package containers-data

  1. Overview
  2. Docs

Source file CCBV.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
let width_ = 8

(* Helper functions *)
let[@inline] get_ b i = Char.code (Bytes.get b i)
let[@inline] unsafe_get_ b i = Char.code (Bytes.unsafe_get b i)
let[@inline] unsafe_set_ b i v = Bytes.unsafe_set b i (Char.unsafe_chr v)
let[@inline] mod_ n = n land 0b111
let[@inline] div_ n = n lsr 3
let[@inline] mul_ n = n lsl 3
let zero = Char.unsafe_chr 0

(* 0b11111111 *)
let all_ones_ = Char.unsafe_chr ((1 lsl width_) - 1)
let () = assert (all_ones_ = Char.chr 0b1111_1111)

(* [lsb_mask_ n] is [0b111111] with [n] ones. *)
let[@inline] __lsb_mask n = (1 lsl n) - 1

(*
  from https://en.wikipedia.org/wiki/Hamming_weight

  //This uses fewer arithmetic operations than any other known
  //implementation on machines with slow multiplication.
  //It uses 17 arithmetic operations.
  int popcount_2(uint64_t x) {
    x -= (x >> 1) & m1;             //put count of each 2 bits into those 2 bits
    x = (x & m2) + ((x >> 2) & m2); //put count of each 4 bits into those 4 bits
    x = (x + (x >> 4)) & m4;        //put count of each 8 bits into those 8 bits

   // not necessary for int8
    // x += x >>  8;  //put count of each 16 bits into their lowest 8 bits
    // x += x >> 16;  //put count of each 32 bits into their lowest 8 bits
    // x += x >> 32;  //put count of each 64 bits into their lowest 8 bits

    return x & 0x7f;
  }

   m1 = 0x5555555555555555
   m2 = 0x3333333333333333
   m4 = 0x0f0f0f0f0f0f0f0f
*)
let[@inline] __popcount8 (b : int) : int =
  let m1 = 0x55 in
  let m2 = 0x33 in
  let m4 = 0x0f in

  let b = b - ((b lsr 1) land m1) in
  let b = (b land m2) + ((b lsr 2) land m2) in
  let b = (b + (b lsr 4)) land m4 in
  b land 0x7f

(*
  invariants for [v:t]:

  - [Bytes.length v.b >= div_ v.size] (enough storage)
  - all bits above [size] are 0 in [v.b]
*)
type t = {
  mutable b: bytes;
  mutable size: int;
}

let length t = t.size
let empty () = { b = Bytes.empty; size = 0 }

let bytes_length_of_size size =
  if mod_ size = 0 then
    div_ size
  else
    div_ size + 1

let create ~size default : t =
  if size = 0 then
    empty ()
  else (
    let n = bytes_length_of_size size in
    let b =
      if default then
        Bytes.make n all_ones_
      else
        Bytes.make n zero
    in
    (* adjust last bits *)
    let r = mod_ size in
    if default && r <> 0 then unsafe_set_ b (n - 1) (__lsb_mask r);
    { b; size }
  )

let copy bv = { bv with b = Bytes.sub bv.b 0 (bytes_length_of_size bv.size) }
let[@inline] capacity bv = mul_ (Bytes.length bv.b)

(* call [f i width(byte[i]) (byte[i])] on each byte.
   The last byte might have a width of less than 8. *)
let iter_bytes_ (b : t) ~f : unit =
  for n = 0 to div_ b.size - 1 do
    f (mul_ n) width_ (unsafe_get_ b.b n)
  done;
  let r = mod_ b.size in
  if r <> 0 then (
    let last = div_ b.size in
    f (mul_ last) r (__lsb_mask r land unsafe_get_ b.b last)
  )

(* set [byte[i]] to [f(byte[i])] *)
let map_bytes_ (b : t) ~f : unit =
  for n = 0 to div_ b.size - 1 do
    unsafe_set_ b.b n (f (unsafe_get_ b.b n))
  done;
  let r = mod_ b.size in
  if r <> 0 then (
    let last = div_ b.size in
    let mask = __lsb_mask r in
    unsafe_set_ b.b last (mask land f (mask land unsafe_get_ b.b last))
  )

let cardinal bv =
  if bv.size = 0 then
    0
  else (
    let n = ref 0 in
    iter_bytes_ bv ~f:(fun _ _ b -> n := !n + __popcount8 b);
    !n
  )

let really_resize_ bv ~desired ~current size =
  bv.size <- size;
  if desired <> current then (
    let b = Bytes.make desired zero in
    Bytes.blit bv.b 0 b 0 (min desired current);
    bv.b <- b
  )

(* set bits above [n] to 0 *)
let[@inline never] clear_bits_above_ bv top =
  let n = div_ top in
  let j = mod_ top in
  Bytes.fill bv.b (n + 1)
    (bytes_length_of_size bv.size - n - 1)
    (Char.unsafe_chr 0);
  unsafe_set_ bv.b n (unsafe_get_ bv.b n land __lsb_mask j)

let[@inline never] grow_to_at_least_real_ bv size =
  (* beyond capacity *)
  let current = Bytes.length bv.b in
  let desired = bytes_length_of_size size in
  let desired =
    min Sys.max_string_length (max desired (current + (current / 2)))
  in
  assert (desired > current);
  really_resize_ bv ~desired ~current size

let grow_to_at_least_ bv size =
  if size <= capacity bv then
    (* within capacity *)
    bv.size <- size
  else
    (* resize. This is a separate function so it's easier to
       inline the happy path. *)
    grow_to_at_least_real_ bv size

let shrink_ bv size =
  assert (size <= bv.size);
  if size < bv.size then (
    let desired = bytes_length_of_size size in
    let current = Bytes.length bv.b in
    clear_bits_above_ bv size;
    really_resize_ bv ~desired ~current size
  )

let resize bv size =
  if size < 0 then invalid_arg "resize: negative size";
  if size < bv.size then (
    clear_bits_above_ bv size;
    bv.size <- size
  ) else if size > bv.size then
    grow_to_at_least_ bv size

let resize_minimize_memory bv size =
  if size < 0 then invalid_arg "resize: negative size";
  if size < bv.size then
    shrink_ bv size
  else if size > bv.size then
    grow_to_at_least_ bv size

let is_empty bv =
  bv.size = 0
  ||
  try
    for i = 0 to bytes_length_of_size bv.size - 1 do
      if unsafe_get_ bv.b i <> 0 then raise_notrace Exit
    done;
    true
  with Exit -> false

let[@inline] get bv i =
  if i < 0 then invalid_arg "get: negative index";
  let idx_bucket = div_ i in
  let idx_in_byte = mod_ i in
  if idx_bucket < Bytes.length bv.b then
    unsafe_get_ bv.b idx_bucket land (1 lsl idx_in_byte) <> 0
  else
    false

let[@inline] set bv i =
  if i < 0 then
    invalid_arg "set: negative index"
  else (
    let idx_bucket = div_ i in
    let idx_in_byte = mod_ i in
    if i >= bv.size then grow_to_at_least_ bv (i + 1);
    unsafe_set_ bv.b idx_bucket
      (unsafe_get_ bv.b idx_bucket lor (1 lsl idx_in_byte))
  )

let init size f : t =
  let v = create ~size false in
  for i = 0 to size - 1 do
    if f i then set v i
  done;
  v

let[@inline] reset bv i =
  if i < 0 then
    invalid_arg "reset: negative index"
  else (
    let n = div_ i in
    let j = mod_ i in
    if i >= bv.size then grow_to_at_least_ bv (i + 1);
    unsafe_set_ bv.b n (unsafe_get_ bv.b n land lnot (1 lsl j))
  )

let[@inline] set_bool bv i b =
  if b then
    set bv i
  else
    reset bv i

let flip bv i =
  if i < 0 then
    invalid_arg "reset: negative index"
  else (
    let n = div_ i in
    let j = mod_ i in
    if i >= bv.size then grow_to_at_least_ bv (i + 1);
    unsafe_set_ bv.b n (unsafe_get_ bv.b n lxor (1 lsl j))
  )

let clear bv = Bytes.fill bv.b 0 (Bytes.length bv.b) zero

let clear_and_shrink bv =
  clear bv;
  bv.size <- 0

let equal_bytes_ size b1 b2 =
  try
    for i = 0 to bytes_length_of_size size - 1 do
      if Bytes.get b1 i <> Bytes.get b2 i then raise_notrace Exit
    done;
    true
  with Exit -> false

let equal x y : bool = x.size = y.size && equal_bytes_ x.size x.b y.b

let iter bv f =
  iter_bytes_ bv ~f:(fun off width_n word_n ->
      for i = 0 to width_n - 1 do
        f (off + i) (word_n land (1 lsl i) <> 0)
      done)

let iter_true bv f =
  iter bv (fun i b ->
      if b then
        f i
      else
        ())

let to_list bv =
  let l = ref [] in
  iter_true bv (fun i -> l := i :: !l);
  !l

let to_sorted_list bv = List.rev (to_list bv)

(* Interpret these as indices. *)
let of_list l =
  let size =
    match l with
    | [] -> 0
    | _ -> List.fold_left max 0 l + 1
  in
  let bv = create ~size false in
  List.iter (fun i -> set bv i) l;
  bv

exception FoundFirst of int

let first_exn bv =
  try
    iter_true bv (fun i -> raise_notrace (FoundFirst i));
    raise Not_found
  with FoundFirst i -> i

let first bv = try Some (first_exn bv) with Not_found -> None
let filter bv p = iter_true bv (fun i -> if not (p i) then reset bv i)
let negate_self bv = map_bytes_ bv ~f:(fun b -> lnot b)

let negate a =
  let b = copy a in
  negate_self b;
  b

let union_into_no_resize_ ~into bv =
  assert (Bytes.length into.b >= bytes_length_of_size bv.size);
  for i = 0 to bytes_length_of_size bv.size - 1 do
    unsafe_set_ into.b i (unsafe_get_ into.b i lor unsafe_get_ bv.b i)
  done

(* Underlying size grows for union. *)
let union_into ~into bv =
  if into.size < bv.size then grow_to_at_least_ into bv.size;
  union_into_no_resize_ ~into bv

(* To avoid potentially 2 passes, figure out what we need to copy. *)
let union b1 b2 =
  if b1.size <= b2.size then (
    let into = copy b2 in
    union_into_no_resize_ ~into b1;
    into
  ) else (
    let into = copy b1 in
    union_into_no_resize_ ~into b2;
    into
  )

let inter_into_no_resize_ ~into bv =
  assert (into.size <= bv.size);
  for i = 0 to bytes_length_of_size into.size - 1 do
    unsafe_set_ into.b i (unsafe_get_ into.b i land unsafe_get_ bv.b i)
  done

(* Underlying size shrinks for inter. *)
let inter_into ~into bv =
  if into.size > bv.size then shrink_ into bv.size;
  inter_into_no_resize_ ~into bv

let inter b1 b2 =
  if b1.size <= b2.size then (
    let into = copy b1 in
    inter_into_no_resize_ ~into b2;
    into
  ) else (
    let into = copy b2 in
    inter_into_no_resize_ ~into b1;
    into
  )

(* Underlying size depends on the [in_] set for diff, so we don't change
   its size! *)
let diff_into ~into bv =
  let n = min (Bytes.length into.b) (Bytes.length bv.b) in
  for i = 0 to n - 1 do
    unsafe_set_ into.b i (unsafe_get_ into.b i land lnot (unsafe_get_ bv.b i))
  done

let diff in_ not_in =
  let into = copy in_ in
  diff_into ~into not_in;
  into

let select bv arr =
  let l = ref [] in
  (try
     iter_true bv (fun i ->
         if i >= Array.length arr then
           raise_notrace Exit
         else
           l := arr.(i) :: !l)
   with Exit -> ());
  !l

let selecti bv arr =
  let l = ref [] in
  (try
     iter_true bv (fun i ->
         if i >= Array.length arr then
           raise_notrace Exit
         else
           l := (arr.(i), i) :: !l)
   with Exit -> ());
  !l

type 'a iter = ('a -> unit) -> unit

let to_iter bv k = iter_true bv k

let of_iter seq =
  let l = ref [] and maxi = ref 0 in
  seq (fun x ->
      l := x :: !l;
      maxi := max !maxi x);
  let bv = create ~size:(!maxi + 1) false in
  List.iter (fun i -> set bv i) !l;
  bv

let pp out bv =
  Format.pp_print_string out "bv {";
  iter bv (fun _i b ->
      Format.pp_print_char out
        (if b then
          '1'
        else
          '0'));
  Format.pp_print_string out "}"

module Internal_ = struct
  let __to_word_l bv =
    let l = ref [] in
    Bytes.iter (fun c -> l := c :: !l) bv.b;
    List.rev !l

  let __popcount8 = __popcount8
  let __lsb_mask = __lsb_mask

  let __check_invariant self =
    let n = div_ self.size in
    let j = mod_ self.size in
    assert (Bytes.length self.b >= n);
    if j > 0 then
      assert (
        let c = get_ self.b n in
        c land __lsb_mask j = c);
    for i = n + 1 to Bytes.length self.b - 1 do
      assert (get_ self.b i = 0)
    done
end
OCaml

Innovation. Community. Security.