package acgtk

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file datalog_AbstractSyntax.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
open UtilsLib.IdGenerator
open UtilsLib.Utils
module RuleIdMap = IntMap

module Var = struct
  type t = Var of int

  let compare (Var i) (Var j) = i - j
  let succ (Var i) = Var (i + 1)
  let start = Var 0

  let to_string (Var i) =
    let dec = decompose ~input:i ~base:26 in
    List.fold_left
      (fun acc i -> Printf.sprintf "%s%c" acc (char_of_int (97 + i)))
      "" dec

  let pp m (Var i) =
    let dec = decompose ~input:i ~base:26 in
    UtilsLib__Utils.pp_list ~sep:""
      (fun m i -> Format.fprintf m "%c" (char_of_int (97 + i)))
      m dec
end

module VarGen = IdGen (Var)

module Const = struct
  type t = Const of int

  let compare (Const i) (Const j) = i - j
  let start = Const 0
  let succ (Const i) = Const (i + 1)
  let to_string (Const i) = string_of_int i
  let pp m (Const i) = Format.pp_print_int m i
end

module ConstGen = IdGen (Const)

module Log = UtilsLib.Xlog.Make (struct
  let name = "datalog_AbstractSyntax"
end)

module AbstractSyntax = struct
  (** These modules are the abstract syntactic representations of the
      predicates, of the rules, and of the programs *)
  module Predicate = struct
    type term = Var of VarGen.id | Const of ConstGen.id

    module VarMap = Map.Make (Var)

    let map_content_compare (k1, map1) (k2, map2) =
      try
        let val1 = VarMap.find k1 map1 in
        try val1 - VarMap.find k2 map2 with Not_found -> 1
      with Not_found -> (
        try
          let _ = VarMap.find k2 map2 in
          -1
        with Not_found -> 0)

    let term_compare l1 l2 =
      let rec term_compare_aux l1 l2 (l1_vars, l2_vars) pos =
        match (l1, l2) with
        | [], [] -> 0
        | [], _ -> -1
        | _, [] -> 1
        | Const _ :: _, Var _ :: _ -> 1
        | Var _ :: _, Const _ :: _ -> -1
        | Const a1 :: tl1, Const a2 :: tl2 ->
            let res = ConstGen.compare a1 a2 in
            if ConstGen.compare a1 a2 <> 0 then res
            else term_compare_aux tl1 tl2 (l1_vars, l2_vars) (pos + 1)
        | Var a1 :: tl1, Var a2 :: tl2 ->
            let res = map_content_compare (a1, l1_vars) (a2, l2_vars) in
            if VarGen.compare a1 a2 <> 0 then res
            else
              term_compare_aux tl1 tl2
                (VarMap.add a1 pos l1_vars, VarMap.add a2 pos l2_vars)
                (pos + 1)
      in
      term_compare_aux l1 l2 (VarMap.empty, VarMap.empty) 0

    let pp_term cst_id_table fmt = function
      | Var v -> Var.pp fmt v
      | Const c ->
          Format.fprintf fmt "%s"
            (ConstGen.Table.find_sym_from_id c cst_id_table)

    type pred_id = int

    module PredIdMap = IntIdGen.IdMap
    module PredIdTable = IntIdGen.Table

    type predicate = {
      p_id : pred_id;
      arity : int;
      arguments : term list;
          (** It is assumed that the size of the list is the
		       arity *)
    }

    let pp_pred_id = Format.pp_print_int

let pp ?position ?(with_id = false) ?(with_arity = false) pred_id_table cst_id_table fmt predicate =
  let pp_id fmt id =
    match with_id with
    | false -> ()
    | true -> Format.fprintf fmt "[p_id = %d]" id in
  let pp_position fmt position =
    match position with
    | None -> ()
    | Some i -> Format.fprintf fmt "(* position: %d*)" i
  in
  let pp_arity fmt arity =
    match with_arity with
    | false -> ()
    | true -> Format.fprintf fmt "/%d" arity
  in
      Format.fprintf fmt "@[<h>@[%s%a%a(@[%a@])%a@]@]"
        (PredIdTable.find_sym_from_id predicate.p_id pred_id_table)
        pp_arity
        predicate.arity
        pp_id
        predicate.p_id
        (pp_list ~sep:"," (pp_term cst_id_table))
        predicate.arguments
        pp_position
        position

    let compare ?(with_arguments = true)
        ({ p_id = id1; arity = a1; arguments = l1 } : predicate)
        ({ p_id = id2; arity = a2; arguments = l2 } : predicate) =
      let res = id1 - id2 in
      if res <> 0 then res
      else
        let res = a1 - a2 in
        if res <> 0 then res
        else if with_arguments then term_compare l1 l2
        else res

    let fake_pred_id = -1

    module PredIds = IntSet

    module TermSet = Set.Make (struct
      type t = term

      let compare term1 term2 =
        match (term1, term2) with
        | Var id1, Var id2 -> VarGen.compare id1 id2
        | Const id1, Const id2 -> ConstGen.compare id1 id2
        | Var _, Const _ -> 1
        | Const _, Var _ -> -1
    end)

    let pp_terms cst_id_table fmt set =
      let first = ref true in
      TermSet.iter
        (fun term ->
           let () =
             if !first then
               pp_term cst_id_table fmt term
             else
               Format.fprintf fmt ",%a" (pp_term cst_id_table) term
           in first := false)
        set

    let get_variables pred =
      let is_variable arg = match arg with Var _ -> true | _ -> false in
      TermSet.of_list (List.filter is_variable pred.arguments)

    (** [variables_of_pred_aux acc pred] returns [acc'] where [acc']
       is the union of the set of arguments (terms) of [pred] with
       [acc] *)
    let free_variables_of_pred_aux acc pred =
      List.fold_left
        (fun acc' term ->
          match term with Var _ -> TermSet.add term acc' | _ -> acc')
        acc pred.arguments

    let free_variables_of_preds_aux acc preds =
      List.fold_left free_variables_of_pred_aux acc preds

    let get_variables_of_preds preds =
      let new_free_variable_set =
        free_variables_of_preds_aux TermSet.empty preds
      in
      new_free_variable_set

    let copy_predicate ~new_id:id pred = { pred with p_id = id }

    let pp_predids pred_table fmt p_ids =
      PredIds.iter
        (fun elt ->
          Format.fprintf fmt "%s@,"
            (PredIdTable.find_sym_from_id elt pred_table))
        p_ids
  end

  module Proto_Rule = struct
    type t = {
      proto_id : int;
      proto_lhs : Predicate.predicate;
      proto_rhs : Predicate.predicate list;
          (** represents the predicates of the rule *)
    }

    let pp pred_id_table cst_id_table fmt r =
      let pp_head fmt lhs = Predicate.pp pred_id_table cst_id_table fmt lhs in
      let pp_tail fmt rhs =
        match rhs with
        | [] -> Format.fprintf fmt "."
        | _ ->
            Format.fprintf fmt ":- %a."
              (pp_list ~sep:"," (Predicate.pp pred_id_table cst_id_table))
              rhs
      in
      Format.fprintf fmt "%a%a" pp_head r.proto_lhs pp_tail r.proto_rhs
  end

  module Rule = struct
    type rule = {
      id : int;
      lhs : Predicate.predicate;
      e_rhs : (Predicate.predicate * int) list;
      i_rhs : (Predicate.predicate * int) list;
      i_rhs_num : int;
      rhs_num : int;
    }

    let pp ?(with_position = false) ?(with_id = false)
        ?(with_arity = false) pred_id_table cst_id_table fmt r =
      let pp_head = Predicate.pp ~with_id ~with_arity pred_id_table cst_id_table in
      let vdash, e_i_sep =
        match (r.e_rhs, r.i_rhs) with
        | [], [] -> (".", format_of_string "")
        | [], _ -> (":-", format_of_string "")
        | _, [] -> (":-", format_of_string "")
        | _, _ -> (":-", format_of_string" ,@,")
      in
      let pp_pred fmt (pred, pos) =
        match with_position with
        | false -> Predicate.pp  ~with_id ~with_arity pred_id_table cst_id_table fmt pred
        | true -> Predicate.pp ~position:pos ~with_id ~with_arity pred_id_table cst_id_table fmt pred
      in
      let pp_rule_id fmt id = if with_id then Format.fprintf fmt "(id: %6d)@;" id else () in
      Format.fprintf
        fmt
        ("@[%a@]@;%a %s@[ @[<hv>%a"^^e_i_sep^^"%a@]@]")
        pp_rule_id
        r.id
        pp_head
        r.lhs
        vdash
        (pp_list ~sep:",@," pp_pred)
        r.e_rhs
        (pp_list ~sep:",@," pp_pred)
        r.i_rhs

    module Rules = Set.Make (struct
      type t = rule

      let compare { id = i; _ } { id = j; _ } = i - j
    end)

    module RuleMap = Map.Make (struct
      type t = rule

      let compare { id = i; _ } { id = j; _ } = i - j
    end)

    let extend_head_id_map_to_rules id r m =
      match Predicate.PredIdMap.find_opt id m with
      | None -> Predicate.PredIdMap.add id Rules.(singleton r) m
      | Some rules -> Predicate.PredIdMap.add id Rules.(add r rules) m

    let ids_to_rules ids id_to_rule_map =
      IntSet.fold
        (fun e acc -> Rules.add (IntMap.find e id_to_rule_map) acc)
        ids Rules.empty

    let pp_rules ?(with_position = false) ?(with_id = false) pred_id_table cst_id_table fmt rules =
      let pp_rule = pp ~with_position ~with_id pred_id_table cst_id_table in
      Rules.iter (fun r -> Format.fprintf fmt "%a@," pp_rule r) rules

    let init_split_rhs proto_preds intensional_pred =
      let i_num, i_p, e_p, length =
        List.fold_left
          (fun (i_num, i_preds, e_preds, i) ({ Predicate.p_id; _ } as pred) ->
            if Predicate.PredIds.mem p_id intensional_pred then
              (i_num + 1, (pred, i) :: i_preds, e_preds, i + 1)
            else (i_num, i_preds, (pred, i) :: e_preds, i + 1))
          (0, [], [], 1) proto_preds
      in
      (i_num, i_p, e_p, length - 1)

    let update_split_rhs init proto_preds intensional_pred =
      List.fold_left
        (fun (i_preds, e_preds) (({ Predicate.p_id; _ }, _) as pred) ->
          if Predicate.PredIds.mem p_id intensional_pred then
            (pred :: i_preds, e_preds)
          else (i_preds, pred :: e_preds))
        init proto_preds

    let extend_map_to_set k v map_to_set =
      let current_set =
        try Predicate.PredIdMap.find k map_to_set
        with Not_found -> IntSet.empty
      in
      Predicate.PredIdMap.add k (IntSet.add v current_set) map_to_set

    let proto_rule_to_rule proto_rule intensional_pred =
      let i_num, i_preds, e_preds, length =
        init_split_rhs proto_rule.Proto_Rule.proto_rhs intensional_pred
      in
      {
        id = proto_rule.Proto_Rule.proto_id;
        lhs = proto_rule.Proto_Rule.proto_lhs;
        e_rhs = List.rev e_preds;
        i_rhs = List.rev i_preds;
        i_rhs_num = i_num;
        rhs_num = length;
      }

    let update rule intensional_pred =
      let i_preds, e_preds =
        update_split_rhs (rule.i_rhs, []) rule.e_rhs intensional_pred
      in
      { rule with e_rhs = e_preds; i_rhs = i_preds }

    let set_new_id id rule = { rule with id }
    (* Replace
     **********
                                { lhs = rule.lhs
                                ; e_rhs = rule.e_rhs      
                                ; i_rhs = rule.i_rhs
                                ; i_rhs_num = rule.i_rhs_num
                                ; id
                                }
     *)

    let set_new_id_from_gen rule gen =
      let new_id, new_gen = IntIdGen.get_fresh_id gen in
      (set_new_id new_id rule, new_gen)

    let get_variables_in_rule rule =
      let head_result = Predicate.get_variables rule.lhs in
      let variables =
        List.fold_left
          (fun acc (pred, _) -> Predicate.free_variables_of_pred_aux acc pred)
          head_result rule.i_rhs
      in
      let new_result =
        List.fold_left
          (fun acc (pred, _) -> Predicate.free_variables_of_pred_aux acc pred)
          variables rule.e_rhs
      in
      new_result
    (* Replace
     **********************
       let i_rhs_result =
       Predicate.get_variables_of_preds (List.map fst rule.i_rhs)
       in
       let e_rhs_result =
       Predicate.get_variables_of_preds (List.map fst rule.e_rhs)
       in
       Predicate.TermSet.union head_result (Predicate.TermSet.union i_rhs_result e_rhs_result)
     *)

    let get_subgoal rule i =
      let new_result =
        match
          List.find_opt (fun (_pred, position) -> position = i + 1) rule.e_rhs
        with
        | Some s -> s
        | None -> (
            match
              List.find_opt
                (fun (_pred, position) -> position = i + 1)
                rule.i_rhs
            with
            | Some s -> s
            | None -> failwith (Printf.sprintf "Bug: No subgoal: %d" i))
      in
      new_result
    (* Replace *)
    (*****************)
    (*
             let rhs = rule.e_rhs @ rule.i_rhs in
             match List.find_opt (fun (_pred, position) -> position == i + 1) rhs with
             | Some s -> s
             | None -> failwith (Printf.sprintf "Error getting the subgoal : %d" i)
            *)
  end

  module Proto_Program = struct
    type t = {
      rules : Proto_Rule.t list;
      pred_table : Predicate.PredIdTable.table;
      const_table : ConstGen.Table.table;
      i_preds : Predicate.PredIds.t;
      rule_id_gen : IntIdGen.t;
      pred_to_rules : IntSet.t Predicate.PredIdMap.t;
    }

    type tables =
      Predicate.PredIdTable.table * (VarGen.Table.table * ConstGen.Table.table)

    let empty =
      {
        rules = [];
        pred_table = Predicate.PredIdTable.empty;
        const_table = ConstGen.Table.empty;
        i_preds = Predicate.PredIds.empty;
        rule_id_gen = IntIdGen.init ();
        pred_to_rules = Predicate.PredIdMap.empty;
      }

    let extension pred_table const_table rule_id_gen =
      {
        rules = [];
        pred_table;
        const_table;
        i_preds = Predicate.PredIds.empty;
        rule_id_gen;
        pred_to_rules = Predicate.PredIdMap.empty;
      }

    let add_proto_rule (f_lhs, f_rhs) prog =
      let rule_id, new_rule_id_gen = IntIdGen.get_fresh_id prog.rule_id_gen in
      let lhs, (new_pred_id_table, new_tables) =
        f_lhs (prog.pred_table, (VarGen.Table.empty, prog.const_table))
      in
      let rhs, (new_pred_id_table', (_, new_const_table)) =
        f_rhs (new_pred_id_table, new_tables)
      in
      let new_i_preds =
        match rhs with
        | [] -> prog.i_preds
        | _ -> Predicate.PredIds.add lhs.Predicate.p_id prog.i_preds
      in
      let new_rule =
        {
          Proto_Rule.proto_id = rule_id;
          Proto_Rule.proto_lhs = lhs;
          Proto_Rule.proto_rhs = rhs;
        }
      in
      {
        rules = new_rule :: prog.rules;
        pred_table = new_pred_id_table';
        const_table = new_const_table;
        i_preds = new_i_preds;
        rule_id_gen = new_rule_id_gen;
        pred_to_rules =
          List.fold_left
            (fun acc p -> Rule.extend_map_to_set p.Predicate.p_id rule_id acc)
            prog.pred_to_rules rhs;
      }
  end

  module Program = struct
    type program = {
      rules : Rule.Rules.t;
      pred_table : Predicate.PredIdTable.table;
      const_table : ConstGen.Table.table;
      i_preds : Predicate.PredIds.t;
      rule_id_gen : IntIdGen.t;
      head_to_rules : Rule.Rules.t Predicate.PredIdMap.t;
      e_pred_to_rules : Rule.Rules.t Predicate.PredIdMap.t;
    }

    type modifier = {
      modified_rules : Rule.Rules.t;
      new_pred_table : Predicate.PredIdTable.table;
      new_const_table : ConstGen.Table.table;
      new_i_preds : Predicate.PredIds.t;
      new_e_preds : Predicate.PredIds.t;
      new_rule_id_gen : IntIdGen.t;
    }

    let make_program
        {
          Proto_Program.rules;
          Proto_Program.pred_table;
          Proto_Program.const_table;
          Proto_Program.i_preds;
          Proto_Program.rule_id_gen;
          Proto_Program.pred_to_rules;
        } =
      let actual_rules, ids_to_rule_map, head_id_to_rules_map =
        List.fold_left
          (fun (acc, ids_to_rule_map, head_id_to_rules_map) p_rule ->
            let rule = Rule.proto_rule_to_rule p_rule i_preds in
            ( Rule.Rules.add rule acc,
              IntMap.add p_rule.Proto_Rule.proto_id rule ids_to_rule_map,
              Rule.extend_head_id_map_to_rules rule.Rule.lhs.Predicate.p_id rule
                head_id_to_rules_map ))
          (Rule.Rules.empty, IntMap.empty, Predicate.PredIdMap.empty)
          rules
      in
      {
        rules = actual_rules;
        pred_table;
        const_table;
        i_preds;
        rule_id_gen;
        head_to_rules = head_id_to_rules_map;
        e_pred_to_rules =
          Predicate.PredIdMap.fold
            (fun p rule_ids acc ->
              if Predicate.PredIds.mem p i_preds then
                Predicate.PredIdMap.remove p acc
              else
                Predicate.PredIdMap.add p
                  (Rule.ids_to_rules rule_ids ids_to_rule_map)
                  acc)
            pred_to_rules Predicate.PredIdMap.empty;
      }

    let extend prog
        {
          Proto_Program.rules;
          Proto_Program.pred_table;
          Proto_Program.const_table;
          Proto_Program.i_preds;
          Proto_Program.rule_id_gen;
          Proto_Program.pred_to_rules;
        } =
      let new_i_preds = Predicate.PredIds.union prog.i_preds i_preds in
      let updated_e_pred_map_to_r, updated_rules =
        (* all the rules that were pointed to by an extensional
           predicate that has to be turned into an intensional
           predicate because of the program extension have to be
           updated *)
        (* We check if some the new intensional predicates also are
           keys of the e_pred_to_rules map of the previous program *)
        Predicate.PredIds.fold
          (fun p_id ((e_p_to_r, rules_acc) as acc) ->
            try
              (* First we check wether this predicate was considered
                 as an extensional one *)
              let to_be_modified_rules =
                Predicate.PredIdMap.find p_id prog.e_pred_to_rules
              in
              (* If yes, we nee to remove it from the map *)
              ( Predicate.PredIdMap.remove p_id e_p_to_r,
                (* And to modify the rules it pointed to *)
                Rule.Rules.fold
                  (fun r acc ->
                    Rule.Rules.add
                      (Rule.update r new_i_preds)
                      (Rule.Rules.remove r acc))
                  to_be_modified_rules rules_acc )
            with (* If no, don't do anything *)
            | Not_found -> acc)
          i_preds
          (prog.e_pred_to_rules, prog.rules)
      in
      let new_rules, id_to_rule_map, new_head_to_rules =
        List.fold_left
          (fun (acc, id_to_rule_map, h_t_r) p_rule ->
            let rule = Rule.proto_rule_to_rule p_rule new_i_preds in
            ( Rule.Rules.add rule acc,
              IntMap.add p_rule.Proto_Rule.proto_id rule id_to_rule_map,
              Rule.extend_head_id_map_to_rules rule.Rule.lhs.Predicate.p_id rule
                h_t_r ))
          (updated_rules, IntMap.empty, prog.head_to_rules)
          rules
      in
      {
        rules = new_rules;
        pred_table;
        const_table;
        i_preds = new_i_preds;
        rule_id_gen;
        head_to_rules = new_head_to_rules;
        e_pred_to_rules =
          Predicate.PredIdMap.merge
            (fun _ opt_rule_ids opt_rules ->
              match (opt_rule_ids, opt_rules) with
              | None, None -> None
              | None, _ -> opt_rules
              | Some ids, None -> Some (Rule.ids_to_rules ids id_to_rule_map)
              | Some ids, Some rules ->
                  Some
                    (Rule.Rules.union rules
                       (Rule.ids_to_rules ids id_to_rule_map)))
            pred_to_rules updated_e_pred_map_to_r;
      }

    let is_in_idb pred prog = Predicate.(PredIds.mem pred.p_id prog.i_preds)

    let is_head (pred : Predicate.predicate) (rule : Rule.rule) =
      let head = rule.Rule.lhs in
      let () =
        Log.info (fun m ->
            m
              "testing pred_id/arity %d/%d agains rule %d with head \
               pred_id/arity %d/%d: %b and %b"
              pred.Predicate.p_id pred.Predicate.arity rule.Rule.id
              head.Predicate.p_id head.Predicate.arity
              Predicate.(head.p_id = pred.p_id)
              Predicate.(head.arity = pred.arity))
      in
      Predicate.(head.p_id = pred.p_id && head.arity = pred.arity)

    let match_rules (predicate : Predicate.predicate) program =
      (*
      let () = Log.info
          (fun m ->
             let () = m "Rules by head:%!" in
             Predicate.PredIdMap.iter
               (fun pred_id l_rules ->
                  Rule.Rules.iter
                    (fun r -> Log.info (fun m -> m "head: %d -> Rule: %s" pred_id (Rule.to_string ~with_position:true ~with_id:true r program.pred_table program.const_table)))
                    l_rules)
               program.head_to_rules) in
      let () = Log.info (fun m -> m "+++++++++++++++++++++++++++++++++++++++++++++++++++++++") in
      let () = Log.info
          (fun m ->
             let () = m "Program rules:%!" in
               Rule.Rules.iter
                 (fun r -> Log.info
                     (fun m ->
                        m
                          "head: %d -> Rule: %s"
                          r.Rule.lhs.Predicate.p_id
                          (Rule.to_string ~with_position:true ~with_id:true r program.pred_table program.const_table)))
                 program.rules) in *)
      let new_res =
        match
          Predicate.PredIdMap.find_opt predicate.Predicate.p_id
            program.head_to_rules
        with
        | None -> Rule.Rules.empty
        | Some set -> set
      in
      let new_res_ids =
        List.map (fun r -> r.Rule.id) (Rule.Rules.elements new_res)
      in
      let () =
        Log.info (fun m ->
            m "New matching rules are: %s"
              (UtilsLib.Utils.string_of_list ", "
                 (fun r -> string_of_int r.Rule.id)
                 (Rule.Rules.elements new_res)))
      in
      let () =
        Log.info (fun m ->
            let () = m "Matching new rules:" in
            Rule.Rules.iter
              (fun r ->
                Log.info (fun m ->
                    m "head: %d -> Rule: %a" r.Rule.lhs.Predicate.p_id
                      (Rule.pp ~with_position:true ~with_id:true 
                         program.pred_table program.const_table) r))
              new_res)
      in

      (* Replace *)
      let old_res = Rule.Rules.filter (is_head predicate) program.rules in
      let old_res_ids =
        List.map (fun r -> r.Rule.id) (Rule.Rules.elements old_res)
      in
      let () =
        Log.info (fun m ->
            m "Old matching rules are: %s"
              (UtilsLib.Utils.string_of_list ", "
                 (fun r -> string_of_int r.Rule.id)
                 (Rule.Rules.elements old_res)))
      in
      let () =
        assert (List.sort ( - ) new_res_ids = List.sort ( - ) old_res_ids)
      in
      let () = assert (Rule.Rules.equal new_res old_res) in
      (*new_res *)
      old_res

    let get_rule_by_id program id =
      let rules = program.rules in
      Rule.(Rules.find_first (fun x -> x.id = id) rules)

    let pp ?(with_position = false) ?(with_id = false) fmt prog =
      Format.fprintf fmt
        "@[<v>%a@]@,Intensional predicates are:@,@[<v>  @[<v>%a@]@]"
        (Rule.pp_rules ~with_position ~with_id prog.pred_table prog.const_table)
        prog.rules
        (Predicate.pp_predids prog.pred_table)
        prog.i_preds
    
  end
end
OCaml

Innovation. Community. Security.