package zelus

  1. Overview
  2. Docs

Source file ztypes.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
(**************************************************************************)
(*                                                                        *)
(*                                Zelus                                   *)
(*               A synchronous language for hybrid systems                *)
(*                       http://zelus.di.ens.fr                           *)
(*                                                                        *)
(*                    Marc Pouzet and Timothy Bourke                      *)
(*                                                                        *)
(*  Copyright 2012 - 2019. All rights reserved.                           *)
(*                                                                        *)
(*  This file is distributed under the terms of the CeCILL-C licence      *)
(*                                                                        *)
(*  Zelus is developed in the INRIA PARKAS team.                          *)
(*                                                                        *)
(**************************************************************************)

(* Type declarations and values that must be linked with *)
(* the generated code *)
type 'a continuous = { mutable pos: 'a; mutable der: 'a }

type ('a, 'b) zerocrossing = { mutable zin: 'a; mutable zout: 'b }

type 'a signal = 'a * bool
type zero = bool

(* a synchronous stream function with type 'a -D-> 'b *)
(* is represented by an OCaml value of type ('a, 'b) node *)
type ('a, 'b) node =
    Node:
      { alloc : unit -> 's; (* allocate the state *)
        step : 's -> 'a -> 'b; (* compute a step *)
        reset : 's -> unit; (* reset/inialize the state *)
      } -> ('a, 'b) node

(* the same with a method copy *)
type ('a, 'b) cnode =
    Cnode:
      { alloc : unit -> 's; (* allocate the state *)
        copy : 's -> 's -> unit; (* copy the source into the destination *)
        step : 's -> 'a -> 'b; (* compute a step *)
        reset : 's -> unit; (* reset/inialize the state *)
      } -> ('a, 'b) cnode

open Bigarray

type time = float
type cvec = (float, float64_elt, c_layout) Array1.t
type dvec = (float, float64_elt, c_layout) Array1.t
type zinvec = (int32, int32_elt,   c_layout) Array1.t
type zoutvec = (float, float64_elt, c_layout) Array1.t

(* The interface with the ODE solver *)
type cstate =
  { mutable dvec : dvec; (* the vector of derivatives *)
    mutable cvec : cvec; (* the vector of positions *)
    mutable zinvec : zinvec; (* the vector of boolean; true when the
                                solver has detected a zero-crossing *)
    mutable zoutvec : zoutvec; (* the corresponding vector that define
                                  zero-crossings *)
    mutable cindex : int; (* the position in the vector of positions *)
    mutable zindex : int; (* the position in the vector of zero-crossings *)
    mutable cend : int; (* the end of the vector of positions *)
    mutable zend : int; (* the end of the zero-crossing vector *)
    mutable cmax : int; (* the maximum size of the vector of positions *)
    mutable zmax : int; (* the maximum number of zero-crossings *)
    mutable horizon : float; (* the next horizon *)
    mutable major : bool; (* integration iff [major = false] *)
  }

(* A hybrid node is a node that is parameterised by a continuous state *)
(* all instances points to this global parameter and read/write on it *)
type ('a, 'b) hnode = cstate -> (time * 'a, 'b) node

type 'b hsimu =
    Hsim:
      { alloc : unit -> 's;
        (* allocate the initial state *)
        maxsize : 's -> int * int;
        (* returns the max length of the *)
        (* cvector and zvector *)
        csize : 's -> int;
        (* returns the current length of the continuous state vector *)
        zsize : 's -> int;
        (* returns the current length of the zero-crossing vector *)
        step : 's -> cvec -> dvec -> zinvec -> time -> 'b;
        (* computes a step *)
        derivative : 's -> cvec -> dvec -> zinvec -> zoutvec -> time -> unit;
        (* computes the derivative *)
        crossings : 's -> cvec -> zinvec -> zoutvec -> time -> unit;
        (* computes the zero-crossings *)
        reset : 's -> unit;
        (* resets the state *)
        horizon : 's -> time;
        (* gives the next time horizon *)
      } -> 'b hsimu

(* a function with type 'a -C-> 'b, when given to a solver, is *)
(* represented by an OCaml value of type ('a, 'b) hsnode *)
type ('a, 'b) hsnode =
    Hnode:
      { state : 's;
        (* the discrete state *)
        zsize : int;
        (* the maximum size of the zero-crossing vector *)
        csize : int;
        (* the maximum size of the continuous state vector (positions) *)
        derivative : 's -> 'a -> time -> cvec -> dvec -> unit;
        (* computes the derivative *)
        crossing : 's -> 'a -> time -> cvec -> zoutvec -> unit;
        (* computes the derivative *)
        output : 's -> 'a -> cvec -> 'b;
        (* computes the zero-crossings *)
        setroots : 's -> 'a -> cvec -> zinvec -> unit;
        (* returns the zero-crossings *)
        majorstep : 's -> time -> cvec -> 'a -> 'b;
        (* computes a step *)
        reset : 's -> unit;
        (* resets the state *)
        horizon : 's -> time;
        (* gives the next time horizon *)
      } -> ('a, 'b) hsnode

 (* An idea suggested by Adrien Guatto, 26/04/2021 *)
 (* provide a means to the type for input/outputs of nodes *)
 (* express them with GADT to ensure type safety *)
 (* type ('a, 'b) node =
  |  Fun : { step : 'a -> 'b;
             typ_arg: 'a typ;
             typ_return: 'b typ
           } -> ('a, 'b) node
  | Node :
      { state : 's; step : 's -> 'a -> 'b * 's;
        typ_arg: 'a typ;
        typ_state : 's typ;
        typ_return: 'b typ } -> ('a, 'b) node
  
and 'a typ =
  | Tunit : unit typ
  | Tarrow : 'a typ * 'b typ -> ('a * 'b) typ
  | Tint : int -> int typ
  | Ttuple : 'a typlist -> 'a typ
  | Tnode : 'a typ * 'b typ -> ('a,'b) node typ
  
and 'a typlist =
  | Tnil : unit typlist
  | Tpair : 'a typ * 'b typlist -> ('a * 'b) typlist

Q1: do it for records? sum types ? How?
Q2: provide a "type_of" function for every introduced type?
*)
OCaml

Innovation. Community. Security.