package base

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file int_math.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
open! Import

let invalid_argf = Printf.invalid_argf

let negative_exponent () =
  Printf.invalid_argf "exponent can not be negative" ()

let overflow () =
  Printf.invalid_argf "integer overflow in pow" ()

(* To implement [int64_pow], we use C code rather than OCaml to eliminate allocation. *)
external int_math_int_pow   : int   -> int   -> int   = "Base_int_math_int_pow_stub" [@@noalloc]
external int_math_int64_pow : int64 -> int64 -> int64 = "Base_int_math_int64_pow_stub"

let int_pow base exponent =
  if exponent < 0 then negative_exponent ();

  if abs(base) > 1 &&
     (exponent > 63 ||
      abs(base) > Pow_overflow_bounds.int_positive_overflow_bounds.(exponent))
  then overflow ();

  int_math_int_pow base exponent
;;

module Int64_with_comparisons = struct
  include Caml.Int64
  external ( <  ) : int64 -> int64 -> bool = "%lessthan"
  external ( >  ) : int64 -> int64 -> bool = "%greaterthan"
  external ( >= ) : int64 -> int64 -> bool = "%greaterequal"
end

(* we don't do [abs] in int64 case to avoid allocation *)
let int64_pow base exponent =
  let open Int64_with_comparisons in
  if exponent < 0L then negative_exponent ();

  if (base > 1L || base < (-1L)) &&
     (exponent > 63L ||
      (base >= 0L &&
       base > Pow_overflow_bounds.int64_positive_overflow_bounds.(to_int exponent))
      ||
      (base < 0L &&
       base < Pow_overflow_bounds.int64_negative_overflow_bounds.(to_int exponent)))
  then overflow ();

  int_math_int64_pow base exponent
;;


let int63_pow_on_int64 base exponent =
  let open Int64_with_comparisons in
  if exponent < 0L then negative_exponent ();

  if abs(base) > 1L &&
     (exponent > 63L ||
      abs(base) > Pow_overflow_bounds.int63_on_int64_positive_overflow_bounds.(to_int exponent))
  then overflow ();

  int_math_int64_pow base exponent
;;

module type T = sig
  type t
  include Floatable.S  with type t := t
  include Stringable.S with type t := t

  val ( + ) : t -> t -> t
  val ( - ) : t -> t -> t
  val ( * ) : t -> t -> t
  val ( / ) : t -> t -> t
  val ( ~- ) : t -> t
  include Comparisons.Infix with type t := t

  val abs    : t -> t
  val neg    : t -> t
  val zero   : t
  val of_int_exn : int -> t
  val rem : t -> t -> t
end

module Make (X : T) = struct
  open X

  let ( % ) x y =
    if y <= zero then
      invalid_argf
        "%s %% %s in core_int.ml: modulus should be positive"
        (to_string x) (to_string y) ();
    let rval = X.rem x y in
    if rval < zero
    then rval + y
    else rval
  ;;

  let one = of_int_exn 1
  ;;

  let ( /% ) x y =
    if y <= zero then
      invalid_argf
        "%s /%% %s in core_int.ml: divisor should be positive"
        (to_string x) (to_string y) ();
    if x < zero
    then (x + one) / y - one
    else x / y
  ;;

  (** float division of integers *)
  let (//) x y = to_float x /. to_float y
  ;;

  let round_down i ~to_multiple_of:modulus = i - (i % modulus)
  ;;

  let round_up i ~to_multiple_of:modulus =
    let remainder = i % modulus in
    if remainder = zero
    then i
    else i + modulus - remainder
  ;;

  let round_towards_zero i ~to_multiple_of =
    if i = zero then zero else
    if i > zero
    then round_down i ~to_multiple_of
    else round_up   i ~to_multiple_of
  ;;

  let round_nearest i ~to_multiple_of:modulus =
    let remainder = i % modulus in
    if remainder * of_int_exn 2 < modulus
    then i - remainder
    else i - remainder + modulus
  ;;

  let round ?(dir=`Nearest) i ~to_multiple_of =
    match dir with
    | `Nearest -> round_nearest      i ~to_multiple_of
    | `Down    -> round_down         i ~to_multiple_of
    | `Up      -> round_up           i ~to_multiple_of
    | `Zero    -> round_towards_zero i ~to_multiple_of
  ;;
end
OCaml

Innovation. Community. Security.