package acgtk

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file unionFind.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
open UtilsLib.Utils

(** Modules with this module type should provide Union-Find algorithms
    and the indexed storage data structure. Note that we take the
    opportunity of implementing from scratch such algorithms to allow
    the [find] function returns not only the index of the
    representative and the values it indexes, but also the storage
    data structure, so that the [find] algorithm can modify it, in
    particular with path compression.
*)

module Log = UtilsLib.Xlog.Make (struct
  let name = "UnionFind"
end)

module type S = sig
  type 'a t
  (** The type of the indexed data structure *)

  (** The type of the values (content) that are indexed. It is either
      an actual value of type ['a] or a link to another indexed
      value. If a content at an index [i] points to [i], it is meant
      that to be a variable.*)
  type 'a content = Link_to of int | Value of 'a

  exception Union_Failure
  (** Exception raised when a the union of to indexed value can not
      happen. It should be raised by the [union] function when it
      amounts to make the union between to actual values [Value a] and
      [Value b] and [a != b]. *)

  val create : 'a content list -> 'a t
  (** [create l [d]] returns the corresponding indexed storage data
      structure where each value (or link) is indexed by its position
      in [l] (starting at 1). [d] is a data that may or may not be
      used to fill at init the indexed data structure. *)

  val extract : ?start:int -> int -> 'a t -> 'a content list
  (** [extract ~start:s i t] returns a list of the [i] first elements
      of [t] starting from position [s] (default is 1, first
      position) *)

  val find : int -> 'a t -> (int * 'a content) * 'a t
  (** [find i h] returns not only the index of the representative and
      the values it indexes, but also the storage data structure, so
      that the [find] algorithm can modify it, in particular with path
      compression. *)
  (* the content returned by [find] should not be a link. Can we
     enforce this using polymorphic variants and/or GADT? *)

  val union : int -> int -> 'a t -> 'a t
  (** [union i j h] returns a new indexed storage data structure where
      values indexed by [i] and [j] have been unified (ie one of the
      two is now linked to the index of the representative of the
      other. It fails and raises the {! UnionFind.Union_Failure}
      exception if both [i] and [j] representatives index actual
      values [Value a] and [Value b] and [a != b]. *)

  val instantiate : int -> 'a -> 'a t -> 'a t
  (** [instantiate i t h] returns a new indexed storage data structure
      where the value indexed by [i] and [t] have been unified. It
      fails and raises the {! UnionFind.Union_Failure} exception if
      [i]'s representative indexes an actual values [Value a] such
      that [a] differs from [t]. *)

  val cyclic : int -> 'a t -> bool * 'a t
  (** [cyclic i h] returns a pair [(b,h')] where [b] is [true] if [h]
      has a cycle (following the [Link_to] links) containing [i] and
      [false] otherwise, and where [h'] contains the same information
      as [h] (possibly differently stored, for instance using path
      compression while checking [h] cyclicity. *)

  val copy : 'a t -> 'a t
  val pp : ?size:int -> Format.formatter -> 'a t -> unit
end

(** Modules with this module type should provide an indexed (by [int]
    indexes) storage data structure for ['a] type values and access
    and update functions.
*)

module type Store = sig
  type 'a t

  exception Store_Not_found

  (*
  (** [empty i] should return an empty indexed storage data structure
      that will allow indexing {e with values from [1] to [i]}. *)
  (*  val empty : int -> 'a t *)
               *)

  val make : int -> 'a -> 'a t
  (** [make i data] should return an indexed storage data structure
      that will allow indexing {e with value [data] from [1] to
      [i]}. *)

  val get : int -> 'a t -> 'a
  val set : int -> 'a -> 'a t -> 'a t
  val copy : 'a t -> 'a t

  val length : 'a t -> int
  (** [length s] returns the index [n] such that the indexed storage
      data structure allows indexing from [1] to [i]. *)
end

(** This (functor) module implements a {! UnionFind} data structure. The
    [S] parameter is used to try different implementations of indexed
    data structure, in particular eventually persistent arrays as
    described in {{:
    http://www.lri.fr/~filliatr/ftp/publis/puf-wml07.ps}"A Persistent
    Union-Find Data Structure" (Sylvain Conchon and Jean-Chrisophe
    Filliâtre} *)

module Make (S : Store) : S = struct
  (** The type of the values (content) that are indexed. It is either
      an actual value of type ['a] or a link to another indexed
      value. If a content at an index [i] points to [i], it is meant
      that to be a variable.*)
  type 'a content = Link_to of int | Value of 'a

  type 'a t = { rank : int S.t; parents : 'a content S.t }
  (** The actual type of the data structure. The rank is used to
      implement weighted union. See {{:
      http://www.risc.jku.at/education/courses/ss2012/unification/slides/02_Syntactic_Unification_Improved_Algorithms.pdf}
      Introduction to Unification Theory. Speeding Up (Temur
      Kutsia)} *)

  exception Union_Failure

  let pp_content ?size ?rank parents fmt index =
    let pp_content_cell fmt c =
      match c with
      | Link_to i -> Format.fprintf fmt "Linked to %d" i
      | Value _ -> Format.fprintf fmt "Some value"
    in
    let pp_size fmt size =
      match size with None -> () | Some s -> Format.fprintf fmt "/%d" s
    in
    let pp_rank fmt index =
      match rank with
      | None -> ()
      | Some rk -> Format.fprintf fmt "\t(%d)" (S.get index rk)
    in
    Format.fprintf fmt "%10d%a <---> %a%a" index pp_size size pp_content_cell
      (S.get index parents) pp_rank index

  let pp_intern ?size ?rank fmt parents =
    let i = ref 1 in
    let () = Format.fprintf fmt "@[<v>" in
    try
      while true do
        let () =
          Format.fprintf fmt "@[%a@]@," (pp_content ?size ?rank parents) !i
        in
        i := !i + 1
      done
    with S.Store_Not_found -> Format.fprintf fmt "@]"

  let pp ?size fmt store = pp_intern ?size ~rank:store.rank fmt store.parents

  (* Indexing starts at 1, not at 0 *)
  (* TODO: Should we check that indexes belong to the range, or that
     links to belong the set of indexes? *)
  (* TODO: specify the properties of the data structure (no cycle,
     coherent numbering, [find] always returns a value, etc. *)
  let create contents =
    let ln = List.length contents in
    let res, _ =
      List.fold_left
        (fun ({ rank = r; parents = p }, k) content ->
          Log.debug (fun m ->
              m "Setting the following content at address %d:" k);
          match content with
          | Link_to i as c ->
              Log.debug (fun m -> m "Link to %d" i);
              (* rank is unset for contents that are initially a link *)
              ( {
                  rank =
                    (try
                       let rank = S.get i r in
                       S.set i (rank + 1) (S.set k 0 r)
                     with S.Store_Not_found -> S.set i 1 r);
                  parents = S.set k c p;
                },
                k + 1 )
          | Value _ as c ->
              Log.debug (fun m -> m "Some value");
              ( {
                  rank =
                    (try
                       let _ = S.get k r in
                       r
                     with S.Store_Not_found -> S.set k 0 r);
                  parents = S.set k c p;
                },
                k + 1 ))
        (*	({rank=S.empty ln;parents=S.empty ln},1) *)
        ({ rank = S.make ln 0; parents = S.make ln (Link_to (-1)) }, 1)
        contents
    in
    let () =
      Log.debug (fun m ->
          m "After creation, content is:@,@[<v>@[@[%a@]@]" (pp ~size:ln) res)
    in
    res

  (** [find_aux i f] returns a pair [(i',v),f'] where [i'] is the
      index of the representative of the data indexed by [i]. [i=i']
      means that the [i]-th element is linked to itself: it is meant
      to be a variable, not an actual value. It also performs path
      compression *)
  let rec find_aux i f =
    Log.debug (fun m -> m "Extracting %d" i);
    Log.debug (fun m ->
        m "find_aux work with the following content:@,@[<v>  @[%a@]@]"
          (pp_intern ?size:None ?rank:None)
          f);
    match S.get i f with
    | Value _ as v -> ((i, v), f)
    (* An actual value was reached at index [i]. So [i] is returned
       together with [v] and [f] *)
    | Link_to next as v when next = i -> ((i, v), f)
    (* The content indexed by [i] points to [i]. [i] is then the
       representative for the variable it denotes. *)
    | Link_to next ->
        (* In the other cases, we follow the links to reach the
           representative and the content it indexes *)
        let (representative_index, representative_value), new_f =
          find_aux next f
        in
        (* Then we update the storage data structure linking the context
           indexed by [i] directly to the representative index *)
        let updated_f = S.set i (Link_to representative_index) new_f in
        Log.debug (fun m ->
            m
              "the \"UnionFind.find\" function indeed returns a Link_to \
               itself: %B"
              (let () =
                 match representative_value with
                 | Link_to variable -> assert (representative_index = variable)
                 | _ -> ()
               in
               true));
        ((representative_index, representative_value), updated_f)
    | exception S.Store_Not_found ->
        let () = Log.debug (fun m -> m "Could not find %d in the store." i) in
        raise S.Store_Not_found

  (** [find i h] returns a pair [(i',v),f'] where [i'] is the index of
      the representative of the data indexed by [i]. [i=i'] means that
      the [i]-th element is linked to itself: it is meant to be a
      variable, not an actual value. It also performs path
      compression. The difference with [find_aux] is that it applyes
      to the whole storage data structure (that includes data for
      weighted union). *)
  let find i h =
    let rep_i, f = find_aux i h.parents in
    (rep_i, { h with parents = f })

  (** [extract ~start:s i t] returns a list of the [i] first elements
      of [t] starting from position [s] (default is 1, first
      position). It is ensured that the results only contain the
      values of representatives (i.e it follows the [Link_to] links
      until the value of the representative before returning it). *)
  let extract ?(start = 1) i content =
    Log.debug (fun m ->
        m "Going to extract %d elements starting at %d...@,@[%a@]" i start
          (pp ?size:None) content);
    let rec extract_aux k res =
      match k - start with
      | j when j > 0 ->
          let (_, c), _ = find_aux (start - 1 + j) content.parents in
          extract_aux (start + j - 1) (c :: res)
      | _ -> res
    in
    extract_aux (start + i) []

  (** [union i j h] returns a new storage data structure [h'] where
      [h'] has an equivalent content as [h] plus the unification
      between the elements indexed by [i] and [j] and plus, possibly,
      some path compression. *)
  let union i j h =
    let rep_i, h' = find i h in
    let rep_j, h'' = find j h' in
    match (rep_i, rep_j) with
    (* in case [rep_i] (rexp. [rep_j]) is a [(i,Link_to i')] we should
       have [i=i'], else there is a bug *)
    | (_, v_i), (_, v_j) when v_i = v_j -> h''
    | (_, (Value _ as v_i)), (rep_j_index, Link_to _) ->
        { h'' with parents = S.set rep_j_index v_i h''.parents }
    | (rep_i_index, Link_to _), (_, (Value _ as v_j)) ->
        { h'' with parents = S.set rep_i_index v_j h''.parents }
    | (rep_i_index, Link_to _), (rep_j_index, Link_to _) ->
        let rk_i = S.get rep_i_index h''.rank in
        let rk_j = S.get rep_j_index h''.rank in
        if rk_i > rk_j then
          {
            h'' with
            parents = S.set rep_j_index (Link_to rep_i_index) h''.parents;
          }
        else if rk_i < rk_j then
          {
            h'' with
            parents = S.set rep_i_index (Link_to rep_j_index) h''.parents;
          }
        else
          {
            rank = S.set rep_i_index (rk_i + 1) h''.rank;
            parents = S.set rep_j_index (Link_to rep_i_index) h''.parents;
          }
    | (_, Value _), (_, Value _) -> raise Union_Failure
  (* v_i=v_j is caught by the first case *)

  (** [find_and_instantiate_aux i t f] returns a new indexed storage
      datastructure [f'] where the content at index [i] (and the ones
      it points to) has been set to [Value t]. If [i]'s representative
      indexes a variable or a value equal to [Value t] then the
      instantiation suceeds, otherwise it raises Union_failure. It
      also performs path compression.  *)
  let rec find_and_instantiate_aux i term f =
    match S.get i f with
    | Value v when v = term -> f
    | Value _ -> raise Union_Failure
    (* An actual value was reached at index [i] and we're in the case
       that it differs from [term]. So the union fails *)
    | Link_to next when next = i -> S.set i (Value term) f
    (* The content indexed by [i] points to [i]. [i] is then the
       representative for the variable it denotes and can be unified
       with [term]. [f] is updated. *)
    | Link_to next ->
        (* In the other cases, we follow the links to reach the
           representative and the content it indexes *)
        let new_f = find_and_instantiate_aux next term f in
        (* Then we update the storage data structure linking the context
           indexed by [i] directly to the representative index. We know
           it's safe to do it now since unification succeeded. *)
        let updated_f = S.set i (Value term) new_f in
        updated_f

  (** [instantiate i t h] returns a new indexed storage data structure
      where the value indexed by [i] and [t] have been unified. It
      fails and raises the {! UnionFind.Union_Failure} exception if
      [i]'s representative indexes an actual values [Value a] such
      that [a] differs from [t]. *)
  let instantiate i t h =
    let f = find_and_instantiate_aux i t h.parents in
    { h with parents = f }

  (* cyclic_aux includes path compression *)
  let rec cyclic_aux i f acc =
    match S.get i f with
    | Value _ -> (false, i, f)
    | Link_to next when next = i -> (false, i, f)
    | Link_to next ->
        if IntSet.mem next acc then (true, i, f)
        else
          let cyclic, representative_index, new_f =
            cyclic_aux next f (IntSet.add next (IntSet.add i acc))
          in
          let updated_f = S.set i (Link_to representative_index) new_f in
          (cyclic, representative_index, updated_f)

  (* the cyclic function, calling cyclic_aux, compress paths
     (hence also returns the parents) *)
  let cyclic i h =
    let res, _, f = cyclic_aux i h.parents IntSet.empty in
    (res, { h with parents = f })

  let copy { rank = r; parents = p } = { rank = S.copy r; parents = S.copy p }
end

module StoreAsMap = struct
  type 'a t = 'a IntMap.t

  exception Store_Not_found
  (*  let empty _ = IntMap.empty *)

  let rec make_aux i d acc =
    if i <= 0 then acc else make_aux (i - 1) d (IntMap.add i d acc)

  let make n d = make_aux n d IntMap.empty
  let get k m = try IntMap.find k m with Not_found -> raise Store_Not_found
  let set k v m = IntMap.add k v m
  let copy m = m
  let length s = IntMap.cardinal s
end
OCaml

Innovation. Community. Security.