Source file datalog.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
open UtilsLib
open Focused_list
open Containers
open Datalog_AbstractSyntax
module ASPred = AbstractSyntax.Predicate
module ASRule = AbstractSyntax.Rule
module ASProg = AbstractSyntax.Program
module Log = UtilsLib.Xlog.Make (struct
let name = "Datalog"
end)
module type Datalog_Sig = sig
exception Fails
module UF : UnionFind.S
module Predicate : sig
type predicate = { p_id : ASPred.pred_id; arity : int }
val make_predicate :
Datalog_AbstractSyntax.AbstractSyntax.Predicate.predicate -> predicate
module PredMap : Map.S with type key = ASPred.pred_id
module FactSet : Set.S with type elt = ASPred.predicate
val conditionnal_add :
FactSet.elt -> FactSet.t -> FactSet.t -> FactSet.t -> FactSet.t
val pp_facts :
ASPred.PredIdTable.table ->
Datalog_AbstractSyntax.ConstGen.Table.table ->
Format.formatter ->
FactSet.t PredMap.t ->
unit
module PredicateMap : Map.S with type key = ASPred.predicate
module Premise : sig
type t = ASPred.predicate list * int * int
val pp_premises :
?with_id:bool ->
ASPred.PredIdTable.table ->
Datalog_AbstractSyntax.ConstGen.Table.table ->
Format.formatter -> t ->
unit
end
module PremiseSet : Set.S with type elt = Premise.t
val pp_facts_from_premises :
?with_id:bool ->
ASPred.PredIdTable.table ->
Datalog_AbstractSyntax.ConstGen.Table.table ->
Format.formatter ->
PremiseSet.t PredicateMap.t ->
unit
val format_derivations2 :
?query:Datalog_AbstractSyntax.AbstractSyntax.Predicate.predicate ->
ASPred.PredIdTable.table ->
Datalog_AbstractSyntax.ConstGen.Table.table ->
PremiseSet.t PredicateMap.t ->
unit
val add_pred_arguments_to_content :
ASPred.term list ->
Datalog_AbstractSyntax.ConstGen.id UF.content list
* int
* int Datalog_AbstractSyntax.VarGen.IdMap.t ->
Datalog_AbstractSyntax.ConstGen.id UF.content list
* int
* int Datalog_AbstractSyntax.VarGen.IdMap.t
end
module Rule : sig
type rule = {
id : int;
lhs : Predicate.predicate;
e_rhs : (Predicate.predicate * int) list;
i_rhs : (Predicate.predicate * int) list;
i_rhs_num : int;
content : Datalog_AbstractSyntax.ConstGen.id UF.t;
}
val make_rule : ASRule.rule -> rule
val cyclic_unify : int -> int -> 'a UF.t -> 'a UF.t
module FactArray : sig
type row = Predicate.FactSet.t
type array = row list
val collect_results :
('a ->
(int * Datalog_AbstractSyntax.ConstGen.id UF.t)
* Predicate.FactSet.elt list ->
'a) ->
'a ->
(int * Datalog_AbstractSyntax.ConstGen.id UF.t)
* Predicate.FactSet.elt list ->
array ->
'a
end
val immediate_consequence_of_rule :
rule -> FactArray.row Predicate.PredMap.t -> ASPred.predicate list
val to_abstract : rule -> ASPred.PredIdTable.table -> ASRule.rule
module Rules : Set.S with type elt = rule
end
module Program : sig
type program = {
rules : Rule.Rules.t Predicate.PredMap.t;
edb : ASPred.pred_id list;
edb_facts : Predicate.FactSet.t Predicate.PredMap.t;
idb : ASPred.pred_id list;
pred_table : ASPred.PredIdTable.table;
const_table : Datalog_AbstractSyntax.ConstGen.Table.table;
rule_id_gen : IdGenerator.IntIdGen.t;
abstract_rules : ASRule.Rules.t;
}
val empty : program
val make_program : ASProg.program -> program
val temp_facts :
Rule.rule ->
Rule.FactArray.row Predicate.PredMap.t ->
Rule.FactArray.row Predicate.PredMap.t ->
Rule.FactArray.row Predicate.PredMap.t ->
Rule.FactArray.row Predicate.PredMap.t ->
(ASPred.predicate * Predicate.FactSet.elt list -> Rule.rule -> 'a -> 'a) ->
'a ->
ASPred.PredIdTable.table ->
Datalog_AbstractSyntax.ConstGen.Table.table ->
'a
val p_semantics_for_predicate :
Predicate.PredMap.key ->
program ->
Rule.FactArray.row Predicate.PredMap.t ->
Rule.FactArray.row Predicate.PredMap.t ->
Rule.FactArray.row Predicate.PredMap.t ->
Rule.FactArray.row Predicate.PredMap.t ->
Predicate.PremiseSet.t Predicate.PredicateMap.t ->
Predicate.FactSet.t * Predicate.PremiseSet.t Predicate.PredicateMap.t
val seminaive :
program ->
Rule.FactArray.row Predicate.PredMap.t
* Predicate.PremiseSet.t Predicate.PredicateMap.t
val to_abstract : program -> ASProg.program
val extend : program -> ASProg.modifier -> program
val add_e_facts :
program ->
ASRule.rule list
* Datalog_AbstractSyntax.ConstGen.Table.table
* IdGenerator.IntIdGen.t ->
program
val add_rule : intensional:bool -> ASRule.rule -> program -> program
(** [add_rule i r p] adds a [ASRule.rule] to a [Datalog.Program]
with the assumption that it will not change the {em nature} of
any predicate (that is making it change from extensional to
intensional). If [i] is set to true, then the rule concerns an
intensional predicate. If it is set to [false] then it
concerns an extensional predicate and the rhs of the rule
should be empty.*)
val remove_rule : int -> ASPred.pred_id -> program -> program
(** [remove_rule id p] returns the program [p] from which the rule
with id [id] has been removed.
IMPORTANT: This function only deals with rules introducing
intensional predicate, because it is used when a constant is
given several interpretations in a lexicon.
*)
val get_fresh_rule_id : program -> int * program
val get_fresh_cst_id :
string -> program -> Datalog_AbstractSyntax.ConstGen.id * program
val add_pred_sym : string -> program -> ASPred.pred_id * program
val build_forest :
?query:Datalog_AbstractSyntax.AbstractSyntax.Predicate.predicate ->
Predicate.PremiseSet.t Predicate.PredicateMap.t ->
program ->
int SharedForest.SharedForest.forest list
val pp_edb : Format.formatter -> program -> unit
end
end
module Make (S : UnionFind.Store) = struct
exception Fails
module UF = UnionFind.Make (S)
module Predicate = struct
type predicate = { p_id : ASPred.pred_id; arity : int }
(** For the type of the predicates, we use the same identifiers as
for the predicates of the datalog abstract syntax {!
Datalog_AbstractSyntax.AbstractSyntax.Predicate} *)
(** [make_predicate p] returns an actual predicate from some
abstract syntax representation {!
Datalog_AbstractSyntax.AbstractSyntax.Predicate} *)
let make_predicate p = { p_id = p.ASPred.p_id; arity = p.ASPred.arity }
(** [to_abstract p (s,content) (vars,vargen)] returns a triple
[(abs_p,vars',vargen')] where [abs_p] is the [p] predicate
translated into an equivalent predicate from the datalog
abstract syntax. In order to be able to perform this
translation, we need [s] and index and [content] a indexed
storage data structure which is meant to contain the arguments
of [p] starting at index [s]. Then, in case some variable are
still present, to be able to translate them according to the
other variables that could be in the content [content], we
need to check in [vars] if it's index already was associated
to some [VarGen.id] generated by [vargen]. In this case
[vars'=vars] and [vargen'=vargen], otherwise [vars'] is [var]
with a new variable generated by [vargen] associated to the
variable index, and [vargen'] is the result of generating this
new variable from [vargen].*)
let to_abstract { p_id = id; arity } (start, content) (vars, vargen)
pred_table =
Log.debug (fun m ->
m
"Starting the extraction of predicate \"%a/%d\" from the \
following content:@,\
@[<v> @[%a@]@]"
(ASPred.pp pred_table ConstGen.Table.empty)
{ ASPred.p_id = id; ASPred.arity; ASPred.arguments = [] }
arity (UF.pp ?size:None) content);
let get_var i (vars, vargen) =
try (Utils.IntMap.find i vars, (vars, vargen))
with Not_found ->
let new_var, new_vargen = VarGen.get_fresh_id vargen in
Log.debug (fun m ->
m "Generated the variable: %s" (VarGen.id_to_string new_var));
(new_var, (Utils.IntMap.add i new_var vars, new_vargen))
in
let new_vars, new_vargen, rev_arguments =
List.fold_left
(fun (vars, vargen, acc) -> function
| UF.Value v -> (vars, vargen, ASPred.Const v :: acc)
| UF.Link_to i ->
let var, (new_vars, new_vargen) = get_var i (vars, vargen) in
(new_vars, new_vargen, ASPred.Var var :: acc))
(vars, vargen, [])
(UF.extract ~start arity content)
in
( { ASPred.p_id = id; ASPred.arity; arguments = List.rev rev_arguments },
new_vars,
new_vargen )
(** [lst_to_abstract lst (start,content) (vars,vargen)] returns a
5-uple [(abs_p_lst,length,start',vars',vargen')] where all the
predicates of [lst] have been translated and put into
[abs_p_lst] whose length is [length]. The predicates in [lst] are supposed to be
represented in [content] starting at index [start] in an
adjacent way. [start'] indexes the component of the next
predicate in [content], and [vars'] and [vargen'] keep track
of the variable that can have been generated. *)
let lst_to_abstract lst (start, content) (vars, vargen) pred_table =
let next_idx, vars', vargen', abs_preds, length =
List.fold_left
(fun (s, l_vars, l_vargen, acc, l) (p, pos) ->
let abs_p, new_vars, new_vargen =
to_abstract p (s, content) (l_vars, l_vargen) pred_table
in
(s + p.arity, new_vars, new_vargen, (abs_p, pos) :: acc, l + 1))
(start, vars, vargen, [], 0)
lst
in
(List.rev abs_preds, length, next_idx, vars', vargen')
(** [instantiate_with p (i,c)] instantiates the content [c] with the
fact [p] starting at [i]. It returns a pair [(i',c')] when [i]
is the index of the first component of the [p] predicate in the
content [c] {e THIS IS NOT CHECKED HERE}. [i'=i+a] where [a] is
the arity of [p] (it means [i'] should index the first component
of the next predicate in the content of the rule) and [c'] is a
new content where all the components between [i] and [i'-1] have
been instantiated with the components of [p]. When such an
instantiation fails, it raises {! UF.Union_Failure} *)
let instantiate_with
{ ASPred.p_id = _; ASPred.arity = _; ASPred.arguments = args }
(idx, content) =
let last_i, (new_c, _) =
List.fold_left
(fun (i, (cont, vars)) value ->
( i + 1,
match value with
| ASPred.Const v -> (UF.instantiate i v cont, vars)
| ASPred.Var var -> (
try (UF.union i (VarGen.IdMap.find var vars) cont, vars)
with Not_found -> (cont, VarGen.IdMap.add var i vars)) ))
(idx, (content, VarGen.IdMap.empty))
args
in
(last_i, new_c)
[@@@warning "-69"]
type unifiable_predicate = {
u_p_id : ASPred.pred_id;
u_arity : int;
content : ConstGen.id UF.t;
}
[@@@warning "+69"]
(** [add_pred_arguments_to_content arguments (content,idx,mapped_vars)]
returns a triple (content',idx',mapped_vars') where [content']
is the list [content] to which has been added {e *in the reverse
order*} the information from [arguments]. The update is such
that if the argument of [arguments] is a [Var i] then it is
replaced by a [Link_to j] such that [j] is the index at which
the variable [Var i] was met for the first time (it is stored in
[mapped_vars]. If the argument is a [Const c], then a [Value c]
is added at the current position. [idx'] is the value of the
next position if another list of arguments has to be added. And
[mapped_vars'] is a map from variables [Var i] to positions
(i.e. [int]) in which these variables first occur in [content']
- [arguments] is the list of the arguments of some predicate
- [content] is a list meant to become the content of a rule,
i.e. an indexed storage data structure that is meant to be
extended with [arguments]. *BE CAREFUL: IT COMES IN INVERSE
ORDER*
- [idx] is the index to be given for the next element of
[content]
- [mapped_vars] is a mapping from [P.Var i] variables to the
index at which they've been stored in [content]. When such a
variable is met for the first time, as expected in the
UnionFind data structure, the content at [idx] is [Link_to]'ed
itself. *)
let add_pred_arguments_to_content arguments (content, idx, mapped_vars) =
List.fold_left
(fun (cont, i, vars) (arg : ASPred.term) ->
match arg with
| ASPred.Var v -> (
try
let var_index = VarGen.IdMap.find v vars in
(UF.Link_to var_index :: cont, i + 1, vars)
with Not_found ->
(UF.Link_to i :: cont, i + 1, VarGen.IdMap.add v i vars))
| ASPred.Const c -> (UF.Value c :: cont, i + 1, vars))
(content, idx, mapped_vars)
arguments
let make_unifiable_predicate { ASPred.p_id; ASPred.arity; ASPred.arguments }
=
let content_as_lst, _, _ =
add_pred_arguments_to_content arguments ([], 1, VarGen.IdMap.empty)
in
{
u_p_id = p_id;
u_arity = arity;
content = UF.create (List.rev content_as_lst);
}
let unifiable p u_p =
try
if p.ASPred.p_id = u_p.u_p_id then
let _ = instantiate_with p (1, u_p.content) in
true
else false
with UF.Union_Failure -> false
module PredMap = ASPred.PredIdMap
(** A map whose key is of type of the predicates identifers *)
(** A map whose key is of type [predicate] *)
module FactSet = Set.Make (struct
type t = ASPred.predicate
let compare = ASPred.compare ~with_arguments:true
end)
let pp_facts pred_table cst_table fmt facts =
PredMap.iter
(fun _ facts_for_pred ->
FactSet.iter
(fun fact ->
Format.fprintf fmt "%a.@;" (ASPred.pp pred_table cst_table) fact)
facts_for_pred)
facts
(** [conditionnal_add e s1 s2 s3] adds [e] to the set [s1] only if
[e] doesn't belong to [s2] nor to [s3]*)
let conditionnal_add e s1 s2 s3 =
if FactSet.mem e s2 then s1
else if FactSet.mem e s3 then s1
else FactSet.add e s1
(** A map indexed by integers to store facts at step (or time) [i]
in the seminaive algorithm. These facts are also indexed by
[predicate_id_type]. *)
module Premise = struct
type t = ASPred.predicate list * int * int
let rec lst_compare pred_lst_1 pred_lst_2 =
match (pred_lst_1, pred_lst_2) with
| [], [] -> 0
| _, [] -> 1
| [], _ -> -1
| p1 :: tl1, p2 :: tl2 ->
let diff = ASPred.compare p1 p2 in
if diff <> 0 then diff else lst_compare tl1 tl2
let compare (pred_lst_1, r_id_1, child_num_1)
(pred_lst_2, r_id_2, child_num_2) =
let cmp = r_id_1 - r_id_2 in
if cmp <> 0 then cmp
else
let cmp = child_num_1 - child_num_2 in
if cmp <> 0 then cmp else lst_compare pred_lst_1 pred_lst_2
let pp_premises ?(with_id = false) pred_table const_table fmt (premises, r_id, i_num) =
Format.fprintf fmt
"@[<v>%a@]@[(rule id: %d,@ number of intensional predicates: %d)@]"
(Utils.pp_list ~sep:"," (ASPred.pp ~with_id pred_table const_table))
premises r_id i_num
end
module PremiseSet = Set.Make (Premise)
module PredicateMap = Map.Make (struct
type t = ASPred.predicate
let compare = ASPred.compare ~with_arguments:true
end)
let rec format_derivations2 ?query pred_table cst_table map =
let u_query =
match query with
| Some q -> Some (make_unifiable_predicate q)
| None -> None
in
PredicateMap.iter
(fun k v ->
match u_query with
| Some q when not (unifiable k q) -> ()
| _ ->
let () =
format_derivation "" k v pred_table cst_table map FactSet.empty
in
Printf.fprintf stdout "\n")
map
and format_derivation prefix k v pred_table cst_table map set =
if FactSet.mem k set then
Printf.printf "... (infinite loop on %s)"
(Format.asprintf "%a" (ASPred.pp pred_table cst_table) k)
else
let new_set = FactSet.add k set in
let _ =
PremiseSet.fold
(fun (premises, rule_id, _) (first, length) ->
let new_length, new_prefix =
match first with
| true ->
let s =
Format.asprintf "%a" (ASPred.pp pred_table cst_table) k
in
let () = Printf.fprintf stdout "%s" s in
let n_l = String.length s in
(n_l, Printf.sprintf "%s%s" prefix (String.make n_l ' '))
| false ->
let () =
Printf.fprintf stdout "\n%s %s" prefix
(String.make (length - 2) '>')
in
( length,
Printf.sprintf "%s %s" prefix
(String.make (length - 2) ' ') )
in
let () =
format_premises2 new_prefix (List.rev premises) rule_id true
pred_table cst_table map new_set
in
(false, new_length))
v (true, 0)
in
()
and format_premises2 prefix premises rule_id first pred_table cst_table map
set =
let rule_info = Printf.sprintf " (rule %d) " rule_id in
let space_holder = String.make (String.length rule_info) ' ' in
let () =
match first with
| true -> Printf.fprintf stdout "%s:--" rule_info
| false -> Printf.fprintf stdout "\n%s%s|--" prefix space_holder
in
match premises with
| [] -> ()
| [ p ] ->
let () =
try
format_derivation
(Printf.sprintf "%s%s " prefix space_holder)
p (PredicateMap.find p map) pred_table cst_table map set
with Not_found ->
Printf.fprintf stdout "%s (not found)"
(Format.asprintf "%a" (ASPred.pp pred_table cst_table) p)
in
Printf.fprintf stdout ""
| p :: tl ->
let () =
try
format_derivation
(Printf.sprintf "%s%s " prefix space_holder)
p (PredicateMap.find p map) pred_table cst_table map set
with Not_found ->
Printf.fprintf stdout "%s"
(Format.asprintf "%a" (ASPred.pp pred_table cst_table) p)
in
let () =
format_premises2 prefix tl rule_id false pred_table cst_table map
set
in
Printf.fprintf stdout ""
let pp_facts_from_premises ?(with_id = false) pred_table cst_table fmt facts =
PredicateMap.iter
(fun pred pred_facts ->
PremiseSet.iter
(fun premise ->
Format.fprintf fmt "@[<v>%a <-@[ @[<v>%a@]@]@]"
(ASPred.pp ~with_id pred_table cst_table)
pred
(Premise.pp_premises ~with_id pred_table cst_table)
premise)
pred_facts)
facts
let add_to_map_to_set k v m =
let current_set =
try PredicateMap.find k m with Not_found -> PremiseSet.empty
in
PredicateMap.add k (PremiseSet.add v current_set) m
end
module Derivation = struct end
module Rule = struct
type rule = {
id : int;
lhs : Predicate.predicate;
e_rhs : (Predicate.predicate * int) list;
i_rhs : (Predicate.predicate * int) list;
i_rhs_num : int;
content : ConstGen.id UF.t;
}
(** In a [rule], all the compoments of all the predicates
are stored in a {! UnionFind} indexed data structure. We assume
here that from [1] to [lhs.arity] the components of the left
hand side predicate are stored, then from [lhs.arity+1] to
[lhs.arity+(hd rhs).arity] the components of the first predicate
on the right hand side are stored, etc. It is assumed that this
structure is correct (no cycle, links within the range, etc.) *)
module Rules = Set.Make (struct
type t = rule
let compare { id = i; _ } { id = j; _ } = i - j
end)
(** [make_rule r] returns an internal rule, that is one whose
content is now a {! UnionFind.UnionFind} indexed data
structure *)
let make_rule ASRule.{ id; lhs; e_rhs; i_rhs; i_rhs_num; rhs_num = _ } =
Log.debug (fun m -> m "Preparing the lhs content...");
let lhs_content =
Predicate.add_pred_arguments_to_content lhs.ASPred.arguments
([], 1, VarGen.IdMap.empty)
in
Log.debug (fun m -> m "Done.");
Log.debug (fun m -> m "Preparing the e_rhs...");
let e_rhs, e_rhs_content =
List.fold_left
(fun (rhs, content)
( {
ASPred.p_id = n;
ASPred.arity = k;
ASPred.arguments = pred_args;
},
pos ) ->
( ({ Predicate.p_id = n; Predicate.arity = k }, pos) :: rhs,
Predicate.add_pred_arguments_to_content pred_args content ))
([], lhs_content) e_rhs
in
Log.debug (fun m -> m "Done.");
Log.debug (fun m -> m "Preparing the i_rhs...");
let i_rhs, (content, _, _) =
List.fold_left
(fun (rhs, content)
( {
ASPred.p_id = n;
ASPred.arity = k;
ASPred.arguments = pred_args;
},
pos ) ->
( ({ Predicate.p_id = n; Predicate.arity = k }, pos) :: rhs,
Predicate.add_pred_arguments_to_content pred_args content ))
([], e_rhs_content) i_rhs
in
Log.debug (fun m -> m "Done. Content is of size %d" (List.length content));
let internal_content = UF.create (List.rev content) in
Log.debug (fun m ->
m "It is represented by:@,@[<v> @[%a@]@]" (UF.pp ?size:None)
internal_content);
{
id;
lhs = Predicate.make_predicate lhs;
e_rhs = List.rev e_rhs;
i_rhs = List.rev i_rhs;
i_rhs_num;
content = internal_content;
}
let cyclic_unify i j h =
match UF.cyclic i h with
| true, _ -> raise Fails
| _, _h' -> ( try UF.union i j h with UF.Union_Failure -> raise Fails)
(** [extract_consequence r content] returns a fact from
content. The arguments are of the form [Const c] or [Var v]
(that is something of type {!
Datalog_AbstractSyntax.AbstractSyntax.Predicate.term}). When
it is a [Var v], it means that when this variable range over
the constants of the program, it still are facts (=
provable). *)
let r content =
let args, _, _ =
List.fold_left
(fun (args, varmap, vargen) elt ->
match elt with
| UF.Value v -> (ASPred.Const v :: args, varmap, vargen)
| UF.Link_to i ->
let new_var, new_varmap, new_vargen =
try (Utils.IntMap.find i varmap, varmap, vargen)
with Not_found ->
let n_v, n_vg = VarGen.get_fresh_id vargen in
(n_v, Utils.IntMap.add i n_v varmap, n_vg)
in
(ASPred.Var new_var :: args, new_varmap, new_vargen))
([], Utils.IntMap.empty, VarGen.init ())
(UF.extract r.lhs.Predicate.arity content)
in
{
ASPred.p_id = r.lhs.Predicate.p_id;
ASPred.arity = r.lhs.Predicate.arity;
ASPred.arguments = List.rev args;
}
(** [to_abstract r table] returns a datalog abstract syntax rule where
the arguments of all (datalog abstract syntax) predicates have been
computed using [r.content] and the symbol are the one stored in
[table]. *)
let to_abstract { id; lhs; e_rhs; i_rhs; i_rhs_num; content } pred_table =
Log.debug (fun m ->
m "Going to work with the following content:@,@[<v> @[%a@]@]"
(UF.pp ?size:None) content);
let abs_lhs, vars, vargen =
Predicate.to_abstract lhs (1, content)
(Utils.IntMap.empty, VarGen.init ())
pred_table
in
let abs_e_rhs, e_rhs_length, start', vars', vargen' =
Predicate.lst_to_abstract e_rhs
(1 + lhs.Predicate.arity, content)
(vars, vargen) pred_table
in
let abs_i_rhs, i_rhs_length, _, _, _ =
Predicate.lst_to_abstract i_rhs (start', content) (vars', vargen')
pred_table
in
let abs_rule =
{
ASRule.id;
ASRule.lhs = abs_lhs;
ASRule.e_rhs = abs_e_rhs;
ASRule.i_rhs = abs_i_rhs;
ASRule.i_rhs_num;
ASRule.rhs_num = e_rhs_length + i_rhs_length;
}
in
abs_rule
(** [FactArray] is a module implementing a traversal of facts using
the {! ArrayTraversal.Make} functor. The [update] function is
such that we don't consider cells (i.e. facts) that don't unify
with the rule (i.e. a {! UF.Union_Failure} exception was
raised).*)
module FactArray = ArrayTraversal.Make2 (struct
type cell = Predicate.FactSet.elt
type state = (int * ConstGen.id UF.t) * cell list
module CellSet = Predicate.FactSet
let update (s, cells) c =
try Some (Predicate.instantiate_with c s, c :: cells)
with UF.Union_Failure -> None
end)
(** [immediate_consequence_of_rule r db] returns a list of facts
generated by the rule [r] using the facts stored in [db]. {e
*these facts are not added to [db] when collecting the new
facts*}.
Note that it is important that resulting states need to be
processed otherwise they will be lost in backtracking when using
{! PersistentArray}.*)
let immediate_consequence_of_rule r db =
let make_search_array_i_pred =
List.map
(fun (pred, _) -> Predicate.PredMap.find pred.Predicate.p_id db)
r.i_rhs
in
let resume_on_i_pred acc state =
FactArray.collect_results
(fun l_acc ((_, content), _) ->
extract_consequence r content :: l_acc)
acc state make_search_array_i_pred
in
let make_search_array_e_pred =
List.map
(fun (pred, _) -> Predicate.PredMap.find pred.Predicate.p_id db)
r.e_rhs
in
FactArray.collect_results
(fun acc s -> resume_on_i_pred acc s)
[]
((r.lhs.Predicate.arity + 1, r.content), [])
make_search_array_e_pred
end
module Program = struct
type program = {
rules : Rule.Rules.t Predicate.PredMap.t;
edb : ASPred.pred_id list;
edb_facts : Predicate.FactSet.t Predicate.PredMap.t;
idb : ASPred.pred_id list;
pred_table : ASPred.PredIdTable.table;
const_table : ConstGen.Table.table;
rule_id_gen : IdGenerator.IntIdGen.t;
abstract_rules : ASRule.Rules.t;
}
let empty =
{
rules = Predicate.PredMap.empty;
edb = [];
idb = [];
edb_facts = Predicate.PredMap.empty;
pred_table = ASPred.PredIdTable.empty;
const_table = ConstGen.Table.empty;
rule_id_gen = IdGenerator.IntIdGen.init ();
abstract_rules = ASRule.Rules.empty;
}
let extend_map_to_list k v map_list =
try
let lst = Predicate.PredMap.find k map_list in
Predicate.PredMap.add k (v :: lst) map_list
with Not_found -> Predicate.PredMap.add k [ v ] map_list
[@@warning "-32"]
let extend_map_to_rule_set k v map_to_set =
let current_set =
try Predicate.PredMap.find k map_to_set
with Not_found -> Rule.Rules.empty
in
Predicate.PredMap.add k (Rule.Rules.add v current_set) map_to_set
let extend_map_to_set k v map_to_set =
let current_set =
try Predicate.PredMap.find k map_to_set
with Not_found -> Predicate.FactSet.empty
in
Predicate.PredMap.add k (Predicate.FactSet.add v current_set) map_to_set
let make_program
{
ASProg.rules = r;
ASProg.pred_table;
ASProg.const_table = cst_table;
ASProg.i_preds;
ASProg.rule_id_gen;
ASProg.head_to_rules = _;
ASProg.e_pred_to_rules = _;
} =
let rules, e_facts, _rule_to_rule_map =
ASRule.Rules.fold
(fun ({ ASRule.lhs; _ } as r) (acc, e_facts, r_to_r) ->
let () = Log.info (fun m -> m "Processing abstract rule:@;@[%a@]@?" (ASRule.pp pred_table cst_table) r) in
let new_rule = Rule.make_rule r in
let updated_e_facts =
if not (ASPred.PredIds.mem lhs.ASPred.p_id i_preds) then
extend_map_to_set lhs.ASPred.p_id lhs e_facts
else e_facts
in
( extend_map_to_rule_set lhs.ASPred.p_id new_rule acc,
updated_e_facts,
ASRule.RuleMap.add r new_rule r_to_r ))
r
( Predicate.PredMap.empty,
Predicate.PredMap.empty,
ASRule.RuleMap.empty )
in
Log.debug (fun m -> m "All rules done.");
Log.debug (fun m -> m "Now separate the e and i predicates.");
let edb, idb =
ASPred.PredIdTable.fold
(fun k _ (e, i) ->
if ASPred.PredIds.mem k i_preds then (e, k :: i) else (k :: e, i))
pred_table ([], [])
in
Log.debug (fun m -> m "Done.");
{
rules;
edb;
edb_facts = e_facts;
idb;
pred_table;
const_table = cst_table;
rule_id_gen;
abstract_rules =
r
;
}
let to_abstract
{
rules = r;
idb;
pred_table;
const_table = cst_table;
rule_id_gen;
edb_facts;
_;
} =
Log.debug (fun m -> m "Transforming internal rules into abstract ones...");
let rules =
Predicate.PredMap.fold
(fun _ rules acc ->
Rule.Rules.fold
(fun rule acc' ->
ASRule.Rules.add (Rule.to_abstract rule pred_table) acc')
rules acc)
r ASRule.Rules.empty
in
Log.debug (fun m -> m "Done.");
Log.debug (fun m -> m "Transforming facts into rules");
let rules, rule_id_gen =
Predicate.PredMap.fold
(fun _pred fact_set (acc, gen) ->
Predicate.FactSet.fold
(fun fact (l_acc, id_rule_gen) ->
let id_rule, id_rule_gen =
IdGenerator.IntIdGen.get_fresh_id id_rule_gen
in
let r =
ASRule.
{
id = id_rule;
lhs = fact;
e_rhs = [];
i_rhs = [];
i_rhs_num = 0;
rhs_num = 0;
}
in
Log.debug (fun m ->
m "Adding fact: %a" (ASRule.pp pred_table cst_table) r);
(ASRule.Rules.add r l_acc, id_rule_gen))
fact_set (acc, gen))
edb_facts (rules, rule_id_gen)
in
Log.debug (fun m -> m "Done.");
let i_preds =
List.fold_left
(fun acc id -> ASPred.PredIds.add id acc)
ASPred.PredIds.empty idb
in
ASProg.
{
rules;
pred_table;
const_table = cst_table;
i_preds;
rule_id_gen;
head_to_rules =
ASRule.Rules.fold
(fun r acc ->
match
ASPred.PredIdMap.find_opt r.ASRule.lhs.ASPred.p_id acc
with
| None ->
ASPred.PredIdMap.add r.ASRule.lhs.ASPred.p_id
(ASRule.Rules.singleton r) acc
| Some ruls ->
ASPred.PredIdMap.add r.ASRule.lhs.ASPred.p_id
(ASRule.Rules.add r ruls) acc)
rules ASPred.PredIdMap.empty;
e_pred_to_rules = AbstractSyntax.Predicate.PredIdMap.empty;
}
(** [temp_facts r e_facts previous_step_facts facts delta_facts
agg_f start] returns the result of applying [agg_f] to [start]
and to all the facts that are deduced from [temp]{^ [time+1]}{_
[S]} where [S] is the head predicate of the rule [r] and [temp]
is the set of temporary rules associated with [r] as in the
algorithm described in {{:
http://webdam.inria.fr/Alice/pdfs/Chapter-13.pdf} Chap. 13 of
"Foundations of Databases", Abiteboul, Hull, and Vianu} (p.315).
[previous_step_facts] and [facts] denote the intentional facts
at the two required successive steps and [delta_facts] denote
the new facts that are computed during this step. *)
let temp_facts r e_facts previous_step_facts facts delta_facts agg_function
start pred_table cst_table =
Log.debug (fun m ->
m "Scanning the rule: %a"
(ASRule.pp pred_table cst_table)
(Rule.to_abstract r pred_table));
let make_search_array_i_pred (rev_pred_lst, delta_position, pred_lst) =
Log.debug (fun m ->
m
"@[<v2>@[<hov>Looking for facts for predicate %a in the \
following facts:@]@,\
@[<v> @[%a@]@]@]"
(ASPred.pp pred_table cst_table)
{
ASPred.p_id = delta_position.Predicate.p_id;
ASPred.arity = 0;
ASPred.arguments = [];
}
(Predicate.pp_facts pred_table cst_table)
delta_facts);
Log.debug (fun m -> m "Ready to process.");
let facts_at_delta_position =
try
let res =
Predicate.PredMap.find delta_position.Predicate.p_id delta_facts
in
Log.debug (fun m -> m "Found some");
res
with Not_found ->
Log.debug (fun m -> m "Found none");
Predicate.FactSet.empty
in
let end_pred_facts =
List.map
(fun pred ->
try Predicate.PredMap.find pred.Predicate.p_id previous_step_facts
with Not_found -> Predicate.FactSet.empty)
pred_lst
in
List.fold_left
(fun acc pred ->
try Predicate.PredMap.find pred.Predicate.p_id facts :: acc
with Not_found -> Predicate.FactSet.empty :: acc)
(facts_at_delta_position :: end_pred_facts)
rev_pred_lst
in
let resume_on_i_pred acc (((_i, content), premises) as state) =
match r.Rule.i_rhs with
| [] ->
agg_function (Rule.extract_consequence r content, premises) r acc
| _ ->
let zip = Focused_list.init (fst (List.split r.Rule.i_rhs)) in
Focused_list.fold
(fun l_acc focus ->
Rule.FactArray.collect_results
(fun ll_acc ((_, content), premises) ->
agg_function
(Rule.extract_consequence r content, premises)
r ll_acc)
l_acc state
(make_search_array_i_pred focus))
acc zip
in
let make_search_array_e_pred =
List.map
(fun (pred, _) ->
try Predicate.PredMap.find pred.Predicate.p_id e_facts
with Not_found -> Predicate.FactSet.empty)
r.Rule.e_rhs
in
Rule.FactArray.collect_results
(fun acc s ->
resume_on_i_pred acc s)
start
((r.Rule.lhs.Predicate.arity + 1, r.Rule.content), [])
make_search_array_e_pred
let custom_find k map =
try Predicate.PredMap.find k map
with Not_found -> Predicate.FactSet.empty
(** [p_semantics_for_predicate s prog e_facts previous_step_facts
facts delta_facts] returns a set of all the facts that can
deduced by all the rules in [prog] at a given step and whose lhs
predicate is [s] when the edb is [e_facts], the step has
produced [facts] and the previous step has produced
[previous_step_facts] and the variation of facts at this step
are [delta_facts].
It corresponds to [P]{^ [time]}{_ [S]} [(edb,T]{^ [time -1]}{_
[1]}[,...,T]{^ [time-1]}{_ [l]}[,T]{^ [time]}{_ [1]}[,...,T]{^
[time]}{_ [l]}[, Delta]{^ [time]}{_ [T]{_ [1]}},...,[Delta]{^
[time]}{_ [T]{_ [l]}}) in {{:
http://webdam.inria.fr/Alice/pdfs/Chapter-13.pdf} Chap. 13 of
"Foundations of Databases", Abiteboul, Hull, and Vianu} *)
let p_semantics_for_predicate s_id prog e_facts previous_step_facts facts
delta_facts derivations =
let () =
Log.info (fun m -> m "Looking for pred_id \"%a\".@,Current rules from predicates are:@,@[<v>@[%a@]@]" ASPred.pp_pred_id
s_id
(fun fmt id_to_rules ->
Predicate.PredMap.iter
(fun id rules ->
Format.fprintf fmt "Pred with id \"%a\":@,@[<v> @[%a@]@]@,"
ASPred.pp_pred_id
id
(fun fmt rules ->
Rule.Rules.iter
(fun r -> Format.fprintf fmt "----> %a@,"
(AbstractSyntax.Rule.pp ~with_position:false ~with_id:true prog.pred_table prog.const_table)
(Rule.to_abstract r prog.pred_table))
rules)
rules)
id_to_rules)
prog.rules) in
match Predicate.PredMap.find_opt s_id prog.rules with
| None ->
(Predicate.FactSet.empty, derivations)
| Some rules ->
Rule.Rules.fold
(fun r acc ->
temp_facts r e_facts previous_step_facts facts delta_facts
(fun (new_fact, from_premises) r
(new_fact_set, new_fact_derivations) ->
( Predicate.conditionnal_add new_fact new_fact_set
(custom_find r.Rule.lhs.Predicate.p_id previous_step_facts)
(custom_find r.Rule.lhs.Predicate.p_id delta_facts),
Predicate.add_to_map_to_set new_fact
(from_premises, r.Rule.id, r.Rule.i_rhs_num)
new_fact_derivations ))
acc prog.pred_table prog.const_table)
rules
(Predicate.FactSet.empty, derivations)
(** [seminaive p] returns a pair [(facts,derivations)] of facts
and their derivations from program [p] (typically also
including facts) *)
let seminaive prog =
let seminaive_aux facts delta_facts derivations =
let new_facts =
Predicate.PredMap.merge
(fun _pred_id v1 v2 ->
match (v1, v2) with
| Some l1, Some l2 -> Some (Predicate.FactSet.union l1 l2)
| (Some _ as v), None -> v
| None, (Some _ as v) -> v
| None, None -> None)
facts delta_facts
in
let new_delta_facts, new_derivations_for_all_i_pred =
List.fold_left
(fun (acc, derivations) pred ->
Log.debug (fun m ->
m "Trying to derive facts for: %a"
(ASPred.pp prog.pred_table prog.const_table)
{
ASPred.p_id = pred;
ASPred.arity = 0;
ASPred.arguments = [];
});
let new_facts_for_pred, new_derivations =
p_semantics_for_predicate pred prog prog.edb_facts facts
new_facts delta_facts derivations
in
if Predicate.FactSet.is_empty new_facts_for_pred then
(acc, new_derivations)
else
( Predicate.PredMap.add pred new_facts_for_pred acc,
new_derivations ))
(Predicate.PredMap.empty, derivations)
prog.idb
in
Log.debug (fun m ->
m "%d new facts:@,@[<v> @[%a@]@]"
(Predicate.PredMap.fold
(fun _ v acc -> acc + Predicate.FactSet.cardinal v)
new_delta_facts 0)
(Predicate.pp_facts prog.pred_table prog.const_table)
new_delta_facts);
(new_facts, new_delta_facts, new_derivations_for_all_i_pred)
in
let rec seminaive_rec (facts, delta_facts, derivations) =
if Predicate.PredMap.is_empty delta_facts then (facts, derivations)
else seminaive_rec (seminaive_aux facts delta_facts derivations)
in
let first_step_results =
seminaive_aux prog.edb_facts Predicate.PredMap.empty
Predicate.PredicateMap.empty
in
seminaive_rec first_step_results
let extend prog
{
ASProg.modified_rules;
ASProg.new_pred_table;
ASProg.new_const_table;
ASProg.new_i_preds;
ASProg.new_e_preds;
ASProg.new_rule_id_gen;
} =
let i_preds =
ASPred.PredIds.fold
(fun e acc -> if List.mem e prog.idb then acc else e :: acc)
new_i_preds prog.idb
in
let internal_modified_rules, updated_e_facts, updated_abstract_rules =
ASRule.Rules.fold
(fun r (acc, e_facts, u_a_r) ->
let new_rule = Rule.make_rule r in
let updated_e_facts =
if
(not (ASPred.PredIds.mem r.ASRule.lhs.ASPred.p_id new_i_preds))
&& not (List.mem r.ASRule.lhs.ASPred.p_id prog.idb)
then
extend_map_to_set r.ASRule.lhs.ASPred.p_id r.ASRule.lhs e_facts
else e_facts
in
( Rule.Rules.add new_rule acc,
updated_e_facts,
ASRule.Rules.add r u_a_r ))
modified_rules
(Rule.Rules.empty, prog.edb_facts, prog.abstract_rules)
in
let updated_internal_rules =
Rule.Rules.fold
(fun ({ Rule.lhs; _ } as rule) acc ->
try
Predicate.PredMap.add lhs.Predicate.p_id
Rule.(
Rules.add rule
(Rules.filter
(fun r -> r.id = rule.id)
(Predicate.PredMap.find lhs.Predicate.p_id acc)))
acc
with Not_found ->
Predicate.PredMap.add lhs.Predicate.p_id
Rule.Rules.(add rule empty)
acc)
internal_modified_rules prog.rules
in
{
rules = updated_internal_rules;
edb =
ASPred.PredIds.fold
(fun e acc -> if List.mem e prog.idb then acc else e :: acc)
new_e_preds prog.edb;
edb_facts = updated_e_facts;
idb = i_preds;
pred_table = new_pred_table;
const_table = new_const_table;
rule_id_gen = new_rule_id_gen;
abstract_rules = updated_abstract_rules;
}
let add_e_fact prog (r, const_table, rule_id_gen) =
if List.mem r.ASRule.lhs.ASPred.p_id prog.idb then
failwith
(Format.asprintf
"BUG: You're not supposed to extend a program with an intensional \
predicate \"%a\""
(ASPred.pp prog.pred_table ConstGen.Table.empty)
{
ASPred.p_id = r.ASRule.lhs.ASPred.p_id;
ASPred.arity = r.ASRule.lhs.ASPred.arity;
ASPred.arguments = [];
})
else
{
prog with
edb_facts =
extend_map_to_set r.ASRule.lhs.ASPred.p_id r.ASRule.lhs
prog.edb_facts;
const_table;
rule_id_gen;
}
[@@warning "-32"]
let add_e_facts prog (r_lst, const_table, rule_id_gen) =
let edb, edb_facts =
List.fold_left
(fun (edb, edb_facts) r ->
let p_id = r.ASRule.lhs.ASPred.p_id in
let edb = if List.mem p_id edb then edb else p_id :: edb in
let edb_facts =
if List.mem r.ASRule.lhs.ASPred.p_id prog.idb then
failwith
(Format.asprintf
"BUG: You're not supposed to extend a program with an \
intensional predicate \"%a\""
(ASPred.pp prog.pred_table ConstGen.Table.empty)
{
ASPred.p_id = r.ASRule.lhs.ASPred.p_id;
ASPred.arity = r.ASRule.lhs.ASPred.arity;
ASPred.arguments = [];
})
else
extend_map_to_set r.ASRule.lhs.ASPred.p_id r.ASRule.lhs
edb_facts
in
(edb, edb_facts))
(prog.edb, prog.edb_facts) r_lst
in
{ prog with edb; edb_facts; const_table; rule_id_gen }
(** TODO: only useful until we change the type of idb and idb
to sets *)
let rec list_extension_aux a lst scanned_lst =
match lst with
| [] -> List.rev (a :: scanned_lst)
| b :: _tl when a = b -> List.rev_append scanned_lst lst
| b :: tl -> list_extension_aux a tl (b :: scanned_lst)
let list_extension a lst = list_extension_aux a lst []
(** [add_rule r p] adds a [ASRule.rule] to a [Datalog.Program]
with the assumption that it will not change the {em
nature} of a predicate (that is making it change from
extensional to intensional). *)
let add_rule ~intensional r prog =
let new_rule = Rule.make_rule r in
let lhs_pred = r.ASRule.lhs.ASPred.p_id in
let new_e_facts, new_edb, new_idb =
match (intensional, r.ASRule.e_rhs, r.ASRule.i_rhs) with
| false, [], [] ->
( extend_map_to_set lhs_pred r.ASRule.lhs prog.edb_facts,
list_extension lhs_pred prog.edb,
prog.idb )
| false, _, _ ->
failwith
"Bug: addition of a rule for an extensional predicate with non \
empty rhs"
| true, _, i_rhs ->
let new_idb = list_extension lhs_pred prog.idb in
let new_idb =
List.fold_left
(fun acc (p, _) -> list_extension p.ASPred.p_id acc)
new_idb i_rhs
in
(prog.edb_facts, prog.edb, new_idb)
in
{
prog with
rules = extend_map_to_rule_set lhs_pred new_rule prog.rules;
edb_facts = new_e_facts;
edb = new_edb;
idb = new_idb;
abstract_rules = ASRule.Rules.add r prog.abstract_rules;
}
let remove_rule id pred prog =
try
let fake_lhs = Predicate.{ p_id = ASPred.fake_pred_id; arity = -1 } in
let fake_rule =
Rule.
{
id;
lhs = fake_lhs;
e_rhs = [];
i_rhs = [];
i_rhs_num = 0;
content = UF.create [];
}
in
let new_rules_for_pred =
Rule.Rules.remove fake_rule (Predicate.PredMap.find pred prog.rules)
in
let new_rules =
Predicate.PredMap.add pred new_rules_for_pred prog.rules
in
let new_abstract_rules =
ASRule.(Rules.filter (fun l_r -> l_r.id <> id) prog.abstract_rules)
in
if new_rules_for_pred = Rule.Rules.empty then
{
prog with
rules = new_rules;
idb = List.filter (fun i -> not (i = pred)) prog.idb;
abstract_rules = new_abstract_rules;
}
else
{ prog with rules = new_rules; abstract_rules = new_abstract_rules }
with Not_found ->
failwith
"Bug: should not try to remove a rule with a lhs predicate that has \
no rule"
let get_fresh_rule_id ({ rule_id_gen; _ } as prog) =
let new_id, rule_id_gen = IdGenerator.IntIdGen.get_fresh_id rule_id_gen in
(new_id, { prog with rule_id_gen })
let get_fresh_cst_id name ({ const_table; _ } as prog) =
let id, const_table = ConstGen.Table.add_sym name const_table in
(id, { prog with const_table })
let add_pred_sym name ({ pred_table; _ } as prog) =
let p_id, pred_table = ASPred.PredIdTable.add_sym name pred_table in
(p_id, { prog with pred_table })
let rec build_children alt_num parent_address children_num facts derivations
visited_facts prog =
List.fold_left
(fun (l_acc, child_num, l_visit) fact ->
Log.debug (fun m ->
m "Analysing fact: %a"
(ASPred.pp prog.pred_table prog.const_table)
fact);
if List.mem fact.ASPred.p_id prog.edb then (
Log.debug (fun m -> m "Skipping it");
(l_acc, child_num, l_visit))
else (
Log.debug (fun m -> m "Keeping it");
let cur_add = (alt_num, child_num) :: parent_address in
Log.debug (fun m ->
m "It will have address %a" SharedForest.SharedForest.pp_address
(List.rev cur_add));
try
let existing_add = Predicate.PredicateMap.find fact l_visit in
let patch =
SharedForest.SharedForest.diff (List.rev cur_add) (List.rev existing_add)
in
Log.debug (fun m ->
m "Will point to: %a with patch %a" SharedForest.SharedForest.pp_address
(List.rev existing_add) SharedForest.SharedForest.pp_path patch);
(SharedForest.SharedForest.Link_to patch :: l_acc, child_num - 1, l_visit)
with Not_found ->
let l_visit = Predicate.PredicateMap.add fact cur_add l_visit in
let premises =
try Predicate.PredicateMap.find fact derivations
with Not_found -> Predicate.PremiseSet.empty
in
let l_forest, _, l_visit =
build_forest_aux fact premises derivations cur_add l_visit prog
in
( SharedForest.SharedForest.Forest (List.rev l_forest) :: l_acc,
child_num - 1,
l_visit )))
([], children_num, visited_facts)
facts
and build_forest_aux _fact premises derivations add visited_facts_addresses
prog =
Predicate.PremiseSet.fold
(fun (facts, rule_id, i_rhs_num) (acc, alt_num, l_visited_facts) ->
let children_rev, _, l_visited_facts =
build_children alt_num add i_rhs_num facts derivations
l_visited_facts prog
in
( SharedForest.SharedForest.Node (rule_id, children_rev) :: acc,
alt_num + 1,
l_visited_facts ))
premises
([], 1, visited_facts_addresses)
let build_forest_from_root fact premises derivations prog =
Predicate.PremiseSet.fold
(fun (facts, rule_id, i_rhs_num) (acc, alt_num, visited_facts_addresses) ->
Log.debug (fun m -> m "Building alt_tree for root: rule %d" rule_id);
let cur_address = [] in
let visited_facts_addresses =
Predicate.PredicateMap.add fact cur_address visited_facts_addresses
in
let children_rev, _, visited_facts_addresses =
build_children alt_num [] i_rhs_num facts derivations
visited_facts_addresses prog
in
( (SharedForest.SharedForest.Node (rule_id, children_rev)) :: acc,
alt_num + 1,
visited_facts_addresses ))
premises
([], 1, Predicate.PredicateMap.empty)
let build_forest ?query map prog =
let u_query =
match query with
| Some q -> Some (Predicate.make_unifiable_predicate q)
| None -> None
in
let list_of_forest_trees =
Predicate.PredicateMap.fold
(fun fact premises acc ->
match u_query with
| Some q when not (Predicate.unifiable fact q) -> acc
| _ ->
let numbered_forest, _, _ =
build_forest_from_root fact premises map prog
in
(List.rev numbered_forest) :: acc)
map []
in
list_of_forest_trees
let pp_edb fmt prog =
Predicate.pp_facts prog.pred_table prog.const_table fmt prog.edb_facts
end
end
module Datalog = Make (UnionFind.StoreAsMap)