let mk_forall name loc binders trs f id ~toplevel ~decl_kind =
let decl_kind =
if toplevel then decl_kind
else match decl_kind with
| Dpredicate _ | Dfunction _ -> Daxiom
| _ -> decl_kind
in
let binders =
SMap.filter (fun sy _ -> SMap.mem sy f.vars) binders
in
let sko_v =
SMap.fold (fun sy (ty, _) acc ->
if SMap.mem sy binders then acc else (mk_term sy [] ty) :: acc)
(free_vars f SMap.empty) []
in
let free_vty = free_type_vars_as_types f in
let sko_vty = if toplevel then [] else Ty.Set.elements free_vty in
let trs = Triggers.check_user_triggers f toplevel binders trs ~decl_kind in
mk_forall_bis
{name; loc; binders; toplevel;
user_trs = trs; main = f; sko_v; sko_vty; kind = decl_kind} id
let mk_exists name loc binders trs f id ~toplevel ~decl_kind =
if not toplevel || Ty.Svty.is_empty f.vty then
neg (mk_forall name loc binders trs (neg f) id ~toplevel ~decl_kind)
else
let nm = sprintf "#%s#sub-%d" name 0 in
let tmp =
neg (mk_forall nm loc binders trs (neg f) id ~toplevel:false ~decl_kind)
in
mk_forall name loc SMap.empty trs tmp id ~toplevel ~decl_kind
let rec compile_match mk_destr mk_tester e cases accu =
match cases with
| [] -> accu
| (Typed.Var x, p) :: _ ->
apply_subst ((SMap.singleton (Symbols.var x) e), Ty.esubst) p
| (Typed.Constr {name; args}, p) :: l ->
let _then =
List.fold_left
(fun acc (var, destr, ty) ->
let destr = mk_destr destr in
let d = mk_term destr [e] ty in
mk_let (Sy.var var) d acc 0
)p args
in
match l with
[] -> _then
| _ ->
let _else = compile_match mk_destr mk_tester e l accu in
let cond = mk_tester e name in
mk_ite cond _then _else 0
let debug_compile_match e cases res =
if debug_adt () then begin
fprintf fmt "compilation of: match %a with@." print e;
let p_list_vars fmt l =
match l with
[] -> ()
| [e,_,_] -> Var.print fmt e
| (e,_,_) :: l ->
fprintf fmt "(%a" Var.print e;
List.iter (fun (e,_,_) -> fprintf fmt ", %a" Var.print e) l;
fprintf fmt ")"
in
List.iter
(fun (p, v) ->
match p with
| Typed.Constr {name; args} ->
fprintf fmt "| %a %a -> %a@."
Hstring.print name
p_list_vars args
print v;
| Typed.Var x ->
fprintf fmt "| %a -> %a@." Var.print x print v;
)cases;
fprintf fmt "end@.";
fprintf fmt "@.result is: %a@.@." print res;
end
let mk_match e cases =
let ty = type_info e in
let mk_destr =
match ty with
| Ty.Tadt _ -> (fun hs -> Sy.destruct ~guarded:true (Hstring.view hs))
| Ty.Trecord _ -> (fun hs -> Sy.Op (Sy.Access hs))
| Ty.Tsum _ -> (fun _hs -> assert false)
| _ -> assert false
in
let mk_tester =
match ty with
| Ty.Tadt _ ->
(fun e name -> mk_builtin ~is_pos:true (Sy.IsConstr name) [e])
| Ty.Trecord _ ->
(fun _e _name -> assert false)
| Ty.Tsum _ ->
(fun e n ->
let constr = mk_term (Sy.constr (Hstring.view n)) [] (type_info e) in
mk_eq ~iff:false e constr)
| _ -> assert false
in
let res = compile_match mk_destr mk_tester e cases e in
debug_compile_match e cases res;
res
[@ocaml.ppwarning "TODO: introduce a let if e is a big expr"]
[@ocaml.ppwarning "TODO: add other elim schemes"]
[@ocaml.ppwarning "TODO: add a match construct in expr"]
let is_pure e = e.pure
module Purification = struct
let rec purify_term t lets =
if t.pure then t, lets
else
match t.f, t.bind with
| Sy.Let, B_let { let_v; let_e; in_e; _ } ->
let let_e, lets = purify_term let_e lets in
let in_e , lets = purify_term in_e lets in
in_e, SMap.add let_v let_e lets
| (Sy.Lit _ | Sy.Form _), _ ->
let fresh_sy = Sy.fresh ~is_var:true "Pur-F" in
mk_term fresh_sy [] t.ty , SMap.add fresh_sy t lets
| _ ->
match term_view t with
| Not_a_term _ -> assert false
| Term t ->
match t.xs with
| [_;_;_] when is_ite t.f ->
let fresh_sy = Sy.fresh ~is_var:true "Pur-Ite" in
mk_term fresh_sy [] t.ty , SMap.add fresh_sy t lets
| _ ->
let xs, lets =
List.fold_left (fun (acc, lets) t ->
let t', lets' = purify_term t lets in
t' :: acc, lets'
) ([], lets) (List.rev t.xs)
in
mk_term t.f xs t.ty, lets
and purify_generic mk l =
let l, lets =
List.fold_left (fun (acc, lets) t ->
let t', lets' = purify_term t lets in
t' :: acc, lets'
)([], SMap.empty) (List.rev l)
in
mk_lifted (mk l) lets
and purify_eq l =
purify_generic (fun l ->
match l with
| [] | [_] -> assert false
| [a; b ] -> mk_eq ~iff:true a b
| l -> mk_nary_eq ~iff:true l
) l
and purify_distinct l =
purify_generic (fun l -> mk_distinct ~iff:true l) l
and purify_builtin neg pred l =
purify_generic (fun l -> mk_builtin ~is_pos:neg pred l) l
and purify_predicate p is_neg =
purify_generic (fun l ->
match l with
| [e] -> if is_neg then neg e else e
| _ -> assert false
) [p]
and purify_literal e =
if List.for_all is_pure e.xs then e
else match lit_view e with
| Not_a_lit _ -> assert false
| Eq (a, b) ->
assert (a.ty != Ty.Tbool);
purify_eq [a; b]
| Eql l -> purify_eq l
| Distinct l -> purify_distinct l
| Builtin (neg,prd,l) -> purify_builtin neg prd l
| Pred (p, is_neg) -> purify_predicate p is_neg
and purify_form e =
assert (e.ty == Ty.Tbool);
if is_pure e then e
else
match e.f with
| Sy.True | Sy.False | Sy.Var _ | Sy.In _ ->
e
| Sy.Name _ ->
let e, lets = purify_term e SMap.empty in
mk_lifted e lets
| Sy.Let ->
begin match e.xs, e.bind with
| [], B_let ({ let_e; in_e; _ } as letin) ->
if let_e.pure && in_e.pure then e
else
let let_e', lets =
purify_term let_e SMap.empty
in
let in_e' = purify_form in_e in
if let_e == let_e' && in_e == in_e' then e
else
mk_lifted
(mk_let_aux {letin with let_e = let_e'; in_e = in_e'})
lets
| _, (B_lemma _ | B_skolem _ | B_none | B_let _) -> assert false
end
| Sy.Void | Sy.Int _ | Sy.Real _ | Sy.Bitv _ | Sy.Op _ | Sy.MapsTo _ ->
assert false
| Sy.Lit _ -> purify_literal e
| Sy.Form x ->
begin match x, e.xs, e.bind with
| Sy.F_Unit imp, [a;b], _ ->
let a' = purify_form a in
let b' = purify_form b in
if a == a' && b == b' then e else mk_and a' b' imp 0
| Sy.F_Clause imp, [a;b], _ ->
let a' = purify_form a in
let b' = purify_form b in
if a == a' && b == b' then e else mk_or a' b' imp 0
| Sy.F_Iff, [a;b], _ ->
let a' = purify_form a in
let b' = purify_form b in
if a == a' && b == b' then e else mk_iff a' b' 0
| Sy.F_Xor, [a;b], _ ->
let a' = purify_form a in
let b' = purify_form b in
if a == a' && b == b' then e else mk_xor a' b' 0
| Sy.F_Lemma, [], B_lemma q ->
let m = purify_form q.main in
if m == q.main then e
else mk_forall_ter {q with main = m} 0
| Sy.F_Skolem, [], B_skolem q ->
let m = purify_form q.main in
if m == q.main then e
else neg (mk_forall_ter {q with main = (neg m)} 0)
| (Sy.F_Unit _ | Sy.F_Clause _ | Sy.F_Iff
| Sy.F_Xor | Sy.F_Skolem | Sy.F_Lemma),
_, _ ->
assert false
end
and mk_lifted e lets =
SMap.fold
(fun let_v let_e acc ->
let let_e, lets =
purify_non_toplevel_ite let_e SMap.empty in
assert (let_e.ty != Ty.Tbool || SMap.is_empty lets);
mk_lifted (mk_let let_v let_e acc 0) lets
)lets e
and purify_non_toplevel_ite e lets =
match e.f, e.xs with
| _, [c; th; el] when is_ite e.f ->
let c = purify_form c in
let th, lets = purify_non_toplevel_ite th lets in
let el, lets = purify_non_toplevel_ite el lets in
mk_term e.f [c; th; el] e.ty, lets
| (Sy.Form _ | Sy.Lit _), _ -> purify_form e, lets
| _ -> purify_term e lets
end
let purify_form = Purification.purify_form
module Set = TSet
module Map = TMap
type gformula = {
ff: expr;
nb_reductions : int;
trigger_depth : int;
age: int;
lem: expr option;
origin_name : string;
from_terms : expr list;
mf: bool;
gf: bool;
gdist : int;
hdist : int;
theory_elim : bool;
}
type th_elt =
{
th_name : string;
ax_name : string;
ax_form : t;
extends : Util.theories_extensions;
axiom_kind : Util.axiom_kind;
}
let print_th_elt fmt t =
Format.fprintf fmt "%s/%s: @[<hov>%a@]" t.th_name t.ax_name print t.ax_form