package psq

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file psq.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
(* Copyright (c) 2016 David Kaloper Meršinjak. All rights reserved.
   See LICENSE.md *)

type 'a fmt = Format.formatter -> 'a -> unit

let pf = Format.fprintf

module type Ordered = sig type t val compare : t -> t -> int end

module type S = sig
  type t
  type k
  type p
  val empty : t
  val sg : k -> p -> t
  val (++) : t -> t -> t
  val is_empty : t -> bool
  val size : t -> int
  val mem : k -> t -> bool
  val find : k -> t -> p option
  val add : k -> p -> t -> t
  val push : k -> p -> t -> t
  val remove : k -> t -> t
  val adjust : k -> (p -> p) -> t -> t
  val update : k -> (p option -> p option) -> t -> t
  val split_at : k -> t -> t * t
  val min : t -> (k * p) option
  val rest : t -> t option
  val pop : t -> ((k * p) * t) option
  val fold_at_most : p -> (k -> p -> 'a -> 'a) -> 'a -> t -> 'a
  val iter_at_most : p -> (k -> p -> unit) -> t -> unit
  val to_seq_at_most : p -> t -> (k * p) Seq.t
  val of_list : (k * p) list -> t
  val of_sorted_list : (k * p) list -> t
  val of_seq : (k * p) Seq.t -> t
  val add_seq : (k * p) Seq.t -> t -> t
  val to_list : t -> (k * p) list
  val to_seq : t -> (k * p) Seq.t
  val fold : (k -> p -> 'a -> 'a) -> 'a -> t -> 'a
  val iter : (k -> p -> unit) -> t -> unit
  val to_priority_list : t -> (k * p) list
  val to_priority_seq : t -> (k * p) Seq.t
  val filter : (k -> p -> bool) -> t -> t
  val partition : (k -> p -> bool) -> t -> t * t
  val pp : ?sep:(unit fmt) -> (k * p) fmt -> t fmt
  val pp_dump : k fmt -> p fmt -> t fmt
  val depth : t -> int
end

module Make (K: Ordered) (P: Ordered) :
  S with type k = K.t and type p = P.t =
struct

  type k = K.t
  type p = P.t

  type t = (* SEARCH PENNANTS *)
    N
  | T of (k * p) * k * tree

  and tree = (* LOSER TREES, OH MY *)
    Lf
  | NdL of (k * p) * tree * k * tree * int
  | NdR of (k * p) * tree * k * tree * int

  let empty = N
  let sg (k, _ as kp) = T (kp, k, Lf)

  let is_empty = function N -> true | _ -> false

  let size_t = function
    Lf -> 0
  | NdL (_, _, _, _, w)
  | NdR (_, _, _, _, w) -> w

  let size = function N -> 0 | T (_, _, t) -> size_t t + 1

  let nd_l kp t1 sk t2 = NdL (kp, t1, sk, t2, size_t t1 + size_t t2 + 1)
  let nd_r kp t1 sk t2 = NdR (kp, t1, sk, t2, size_t t1 + size_t t2 + 1)

  let nd (k, _ as kp) t1 sk t2 =
    if K.compare k sk <= 0 then nd_l kp t1 sk t2 else nd_r kp t1 sk t2


  let outweighs s1 s2 = s1 * 100 > s2 * 375

  let (@<=@) (k1, p1) (k2, p2) =
    match P.compare p1 p2 with 0 -> K.compare k1 k2 <= 0 | c -> c < 0
  [@@inline]

  let rot_l kp1 t1 sk1 = function
    NdL (kp2, t2, sk2, t3, _) when kp1 @<=@ kp2 ->
      nd kp1 (nd kp2 t1 sk1 t2) sk2 t3
  | NdL (kp2, t2, sk2, t3, _) | NdR (kp2, t2, sk2, t3, _) ->
      nd kp2 (nd kp1 t1 sk1 t2) sk2 t3
  | Lf -> assert false

  let rot_r kp1 tt sk2 t3 = match tt with
    NdR (kp2, t1, sk1, t2, _) when kp1 @<=@ kp2 ->
      nd kp1 t1 sk1 (nd kp2 t2 sk2 t3)
  | NdL (kp2, t1, sk1, t2, _) | NdR (kp2, t1, sk1, t2, _) ->
      nd kp2 t1 sk1 (nd kp1 t2 sk2 t3)
  | Lf -> assert false

  let rot_ll kp1 t1 sk1 = function
    NdL (kp2, t2, sk2, t3, _) | NdR (kp2, t2, sk2, t3, _) ->
      rot_l kp1 t1 sk1 (rot_r kp2 t2 sk2 t3)
  | Lf -> assert false

  let rot_rr kp1 tt sk2 t3 = match tt with
    NdL (kp2, t1, sk1, t2, _) | NdR (kp2, t1, sk1, t2, _) ->
      rot_r kp1 (rot_l kp2 t1 sk1 t2) sk2 t3
  | Lf -> assert false

  (* Precond: at most one of t1, t2 is at most 1 away from a balanced
     configuration. *)
  let nd_bal kp t1 sk t2 =
    let s1 = size_t t1 and s2 = size_t t2 in
    match (t1, t2) with
      ((NdL (_, t11, _, t12, _) | NdR (_, t11, _, t12, _)), _)
      when s1 > 1 && outweighs s1 s2 ->
        if size_t t11 > size_t t12 then
          rot_r kp t1 sk t2
        else rot_rr kp t1 sk t2
    | (_, (NdL (_, t21, _, t22, _) | NdR (_, t21, _, t22, _)))
      when s2 > 1 && outweighs s2 s1 ->
        if size_t t21 < size_t t22 then
          rot_l kp t1 sk t2
        else rot_ll kp t1 sk t2
    | _ -> nd kp t1 sk t2

  let (><) t1 t2 = match (t1, t2) with
    (N, t) | (t, N) -> t
  | (T (kp1, sk1, t1), T (kp2, sk2, t2)) ->
      if kp1 @<=@ kp2 then
        T (kp1, sk2, nd_bal kp2 t1 sk1 t2)
      else T (kp2, sk2, nd_bal kp1 t1 sk1 t2)
  [@@inline]

  let (>|<) (k1, _ as kp1) (k2, _ as kp2) =
    if kp1 @<=@ kp2 then
      T (kp1, k2, NdR (kp2, Lf, k1, Lf, 1))
    else T (kp2, k2, NdL (kp1, Lf, k1, Lf, 1))
  [@@inline]

  let rec promote sk0 = function
    Lf -> N
  | NdL (kp, t1, sk, t2, _) -> T (kp, sk, t1) >< promote sk0 t2
  | NdR (kp, t1, sk, t2, _) -> promote sk t1 >< T (kp, sk0, t2)

  let min = function N -> None | T (kp, _, _) -> Some kp
  let rest = function N -> None | T (_, sk, t) -> Some (promote sk t)
  let pop = function N -> None | T (kp, sk, t) -> Some (kp, promote sk t)

  let find k0 t =
    let rec go k0 = function
      Lf -> None
    | NdL ((k, p), t1, sk, t2, _)
    | NdR ((k, p), t1, sk, t2, _) ->
        if K.compare k0 k = 0 then Some p else
          if K.compare k0 sk <= 0 then go k0 t1 else go k0 t2 in
    match t with
      N -> None
    | T ((k, p), _, t) -> if K.compare k0 k = 0 then Some p else go k0 t

  let mem k0 t =
    let rec go k0 = function
      Lf -> false
    | NdL ((k, _), t1, sk, t2, _)
    | NdR ((k, _), t1, sk, t2, _) ->
        K.compare k0 k = 0 ||
        if K.compare k0 sk <= 0 then go k0 t1 else go k0 t2 in
    match t with N -> false | T ((k, _), _, t) -> K.compare k0 k = 0 || go k0 t

  let foldr_at_most p0 f t z =
    let rec f1 p0 (_, p as kp) f z t =
      if P.compare p p0 <= 0 then f2 p0 kp f z t else z ()
    and f2 p0 kp0 f z = function
      Lf -> f kp0 z
    | NdL (kp, t1, _, t2, _) -> f1 p0 kp f (fun () -> f2 p0 kp0 f z t2) t1
    | NdR (kp, t1, _, t2, _) -> f2 p0 kp0 f (fun () -> f1 p0 kp f z t2) t1 in
    match t with T (kp0, _, t) -> f1 p0 kp0 f z t | _ -> z ()

  let fold_at_most p0 f z t =
    foldr_at_most p0 (fun (k, p) a -> f k p (a ())) t (fun () -> z)

  let iter_at_most p0 f t =
    foldr_at_most p0 (fun (k, p) i -> f k p; i ()) t ignore

  let to_seq_at_most p0 t () =
    foldr_at_most p0 (fun kp seq -> Seq.Cons (kp, seq)) t Seq.empty

  (* type view = Nv | Sgv of (k * p) | Binv of t * K.t * t *)

  (* let view = function *)
  (*   N -> Nv *)
  (* | T (kp, _, Lf) -> Sgv kp *)
  (* | T (kp1, sk1, NdL (kp2, t1, sk2, t2, _)) -> *)
  (*     Binv (T (kp2, sk2, t1), sk2, T (kp1, sk1, t2)) *)
  (* | T (kp1, sk1, NdR (kp2, t1, sk2, t2, _)) -> *)
  (*     Binv (T (kp1, sk2, t1), sk2, T (kp2, sk1, t2)) *)

  (* let rec add (k0, _ as kp0) t = match view t with *)
  (*   | Nv -> sg kp0 *)
  (*   | Sgv (k, _) -> *)
  (*       let c = K.compare k0 k and t' = sg kp0 in *)
  (*       if c < 0 then t' >< t else if c > 0 then t >< t' else t' *)
  (*   | Binv (t1, sk, t2) -> *)
  (*       if K.compare k0 sk <= 0 then add kp0 t1 >< t2 else t1 >< add kp0 t2 *)

  (* let remove k0 t = *)
  (*   let rec go k0 t = match view t with *)
  (*     Binv (t1, sk, t2) -> *)
  (*       if K.compare k0 sk <= 0 then go k0 t1 >< t2 else t1 >< go k0 t2 *)
  (*   | Sgv (k, _) when K.compare k k0 = 0 -> N *)
  (*   | Sgv _ | Nv -> raise_notrace Exit in *)
  (*   try go k0 t with Exit -> t *)

  (* let adjust k0 f t = *)
  (*   let rec go f k0 t = match view t with *)
  (*     Binv (t1, sk, t2) -> *)
  (*       if K.compare k0 sk <= 0 then go f k0 t1 >|< t2 else t1 >|< go f k0 t2 *)
  (*   | Sgv (k, p) when K.compare k k0 = 0 -> sg (k, f p) *)
  (*   | Sgv _ | Nv -> raise_notrace Exit in *)
  (*   try go f k0 t with Exit -> t *)

  (* let rec filter pf t = match view t with *)
  (*   Nv -> N *)
  (* | Sgv (k, p as kp) -> if pf k p then sg kp else N *)
  (* | Binv (t1, _, t2) -> filter pf t1 >< filter pf t2 *)

  let update =
    let rec go k0 f (k1, p1 as kp1) sk1 = function
      Lf ->
        let c = K.compare k0 k1 in
        if c = 0 then
          match f (Some p1) with
          | Some p when p == p1 -> raise_notrace Exit
          | Some p -> sg (k0, p)
          | None -> N
        else ( match f None with
          | Some p when c < 0 -> (k0, p) >|< kp1
          | Some p -> kp1 >|< (k0, p)
          | None -> raise_notrace Exit )
    | NdL (kp2, t1, sk2, t2, _) ->
        if K.compare k0 sk2 <= 0 then
          go k0 f kp2 sk2 t1 >< T (kp1, sk1, t2)
        else T (kp2, sk2, t1) >< go k0 f kp1 sk1 t2
    | NdR (kp2, t1, sk2, t2, _) ->
        if K.compare k0 sk2 <= 0 then
          go k0 f kp1 sk2 t1 >< T (kp2, sk1, t2)
        else T (kp1, sk2, t1) >< go k0 f kp2 sk1 t2 in
    fun k0 f -> function
    | N -> (match f None with Some p -> sg (k0, p) | _ -> N)
    | T (kp, sk, t1) as t -> try go k0 f kp sk t1 with Exit -> t

  let add k p t = update k (fun _ -> Some p) t
  let push k p t = update k (function
    | Some p0 -> Some (if P.compare p p0 < 0 then p else p0)
    | None -> Some p) t
  let remove k t = update k (fun _ -> None) t
  let adjust k f t = update k (function Some p -> Some (f p) | _ -> None) t

  let filter =
    let rec go pf kp1 sk1 = function
      Lf -> if pf (fst kp1) (snd kp1) then sg kp1 else N
    | NdL (kp2, t1, sk2, t2, _) -> go pf kp2 sk2 t1 >< go pf kp1 sk1 t2
    | NdR (kp2, t1, sk2, t2, _) -> go pf kp1 sk2 t1 >< go pf kp2 sk1 t2 in
    fun pf -> function N -> N | T (kp, sk, t) -> go pf kp sk t

  let partition pf t = filter pf t, filter (fun k p -> not (pf k p)) t

  let split_at =
    let rec go k0 pk sk = function
    | Lf -> if K.compare (fst pk) k0 <= 0 then sg pk, empty else empty, sg pk
    | NdL (pk1, t1, sk1, t2, _) ->
        if K.compare k0 sk1 <= 0 then
          let t11, t12 = go k0 pk1 sk1 t1 in t11, t12 >< T (pk, sk, t2)
        else let t21, t22 = go k0 pk sk t2 in T (pk1, sk1, t1) >< t21, t22
    | NdR (pk1, t1, sk1, t2, _) ->
        if K.compare k0 sk1 <= 0 then
          let t11, t12 = go k0 pk sk1 t1 in t11, t12 >< T (pk1, sk, t2)
        else let t21, t22 = go k0 pk1 sk t2 in T (pk, sk1, t1) >< t21, t22 in
    fun k0 -> function N -> N, N | T (pk, sk, t) -> go k0 pk sk t

  let rec (++) =
    let app q1 = function
    | N -> q1
    | T ((k, p), _, Lf) -> push k p q1
    | T ((k1, p1), _,
         (NdL ((k2, p2), Lf, _, Lf, _) |
          NdR ((k2, p2), Lf, _, Lf, _))) -> push k1 p1 (push k2 p2 q1)
    | T (kp, sk, NdL (kp1, t1, sk1, t2, _)) ->
        let q11, q12 = split_at sk1 q1 in
        (q11 ++ T (kp1, sk1, t1)) >< (q12 ++ T (kp, sk, t2))
    | T (kp, sk, NdR (kp1, t1, sk1, t2, _)) ->
        let q11, q12 = split_at sk1 q1 in
        (q11 ++ T (kp, sk1, t1)) >< (q12 ++ T (kp1, sk, t2)) in
    fun q1 q2 -> if size q1 < size q2 then app q2 q1 else app q1 q2

  let of_sorted_list =
    let rec group1 = function
    | [] -> []
    | [x] -> [sg x]
    | [x;y] -> [x >|< y]
    | [x;y;z] -> [(x >|< y) >< sg z]
    | x::y::z::w::xs -> ((x >|< y) >< (z >|< w)) :: group1 xs
    and group2 = function
    | [] | [_] as r -> r
    | [x;y] -> [x >< y]
    | [x;y;z] -> [(x >< y) >< z]
    | x::y::z::w::xs -> ((x >< y) >< (z >< w)) :: group2 xs
    and go = function [] -> N | [t] -> t | ts -> go (group2 ts) in
    fun xs -> go (group1 xs)

  let of_list =
    let rec sieve k0 a = function
    | [] -> a
    | (k, _) as kv :: kvs ->
        if K.compare k0 k = 0 then sieve k0 a kvs else sieve k (kv :: a) kvs in
    let cmp_kv (k1, p1) (k2, p2) =
      match K.compare k2 k1 with 0 -> P.compare p1 p2 | r -> r in
    fun xs -> match List.sort cmp_kv xs with
    | [] -> empty
    | (k, _) as kv :: kvs -> sieve k [kv] kvs |> of_sorted_list

  let of_seq xs = Seq.fold_left (fun xs a -> a::xs) [] xs |> of_list

  let add_seq xs q = Seq.fold_left (fun q (k, p) -> add k p q) q xs

  let iter =
    let rec go (p0, k0 as pk0) f = function
      Lf -> f p0 k0
    | NdL (pk, t1, _, t2, _) -> go pk f t1; go pk0 f t2
    | NdR (pk, t1, _, t2, _) -> go pk0 f t1; go pk f t2 in
    fun f -> function N -> () | T (pk, _, t) -> go pk f t

  let foldr =
    let rec go kp0 f z = function
      Lf -> f kp0 z
    | NdL (kp, t1, _, t2, _) -> go kp f (go kp0 f z t2) t1
    | NdR (kp, t1, _, t2, _) -> go kp0 f (go kp f z t2) t1 in
    fun f z -> function N -> z | T (kp, _, t) -> go kp f z t

  let lfoldr =
    let rec go kp0 f z = function
      Lf -> f kp0 z
    | NdL (kp, t1, _, t2, _) -> go kp f (fun () -> go kp0 f z t2) t1
    | NdR (kp, t1, _, t2, _) -> go kp0 f (fun () -> go kp f z t2) t1 in
    fun f z -> function T (kp, _, t) -> go kp f z t | N -> z ()

  let fold f z t = foldr (fun (k, p) z -> f k p z) z t
  let to_list t = foldr (fun kp xs -> kp :: xs) [] t
  let to_seq t () = lfoldr (fun kp xs -> Seq.Cons (kp, xs)) Seq.empty t

  let to_priority_list =
    let rec (--) xs ys = match xs, ys with
      [], l | l, [] -> l
    | x::xt, y::yt -> if x @<=@ y then x :: (xt -- ys) else y :: (xs -- yt) in
    let rec go = function
      Lf -> []
    | NdL (kp2, t1, _, t2, _) -> (kp2 :: go t1) -- go t2
    | NdR (kp2, t1, _, t2, _) -> go t1 -- (kp2 :: go t2) in
    function N -> [] | T (kp, _, t) -> kp :: go t

  let to_priority_seq t () =
    let open Seq in
    let rec (--) n1 n2 = match n1, n2 with
      Nil, n | n, Nil -> n
    | Cons (x, xt), Cons (y, yt) ->
        if x @<=@ y then
          Cons (x, fun _ -> xt () -- n2)
        else Cons (y, fun _ -> n1 -- yt ()) in
    let rec go = function
      Lf -> Nil
    | NdL (kp2, t1, _, t2, _) -> Cons (kp2, fun _ -> go t1) -- go t2
    | NdR (kp2, t1, _, t2, _) -> go t1 -- Cons (kp2, fun _ -> go t2) in
    match t with N -> Nil | T (kp, _, t) -> Cons (kp, fun _ -> go t)

  let sg k p = sg (k, p)

  let depth t =
    let rec go = function
      Lf -> 0
    | NdL (_, t1, _, t2, _) | NdR (_, t1, _, t2, _) ->
        max (go t1) (go t2) + 1 in
    match t with N -> 0 | T (_, _, t) -> go t + 1

  let pp ?(sep = Format.pp_print_space) pp ppf t =
    let first = ref true in
    let k ppf = iter @@ fun k p ->
      ( match !first with true -> first := false | _ -> sep ppf ());
      pp ppf (k, p) in
    pf ppf "@[%a@]" k t

  let pp_dump ppk ppp ppf =
    let sep ppf () = pf ppf ";@ "
    and ppkp ppf (k, p) = pf ppf "(@[%a,@ %a@])" ppk k ppp p in
    pf ppf "of_sorted_list [%a]" (pp ~sep ppkp)
end
OCaml

Innovation. Community. Security.