Source file monad_intf.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
open! Import
module type Basic = sig
type 'a t
val bind : 'a t -> f:('a -> 'b t) -> 'b t
val return : 'a -> 'a t
(** The following identities ought to hold (for some value of =):
- [return x >>= f = f x]
- [t >>= fun x -> return x = t]
- [(t >>= f) >>= g = t >>= fun x -> (f x >>= g)]
Note: [>>=] is the infix notation for [bind]) *)
(** The [map] argument to [Monad.Make] says how to implement the monad's [map] function.
[`Define_using_bind] means to define [map t ~f = bind t ~f:(fun a -> return (f a))].
[`Custom] overrides the default implementation, presumably with something more
efficient.
Some other functions returned by [Monad.Make] are defined in terms of [map], so
passing in a more efficient [map] will improve their efficiency as well. *)
val map : [ `Define_using_bind | `Custom of 'a t -> f:('a -> 'b) -> 'b t ]
end
module type Infix = sig
type 'a t
(** [t >>= f] returns a computation that sequences the computations represented by two
monad elements. The resulting computation first does [t] to yield a value [v], and
then runs the computation returned by [f v]. *)
val ( >>= ) : 'a t -> ('a -> 'b t) -> 'b t
(** [t >>| f] is [t >>= (fun a -> return (f a))]. *)
val ( >>| ) : 'a t -> ('a -> 'b) -> 'b t
end
(** Opening a module of this type allows one to use the [%bind] and [%map] syntax
extensions defined by ppx_let, and brings [return] into scope. *)
module type Syntax = sig
type 'a t
module Let_syntax : sig
(** These are convenient to have in scope when programming with a monad: *)
val return : 'a -> 'a t
include Infix with type 'a t := 'a t
module Let_syntax : sig
val return : 'a -> 'a t
val bind : 'a t -> f:('a -> 'b t) -> 'b t
val map : 'a t -> f:('a -> 'b) -> 'b t
val both : 'a t -> 'b t -> ('a * 'b) t
module Open_on_rhs : sig end
end
end
end
module type S_without_syntax = sig
type 'a t
include Infix with type 'a t := 'a t
module Monad_infix : Infix with type 'a t := 'a t
(** [bind t ~f] = [t >>= f] *)
val bind : 'a t -> f:('a -> 'b t) -> 'b t
(** [return v] returns the (trivial) computation that returns v. *)
val return : 'a -> 'a t
(** [map t ~f] is t >>| f. *)
val map : 'a t -> f:('a -> 'b) -> 'b t
(** [join t] is [t >>= (fun t' -> t')]. *)
val join : 'a t t -> 'a t
(** [ignore_m t] is [map t ~f:(fun _ -> ())]. [ignore_m] used to be called [ignore],
but we decided that was a bad name, because it shadowed the widely used
[Caml.ignore]. Some monads still do [let ignore = ignore_m] for historical
reasons. *)
val ignore_m : 'a t -> unit t
val all : 'a t list -> 'a list t
(** Like [all], but ensures that every monadic value in the list produces a unit value,
all of which are discarded rather than being collected into a list. *)
val all_unit : unit t list -> unit t
end
module type S = sig
type 'a t
include S_without_syntax with type 'a t := 'a t
include Syntax with type 'a t := 'a t
end
(** Multi parameter monad. The second parameter gets unified across all the computation.
This is used to encode monads working on a multi parameter data structure like
([('a,'b) result]). *)
module type Basic2 = sig
type ('a, 'e) t
val bind : ('a, 'e) t -> f:('a -> ('b, 'e) t) -> ('b, 'e) t
val map : [ `Define_using_bind | `Custom of ('a, 'e) t -> f:('a -> 'b) -> ('b, 'e) t ]
val return : 'a -> ('a, _) t
end
(** Same as Infix, except the monad type has two arguments. The second is always just
passed through. *)
module type Infix2 = sig
type ('a, 'e) t
val ( >>= ) : ('a, 'e) t -> ('a -> ('b, 'e) t) -> ('b, 'e) t
val ( >>| ) : ('a, 'e) t -> ('a -> 'b) -> ('b, 'e) t
end
module type Syntax2 = sig
type ('a, 'e) t
module Let_syntax : sig
val return : 'a -> ('a, _) t
include Infix2 with type ('a, 'e) t := ('a, 'e) t
module Let_syntax : sig
val return : 'a -> ('a, _) t
val bind : ('a, 'e) t -> f:('a -> ('b, 'e) t) -> ('b, 'e) t
val map : ('a, 'e) t -> f:('a -> 'b) -> ('b, 'e) t
val both : ('a, 'e) t -> ('b, 'e) t -> ('a * 'b, 'e) t
module Open_on_rhs : sig end
end
end
end
(** The same as S except the monad type has two arguments. The second is always just
passed through. *)
module type S2 = sig
type ('a, 'e) t
include Infix2 with type ('a, 'e) t := ('a, 'e) t
include Syntax2 with type ('a, 'e) t := ('a, 'e) t
module Monad_infix : Infix2 with type ('a, 'e) t := ('a, 'e) t
val bind : ('a, 'e) t -> f:('a -> ('b, 'e) t) -> ('b, 'e) t
val return : 'a -> ('a, _) t
val map : ('a, 'e) t -> f:('a -> 'b) -> ('b, 'e) t
val join : (('a, 'e) t, 'e) t -> ('a, 'e) t
val ignore_m : (_, 'e) t -> (unit, 'e) t
val all : ('a, 'e) t list -> ('a list, 'e) t
val all_unit : (unit, 'e) t list -> (unit, 'e) t
end
(** Multi parameter monad. The second and third parameters get unified across all the
computation. *)
module type Basic3 = sig
type ('a, 'd, 'e) t
val bind : ('a, 'd, 'e) t -> f:('a -> ('b, 'd, 'e) t) -> ('b, 'd, 'e) t
val map
: [ `Define_using_bind | `Custom of ('a, 'd, 'e) t -> f:('a -> 'b) -> ('b, 'd, 'e) t ]
val return : 'a -> ('a, _, _) t
end
(** Same as Infix, except the monad type has three arguments. The second and third are
always just passed through. *)
module type Infix3 = sig
type ('a, 'd, 'e) t
val ( >>= ) : ('a, 'd, 'e) t -> ('a -> ('b, 'd, 'e) t) -> ('b, 'd, 'e) t
val ( >>| ) : ('a, 'd, 'e) t -> ('a -> 'b) -> ('b, 'd, 'e) t
end
module type Syntax3 = sig
type ('a, 'd, 'e) t
module Let_syntax : sig
val return : 'a -> ('a, _, _) t
include Infix3 with type ('a, 'd, 'e) t := ('a, 'd, 'e) t
module Let_syntax : sig
val return : 'a -> ('a, _, _) t
val bind : ('a, 'd, 'e) t -> f:('a -> ('b, 'd, 'e) t) -> ('b, 'd, 'e) t
val map : ('a, 'd, 'e) t -> f:('a -> 'b) -> ('b, 'd, 'e) t
val both : ('a, 'd, 'e) t -> ('b, 'd, 'e) t -> ('a * 'b, 'd, 'e) t
module Open_on_rhs : sig end
end
end
end
(** The same as S except the monad type has three arguments. The second and third are
always just passed through. *)
module type S3 = sig
type ('a, 'd, 'e) t
include Infix3 with type ('a, 'd, 'e) t := ('a, 'd, 'e) t
include Syntax3 with type ('a, 'd, 'e) t := ('a, 'd, 'e) t
module Monad_infix : Infix3 with type ('a, 'd, 'e) t := ('a, 'd, 'e) t
val bind : ('a, 'd, 'e) t -> f:('a -> ('b, 'd, 'e) t) -> ('b, 'd, 'e) t
val return : 'a -> ('a, _, _) t
val map : ('a, 'd, 'e) t -> f:('a -> 'b) -> ('b, 'd, 'e) t
val join : (('a, 'd, 'e) t, 'd, 'e) t -> ('a, 'd, 'e) t
val ignore_m : (_, 'd, 'e) t -> (unit, 'd, 'e) t
val all : ('a, 'd, 'e) t list -> ('a list, 'd, 'e) t
val all_unit : (unit, 'd, 'e) t list -> (unit, 'd, 'e) t
end
(** Indexed monad, in the style of Atkey. The second and third parameters are composed
across all computation. To see this more clearly, you can look at the type of bind:
{[
val bind : ('a, 'i, 'j) t -> f:('a -> ('b, 'j, 'k) t) -> ('b, 'i, 'k) t
]}
and isolate some of the type variables to see their individual behaviors:
{[
val bind : 'a -> f:('a -> 'b ) -> 'b
val bind : 'i, 'j -> 'j, 'k -> 'i, 'k
]}
For more information on Atkey-style indexed monads, see:
{v
Parameterised Notions of Computation
Robert Atkey
http://bentnib.org/paramnotions-jfp.pdf
v} *)
module type Basic_indexed = sig
type ('a, 'i, 'j) t
val bind : ('a, 'i, 'j) t -> f:('a -> ('b, 'j, 'k) t) -> ('b, 'i, 'k) t
val map
: [ `Define_using_bind | `Custom of ('a, 'i, 'j) t -> f:('a -> 'b) -> ('b, 'i, 'j) t ]
val return : 'a -> ('a, 'i, 'i) t
end
(** Same as Infix, except the monad type has three arguments. The second and third are
compose across all computation. *)
module type Infix_indexed = sig
type ('a, 'i, 'j) t
val ( >>= ) : ('a, 'i, 'j) t -> ('a -> ('b, 'j, 'k) t) -> ('b, 'i, 'k) t
val ( >>| ) : ('a, 'i, 'j) t -> ('a -> 'b) -> ('b, 'i, 'j) t
end
module type Syntax_indexed = sig
type ('a, 'i, 'j) t
module Let_syntax : sig
val return : 'a -> ('a, 'i, 'i) t
include Infix_indexed with type ('a, 'i, 'j) t := ('a, 'i, 'j) t
module Let_syntax : sig
val return : 'a -> ('a, 'i, 'i) t
val bind : ('a, 'i, 'j) t -> f:('a -> ('b, 'j, 'k) t) -> ('b, 'i, 'k) t
val map : ('a, 'i, 'j) t -> f:('a -> 'b) -> ('b, 'i, 'j) t
val both : ('a, 'i, 'j) t -> ('b, 'j, 'k) t -> ('a * 'b, 'i, 'k) t
module Open_on_rhs : sig end
end
end
end
(** The same as S except the monad type has three arguments. The second and third are
composed across all computation. *)
module type S_indexed = sig
type ('a, 'i, 'j) t
include Infix_indexed with type ('a, 'i, 'j) t := ('a, 'i, 'j) t
include Syntax_indexed with type ('a, 'i, 'j) t := ('a, 'i, 'j) t
module Monad_infix : Infix_indexed with type ('a, 'i, 'j) t := ('a, 'i, 'j) t
val bind : ('a, 'i, 'j) t -> f:('a -> ('b, 'j, 'k) t) -> ('b, 'i, 'k) t
val return : 'a -> ('a, 'i, 'i) t
val map : ('a, 'i, 'j) t -> f:('a -> 'b) -> ('b, 'i, 'j) t
val join : (('a, 'j, 'k) t, 'i, 'j) t -> ('a, 'i, 'k) t
val ignore_m : (_, 'i, 'j) t -> (unit, 'i, 'j) t
val all : ('a, 'i, 'i) t list -> ('a list, 'i, 'i) t
val all_unit : (unit, 'i, 'i) t list -> (unit, 'i, 'i) t
end
module S_to_S2 (X : S) : S2 with type ('a, 'e) t = 'a X.t = struct
type ('a, 'e) t = 'a X.t
include (X : S with type 'a t := 'a X.t)
end
module S2_to_S3 (X : S2) : S3 with type ('a, 'd, 'e) t = ('a, 'd) X.t = struct
type ('a, 'd, 'e) t = ('a, 'd) X.t
include (X : S2 with type ('a, 'd) t := ('a, 'd) X.t)
end
module S_to_S_indexed (X : S) : S_indexed with type ('a, 'i, 'j) t = 'a X.t = struct
type ('a, 'i, 'j) t = 'a X.t
include (X : S with type 'a t := 'a X.t)
end
module S2_to_S (X : S2) : S with type 'a t = ('a, unit) X.t = struct
type 'a t = ('a, unit) X.t
include (X : S2 with type ('a, 'e) t := ('a, 'e) X.t)
end
module S3_to_S2 (X : S3) : S2 with type ('a, 'e) t = ('a, 'e, unit) X.t = struct
type ('a, 'e) t = ('a, 'e, unit) X.t
include (X : S3 with type ('a, 'd, 'e) t := ('a, 'd, 'e) X.t)
end
module S_indexed_to_S2 (X : S_indexed) : S2 with type ('a, 'e) t = ('a, 'e, 'e) X.t =
struct
type ('a, 'e) t = ('a, 'e, 'e) X.t
include (X : S_indexed with type ('a, 'i, 'j) t := ('a, 'i, 'j) X.t)
end
module type Monad = sig
(** A monad is an abstraction of the concept of sequencing of computations. A value of
type ['a monad] represents a computation that returns a value of type ['a]. *)
module type Basic = Basic
module type Basic2 = Basic2
module type Basic3 = Basic3
module type Basic_indexed = Basic_indexed
module type Infix = Infix
module type Infix2 = Infix2
module type Infix3 = Infix3
module type Infix_indexed = Infix_indexed
module type Syntax = Syntax
module type Syntax2 = Syntax2
module type Syntax3 = Syntax3
module type Syntax_indexed = Syntax_indexed
module type S_without_syntax = S_without_syntax
module type S = S
module type S2 = S2
module type S3 = S3
module type S_indexed = S_indexed
module Make (X : Basic) : S with type 'a t := 'a X.t
module Make2 (X : Basic2) : S2 with type ('a, 'e) t := ('a, 'e) X.t
module Make3 (X : Basic3) : S3 with type ('a, 'd, 'e) t := ('a, 'd, 'e) X.t
module Make_indexed (X : Basic_indexed) :
S_indexed with type ('a, 'd, 'e) t := ('a, 'd, 'e) X.t
module Ident : S with type 'a t = 'a
end