Source file checker.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
module B = Kernel.Basic
module C = Common.Constraints
module F = Common.Files
module L = Common.Log
module M = Api.Meta
module P = Api.Pp.Default
module S = Kernel.Signature
module T = Kernel.Term
module U = Common.Universes
module V = Elaboration.Var
type t = {
env : Api.Env.t; (** The current environement used for type checking *)
in_path : F.path;
(** path of the original file that should be typed checked *)
meta_out : M.cfg;
(** Meta configuration to translate back universes of Universo to the original theory universes *)
constraints : (B.name, U.pred) Hashtbl.t; (** additional user constraints *)
out_file : F.cout F.t; (** File were constraints are written *)
}
(** [globel_env] is a reference to the current type checking environment. *)
let global_env : t option ref = ref None
let get = function
| None -> failwith "Environment not initialized"
| Some env -> env
let of_global_env env = {C.file = env.out_file; C.meta = env.meta_out}
module MakeRE (Conv : Kernel.Reduction.ConvChecker) : Kernel.Reduction.S =
struct
module rec R : Kernel.Reduction.S =
Kernel.Reduction.Make (Conv) (Kernel.Matching.Make (R))
module Rule = Kernel.Rule
include R
(** Name for rules that reduce variables. Names are irrelevant for Universo. *)
let dummy_name =
Rule.Gamma (false, B.mk_name (B.mk_mident "dummy") (B.mk_ident "dummy"))
(** [add_rule vl vr] add to the current signature the rule that maps [vl] to [vr]. *)
let rec add_rule vl vr =
let pat = Rule.Pattern (B.dloc, vl, []) in
let rhs = T.mk_Const B.dloc vr in
let rule = Rule.{ctx = []; pat; rhs; name = dummy_name} in
let sg = Api.Env.get_signature (get !global_env).env in
S.add_rules sg [Rule.to_rule_infos rule]
and univ_conversion l r =
let sg = Api.Env.get_signature (get !global_env).env in
if T.term_eq l r then true
else if
V.is_uvar l && V.is_uvar r
then
C.mk_cstr
(of_global_env (get !global_env))
add_rule
(U.EqVar (V.name_of_uvar l, V.name_of_uvar r))
else if V.is_uvar l && U.is_enum r then (
let r = U.extract_univ r in
ignore
(C.mk_cstr
(of_global_env (get !global_env))
add_rule
(U.Pred (U.Cumul (Var (V.name_of_uvar l), r))));
C.mk_cstr
(of_global_env (get !global_env))
add_rule
(U.Pred (U.Cumul (r, Var (V.name_of_uvar l)))))
else if V.is_uvar r && U.is_enum l then (
let l = U.extract_univ l in
ignore
(C.mk_cstr
(of_global_env (get !global_env))
add_rule
(U.Pred (U.Cumul (Var (V.name_of_uvar r), l))));
C.mk_cstr
(of_global_env (get !global_env))
add_rule
(U.Pred (U.Cumul (l, Var (V.name_of_uvar r))))
)
else if T.term_eq (U.true_ ()) l then
if U.is_subtype r then
let s = U.extract_subtype r in
are_convertible sg (U.true_ ()) s
else if U.is_forall r then
let s = U.extract_forall r in
are_convertible sg (U.true_ ()) s
else
C.mk_cstr
(of_global_env (get !global_env))
add_rule
(U.Pred (U.extract_pred r))
else if U.is_cast' l && not (U.is_cast' r) then
let _, _, a, b, t = U.extract_cast' l in
are_convertible sg a b && are_convertible sg t r
else if (not (U.is_cast' l)) && U.is_cast' r then
let _, _, a, b, t = U.extract_cast' r in
are_convertible sg a b && are_convertible sg l t
else
false
and are_convertible_lst sg : (T.term * T.term) list -> bool = function
| [] -> true
| (l, r) :: lst ->
if T.term_eq l r then are_convertible_lst sg lst
else
let l', r' = (whnf sg l, whnf sg r) in
if univ_conversion l' r' then are_convertible_lst sg lst
else are_convertible_lst sg (R.conversion_step sg (l', r') lst)
and are_convertible sg t1 t2 =
try are_convertible_lst sg [(t1, t2)]
with Kernel.Reduction.Not_convertible -> false
and constraint_convertibility _cstr r sg t1 t2 =
if T.term_eq t1 t2 then true
else
match r with
| Rule.Gamma (_, rn) ->
if B.string_of_ident (B.id rn) = "id_cast" then false
else are_convertible sg t1 t2
| _ -> are_convertible sg t1 t2
end
module rec RE : Kernel.Reduction.S = MakeRE (RE)
module Typing = Kernel.Typing.Make (RE)
(** [check_user_constraints table name t] checks whether the user has added constraints on the onstant [name] and if so, add this constraint. In [t], every universo variable (md.var) are replaced by the sort associated to the constant [name]. *)
let check_user_constraints :
(B.name, U.pred) Hashtbl.t -> B.name -> T.term -> unit =
fun constraints name ty ->
let get_uvar ty =
match ty with
| T.App (_, (T.Const (_, name) as t), _) when V.is_uvar t -> name
| _ -> assert false
in
if Hashtbl.mem constraints name then
let pred = Hashtbl.find constraints name in
let uvar = get_uvar ty in
let replace_univ : U.univ -> U.univ = function
| Var _ -> Var uvar
| _ as t -> t
in
let replace : U.pred -> U.pred = function
| Axiom (s, s') -> Axiom (replace_univ s, replace_univ s')
| Cumul (s, s') -> Cumul (replace_univ s, replace_univ s')
| Rule (s, s', s'') ->
Rule (replace_univ s, replace_univ s', replace_univ s'')
in
ignore
(C.mk_cstr
(of_global_env (get !global_env))
(fun _ -> assert false)
(U.Pred (replace pred)))
(** [mk_entry env e] type checks the entry e in the same way then dkcheck does. However, the convertibility tests is hacked so that we can add constraints dynamically while type checking the term. This is really close to what is done with typical ambiguity in Coq. *)
let mk_entry : t -> Api.Env.t -> Parsers.Entry.entry -> unit =
fun universo_env env e ->
let module E = Parsers.Entry in
let module Rule = Kernel.Rule in
global_env := Some universo_env;
let sg = Api.Env.get_signature universo_env.env in
let _add_rules rs =
let ris = List.map Rule.to_rule_infos rs in
S.add_rules sg ris
in
match e with
| Decl (lc, id, sc, st, ty) -> (
L.log_check "[CHECKING] %a" P.print_ident id;
check_user_constraints universo_env.constraints
(B.mk_name (F.md_of universo_env.in_path `Output) id)
ty;
Format.fprintf
(F.fmt_of_file universo_env.out_file)
"@.(; %a ;)@." P.print_ident id;
match Typing.inference sg ty with
| Kind | Type _ -> S.add_declaration sg lc id sc st ty
| s ->
raise
(Kernel.Typing.Typing_error (Kernel.Typing.SortExpected (ty, [], s)))
)
| Def (lc, id, sc, opaque, mty, te) -> (
L.log_check "[CHECKING] %a" P.print_ident id;
Format.fprintf
(F.fmt_of_file universo_env.out_file)
"@.(; %a ;)@." P.print_ident id;
let open Rule in
let ty =
match mty with
| None -> Typing.inference sg te
| Some ty -> Typing.checking sg te ty; ty
in
match ty with
| Kind ->
raise
(Api.Env.Env_error
( env,
lc,
Kernel.Typing.Typing_error Kernel.Typing.KindIsNotTypable ))
| _ ->
if opaque then S.add_declaration sg lc id sc S.Static ty
else
let _ = S.add_declaration sg lc id sc (S.Definable T.Free) ty in
let cst =
B.mk_name (F.md_of (get !global_env).in_path `Output) id
in
let rule =
{
name = Delta cst;
ctx = [];
pat = Pattern (lc, cst, []);
rhs = te;
}
in
_add_rules [rule])
| Rules (_, rs) ->
let open Rule in
let _ =
List.map
(fun (r : partially_typed_rule) ->
Format.fprintf
(F.fmt_of_file universo_env.out_file)
"@.(; %a ;)@." Rule.pp_rule_name r.name;
Typing.check_rule sg r)
rs
in
_add_rules rs
| Require _ -> ()
| _ -> assert false