Source file inference.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
open Costlang
open Maths
module NMap = Stats.Finbij.Make (Free_variable)
type constrnt = Full of Costlang.affine * measure
and measure = Measure of vector
type problem =
| Non_degenerate of {
lines : constrnt list;
input : matrix;
output : matrix;
nmap : NMap.t;
}
| Degenerate of {predicted : matrix; measured : matrix}
type scores = {
r2_score : float option;
rmse_score : float;
tvalues : (Free_variable.t * float) list;
}
let scores_encoding =
let open Data_encoding in
conv
(fun {r2_score; rmse_score; tvalues} -> (r2_score, rmse_score, tvalues))
(fun (r2_score, rmse_score, tvalues) -> {r2_score; rmse_score; tvalues})
@@ obj3
(req "r2_score" (option float))
(req "rmse_score" float)
(req "tvalues" (list (tup2 Free_variable.encoding float)))
let pp_scores ppf {r2_score; rmse_score; tvalues} =
let scores =
[
("R2: "
^ match r2_score with None -> "NA" | Some s -> Printf.sprintf "%f" s);
"RMSE: " ^ Printf.sprintf "%f" rmse_score;
]
@ List.map
(fun (v, t) ->
Printf.sprintf
"T-%s: %f"
(Free_variable.to_namespace v |> Namespace.basename)
t)
tvalues
in
Format.pp_print_list
~pp_sep:(fun ppf () -> Format.fprintf ppf " , ")
(fun ppf s -> Format.fprintf ppf "%s" s)
ppf
scores
let scores_to_csv_column (local_model_name, bench_name) scores =
let {r2_score; rmse_score; tvalues} = scores in
let name = local_model_name ^ "-" ^ Namespace.to_string bench_name in
let table =
(match r2_score with
| None -> []
| Some f -> [("R2_score-" ^ name, Float.to_string f)])
@ [("RMSE_score-" ^ name, Float.to_string rmse_score)]
@ List.map
(fun (v, f) ->
("T-value-" ^ Free_variable.to_string v, Float.to_string f))
tvalues
in
[List.map fst table; List.map snd table]
type solution = {
mapping : (Free_variable.t * float) list;
weights : matrix;
intercept_lift : float;
scores : scores;
}
type solver =
| Ridge of {alpha : float}
| Lasso of {alpha : float; positive : bool}
| NNLS
let establish_bijection (lines : constrnt list) : NMap.t =
let elements =
List.fold_left
(fun set line ->
match line with
| Full ({linear_comb; _}, _quantity) ->
Free_variable.Sparse_vec.fold
(fun elt _count set -> Free_variable.Set.add elt set)
linear_comb
set)
Free_variable.Set.empty
lines
in
NMap.of_list (Free_variable.Set.elements elements)
let line_list_to_ols (lines : constrnt list) =
let nmap = establish_bijection lines in
let lcount = List.length lines in
let inputs = Array.make_matrix lcount (NMap.support nmap) 0.0 in
let outputs = Array.make_matrix lcount 1 0.0 in
List.iteri
(fun i line ->
match line with
| Full (affine, Measure vec) ->
Free_variable.Sparse_vec.iter
(fun variable multiplicity ->
let dim = NMap.idx_exn nmap variable in
inputs.(i).(dim) <- multiplicity)
affine.linear_comb ;
let vec = Vector.map (fun qty -> qty -. affine.const) vec in
outputs.(i) <- vector_to_array vec)
lines ;
Tezos_stdlib_unix.Utils.display_progress_end () ;
(matrix_of_array_array inputs, matrix_of_array_array outputs, nmap)
type error_statistics = {
average : float;
total_l1 : float;
total_l2 : float;
avg_l1 : float;
avg_l2 : float;
underestimated_measured : float;
}
let pp_error_statistics fmtr err_stat =
Format.fprintf
fmtr
"@[<v 2>{ average = 1/N ∑_i tᵢ - pᵢ = %f;@,\
total error (L1) = ∑_i |tᵢ - pᵢ| = %f;@,\
total error (L2) = sqrt(∑_i (tᵢ - pᵢ)²) = %f;@,\
average error (L1) = 1/N L1 error = %f;@,\
average error (L2) = 1/N L2 error = %f;@,\
underestimated = 1/N card{ tᵢ > pᵢ } = %f%% }@]"
err_stat.average
err_stat.total_l1
err_stat.total_l2
err_stat.avg_l1
err_stat.avg_l2
err_stat.underestimated_measured
let compute_error_statistics ~(predicted : matrix) ~(measured : matrix) =
assert (Linalg.Tensor.Int.equal (Matrix.idim predicted) (Matrix.idim measured)) ;
assert (Maths.col_dim predicted = 1) ;
let predicted = vector_to_array (Matrix.col predicted 1) in
let measured = vector_to_array (Matrix.col measured 1) in
let error = Array.map2 ( -. ) measured predicted in
let rows = Array.length error in
let n = float_of_int rows in
let arr = Array.init rows (fun i -> error.(i)) in
let average = Array.fold_left ( +. ) 0.0 arr /. n in
let total_l1 = Array.map abs_float arr |> Array.fold_left ( +. ) 0.0 in
let total_l2 =
let squared_sum =
Array.map (fun x -> x *. x) arr |> Array.fold_left ( +. ) 0.0
in
sqrt squared_sum
in
let avg_l1 = total_l1 /. n in
let avg_l2 = total_l2 /. n in
let underestimated_measured =
let indic_under = Array.map (fun x -> if x > 0.0 then 1.0 else 0.0) arr in
Array.fold_left ( +. ) 0.0 indic_under /. n
in
{average; total_l1; total_l2; avg_l1; avg_l2; underestimated_measured}
let make_problem_from_workloads :
type workload.
data:(workload * vector) list ->
overrides:(Free_variable.t -> float option) ->
evaluate:(workload -> Eval_to_vector.size Eval_to_vector.repr) ->
problem =
fun ~data ~overrides ~evaluate ->
(match data with
| [] ->
Stdlib.failwith
"Inference.make_problem_from_workloads: empty workload data"
| _ -> ()) ;
let line_count = List.length data in
let model_progress =
Benchmark_helpers.make_progress_printer
Format.err_formatter
line_count
"Applying model to workload data"
in
let lines =
List.fold_left
(fun lines (workload, measures) ->
model_progress () ;
let res = Eval_to_vector.prj (evaluate workload) in
let res = Hash_cons_vector.prj res in
let affine = Eval_linear_combination_impl.run overrides res in
let line = Full (affine, Measure measures) in
line :: lines)
[]
data
in
Format.eprintf "@." ;
let lines = List.rev lines in
if
List.for_all
(fun (Full (affine, _)) ->
Free_variable.Sparse_vec.is_empty affine.linear_comb)
lines
then
let predicted, measured =
List.map (fun (Full (affine, Measure vec)) -> (affine.const, vec)) lines
|> List.split
in
let measured =
matrix_of_array_array (Array.of_list (List.map vector_to_array measured))
in
let predicted =
matrix_of_array_array
(Array.of_list predicted |> Array.map (fun x -> [|x|]))
in
Degenerate {predicted; measured}
else
let input, output, nmap = line_list_to_ols lines in
Non_degenerate {lines; input; output; nmap}
let make_problem :
data:'workload Measure.workload_data ->
model:'workload Model.t ->
overrides:(Free_variable.t -> float option) ->
problem =
fun ~data ~model ~overrides ->
let data =
List.map (fun {Measure.workload; measures; _} -> (workload, measures)) data
in
match model with
| Model.Abstract {conv; model} ->
let module M = (val model) in
let module M = Model.Instantiate (Eval_to_vector) (M) in
make_problem_from_workloads ~data ~overrides ~evaluate:(fun workload ->
M.model (conv workload))
| Model.Aggregate {model; _} ->
make_problem_from_workloads ~data ~overrides ~evaluate:(fun workload ->
let module A = (val model workload) in
let module I = A (Eval_to_vector) in
I.applied)
let fv_to_string fv = Format.asprintf "%a" Free_variable.pp fv
let to_list_of_rows (m : matrix) : float list list =
let cols = Maths.col_dim m in
let rows = Maths.row_dim m in
List.init ~when_negative_length:() rows (fun r ->
List.init ~when_negative_length:() cols (fun c -> Matrix.get m (c, r))
|> WithExceptions.Result.get_ok ~loc:__LOC__)
|> WithExceptions.Result.get_ok ~loc:__LOC__
let model_matrix_to_csv (m : matrix) (nmap : NMap.t) : Csv.csv =
let cols = Maths.col_dim m in
let names =
List.init ~when_negative_length:() cols (fun i ->
fv_to_string (NMap.nth_exn nmap i))
|>
WithExceptions.Result.get_ok ~loc:__LOC__
in
let rows = to_list_of_rows m in
let rows = List.map (List.map string_of_float) rows in
names :: rows
let timing_matrix_to_csv colname (m : matrix) : Csv.csv =
let rows = to_list_of_rows m in
let rows = List.map (List.map string_of_float) rows in
[colname] :: rows
let problem_to_csv : problem -> Csv.csv = function
| Non_degenerate {input; output; nmap; _} ->
let model_csv = model_matrix_to_csv input nmap in
let timings_csv = timing_matrix_to_csv "timings" output in
Csv.concat model_csv timings_csv
| Degenerate {predicted; measured} ->
let predicted_csv = timing_matrix_to_csv "predicted" predicted in
let measured_csv = timing_matrix_to_csv "timings" measured in
Csv.concat predicted_csv measured_csv
let mapping_to_csv mapping =
let = List.map (fun (fv, _) -> fv_to_string fv) mapping in
let row = List.map (fun x -> Float.to_string (snd x)) mapping in
[headers; row]
let solution_to_csv {mapping; _} =
if mapping = [] then None else Some (mapping_to_csv mapping)
let of_scipy m =
let r = Scikit_matrix.dim1 m in
let c = Scikit_matrix.dim2 m in
Matrix.make (Linalg.Tensor.Int.rank_two c r) @@ fun (c, r) ->
Scikit_matrix.get m r c
let to_scipy m =
let cols = Maths.col_dim m in
let rows = Maths.row_dim m in
Scikit_matrix.init ~lines:rows ~cols ~f:(fun l c -> Matrix.get m (c, l))
let to_scipy_vector v =
let open Bigarray in
Array1.init Float64 C_layout (vec_dim v) (fun i -> Vector.get v i)
let median_of_output output =
Matrix.of_col
@@ map_rows
(fun row -> Stats.Emp.quantile (module Float) (vector_to_array row) 0.5)
output
let wrap_python_solver ~input ~output solver =
let input = to_scipy input in
let output = to_scipy output in
solver input output |> of_scipy
let ridge ~alpha ~input ~output =
wrap_python_solver ~input ~output (fun input output ->
Pyinference.LinearModel.ridge ~alpha ~input ~output ())
let lasso ~alpha ~positive ~input ~output =
wrap_python_solver ~input ~output (fun input output ->
Pyinference.LinearModel.lasso ~alpha ~positive ~input ~output ())
let nnls ~input ~output =
wrap_python_solver ~input ~output (fun input output ->
Pyinference.LinearModel.nnls ~input ~output)
let predict_output ~input ~weights =
let input = to_scipy input in
let weights = to_scipy weights in
Pyinference.predict_output ~input ~weights
let r2_score ~output ~prediction =
let output = to_scipy output in
Pyinference.r2_score ~output ~prediction
let rmse_score ~output ~prediction =
let output = to_scipy output in
Pyinference.rmse_score ~output ~prediction
let calculate_benchmark_scores ~input ~output =
let output =
let arrs =
Array.init (row_dim output) (fun r ->
let arr = Matrix.row output r |> vector_to_array in
Array.sort Float.compare arr ;
let len = Array.length arr in
let q = if len <= 1 then len else len * 9 / 10 in
Array.init q (fun i -> arr.(i)))
in
Maths.matrix_of_array_array arrs
in
let input =
let co = col_dim output in
let r = row_dim input in
let ci = col_dim input in
Matrix.make (Linalg.Tensor.Int.rank_two ci (co * r)) @@ fun (c, r) ->
Matrix.get input (c, r / co)
in
let output =
let c = col_dim output in
let shape = Linalg.Tensor.Int.rank_one (c * row_dim output) in
Vector.make shape (fun i -> Matrix.get output (i mod c, i / c))
in
let input = to_scipy input in
let output = to_scipy_vector output in
let params, tvalues = Pyinference.benchmark_score ~input ~output in
(params |> of_scipy, tvalues |> of_scipy)
let solve_problem : problem -> solver -> solution =
fun problem solver ->
let calculate_regression_scores ~output ~prediction =
let r2_score =
let is_constant_input =
match problem with
| Degenerate _ -> false
| Non_degenerate {lines; _} ->
List.map (fun (Full (affine, _)) -> affine) lines
|> List.all_equal (fun v1 v2 ->
Free_variable.Sparse_vec.equal v1.linear_comb v2.linear_comb
&& Float.equal v1.const v2.const)
in
if is_constant_input then None else r2_score ~output ~prediction
in
let rmse_score = rmse_score ~output ~prediction in
{r2_score; rmse_score; tvalues = []}
in
match problem with
| Degenerate {predicted; measured} ->
let prediction = to_scipy predicted |> Scikit_matrix.to_numpy in
let output = median_of_output measured in
let scores = calculate_regression_scores ~output ~prediction in
{mapping = []; weights = empty_matrix; intercept_lift = 0.0; scores}
| Non_degenerate {input; output; nmap; _} ->
let params, tvalues = calculate_benchmark_scores ~input ~output in
let output = median_of_output output in
let weights =
match solver with
| Ridge {alpha} -> ridge ~alpha ~input ~output
| Lasso {alpha; positive} -> lasso ~alpha ~positive ~input ~output
| NNLS -> nnls ~input ~output
in
let prediction = predict_output ~input ~weights in
let intercept_lift =
let prediction = Scikit_matrix.of_numpy prediction |> of_scipy in
let output = vector_to_array (Matrix.col output 0) in
let prediction = vector_to_array (Matrix.col prediction 0) in
Array.map2 (fun o p -> o -. p) output prediction
|> Array.fold_left Float.max 0.0
in
let regression_scores = calculate_regression_scores ~output ~prediction in
let lines = Maths.row_dim weights in
if lines <> NMap.support nmap then
let cols = Maths.col_dim weights in
let dims = Format.asprintf "%d x %d" lines cols in
let err =
Format.asprintf
"Inference.solve_problem: solution dimensions (%s) mismatch that \
of given problem"
dims
in
Stdlib.failwith err
else
let mapping =
NMap.fold
(fun variable dim acc ->
let param = Matrix.get weights (0, dim) in
(variable, param) :: acc)
nmap
[]
in
let tvalues =
NMap.fold
(fun variable i acc ->
(let w_true = Matrix.get weights (0, i) in
let w_ols = Matrix.get params (0, i) in
if
Float.(abs (w_true -. w_ols) /. min (abs w_true) (abs w_ols))
> 2.0
then
Format.eprintf
"Warning: Estimation results for %s differ significantly; \
%f from statmodels.OLS, and %f from scikit. Problem might \
be underdetermined.@."
(Free_variable.to_string variable)
w_ols
w_true) ;
let tvalue = Matrix.get tvalues (0, i) in
(variable, tvalue) :: acc)
nmap
[]
in
{
mapping;
weights;
intercept_lift;
scores = {regression_scores with tvalues};
}