Source file type_generic.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
open Std_internal
module Variant_and_record_intf = Variant_and_record_intf
module Helper (A : Variant_and_record_intf.S) (B : Variant_and_record_intf.S) = struct
type map = { map : 'a. 'a A.t -> 'a B.t }
let map_variant (type variant) { map } (variant : variant A.Variant.t) =
let map_create = function
| A.Tag.Args fct -> B.Tag_internal.Args fct
| A.Tag.Const k -> B.Tag_internal.Const k
in
let map_tag tag =
match tag with
| A.Variant.Tag tag ->
let label = A.Tag.label tag in
let rep = map (A.Tag.traverse tag) in
let arity = A.Tag.arity tag in
let args_labels = A.Tag.args_labels tag in
let index = A.Tag.index tag in
let ocaml_repr = A.Tag.ocaml_repr tag in
let tyid = A.Tag.tyid tag in
let create = map_create (A.Tag.create tag) in
B.Variant_internal.Tag (B.Tag.internal_use_only {
B.Tag_internal.label; rep; arity; args_labels; index; ocaml_repr; tyid; create;
})
in
let typename = A.Variant.typename_of_t variant in
let polymorphic = A.Variant.is_polymorphic variant in
let tags = Array.init (A.Variant.length variant)
(fun index -> map_tag (A.Variant.tag variant index))
in
let value (a : variant) =
match A.Variant.value variant a with
| A.Variant.Value (atag, a) ->
(fun (type args) (atag : (variant, args) A.Tag.t) (a : args) ->
let (B.Variant_internal.Tag btag) = tags.(A.Tag.index atag) in
(fun (type ex) (btag : (variant, ex) B.Tag.t) ->
let Type_equal.T =
Typename.same_witness_exn (A.Tag.tyid atag) (B.Tag.tyid btag)
in
let btag = (btag : (variant, args) B.Tag.t) in
B.Variant_internal.Value (btag, a)
) btag
) atag a
in
B.Variant.internal_use_only {
B.Variant_internal.typename; tags; polymorphic; value;
}
let map_record (type record) { map } (record : record A.Record.t) =
let map_field field =
match field with
| A.Record.Field field ->
let label = A.Field.label field in
let rep = map (A.Field.traverse field) in
let index = A.Field.index field in
let is_mutable = A.Field.is_mutable field in
let tyid = A.Field.tyid field in
let get = A.Field.get field in
B.Record_internal.Field (B.Field.internal_use_only {
B.Field_internal.label; rep; index; is_mutable; tyid; get;
})
in
let typename = A.Record.typename_of_t record in
let has_double_array_tag = A.Record.has_double_array_tag record in
let fields = Array.init (A.Record.length record)
(fun index -> map_field (A.Record.field record index))
in
let create { B.Record_internal.get } =
let get (type a) (afield : (_, a) A.Field.t) =
match fields.(A.Field.index afield) with
| B.Record_internal.Field bfield ->
(fun (type ex) (bfield : (record, ex) B.Field.t) ->
let Type_equal.T =
Typename.same_witness_exn (A.Field.tyid afield) (B.Field.tyid bfield)
in
let bfield = (bfield : (record, a) B.Field.t) in
get bfield
) bfield
in
A.Record.create record { A.Record.get }
in
B.Record.internal_use_only {
B.Record_internal.typename; fields; has_double_array_tag; create;
}
end
module type Named = sig
type 'a computation
module Context : sig
type t
val create : unit -> t
end
type 'a t
val init : Context.t -> 'a Typename.t -> 'a t
val get_wip_computation : 'a t -> 'a computation
val set_final_computation : 'a t -> 'a computation -> 'a computation
val share : _ Typerep.t -> bool
end
module type Computation = sig
type 'a t
include Variant_and_record_intf.S with type 'a t := 'a t
val int : int t
val int32 : int32 t
val int64 : int64 t
val nativeint : nativeint t
val char : char t
val float : float t
val string : string t
val bytes : bytes t
val bool : bool t
val unit : unit t
val option : 'a t -> 'a option t
val list : 'a t -> 'a list t
val array : 'a t -> 'a array t
val lazy_t : 'a t -> 'a lazy_t t
val ref_ : 'a t -> 'a ref t
val function_ : 'a t -> 'b t -> ('a -> 'b) t
val tuple2 : 'a t -> 'b t -> ('a * 'b) t
val tuple3 : 'a t -> 'b t -> 'c t -> ('a * 'b * 'c) t
val tuple4 : 'a t -> 'b t -> 'c t -> 'd t -> ('a * 'b * 'c * 'd) t
val tuple5 : 'a t -> 'b t -> 'c t -> 'd t -> 'e t -> ('a * 'b * 'c * 'd * 'e) t
val record : 'a Record.t -> 'a t
val variant : 'a Variant.t -> 'a t
module Named : Named with type 'a computation := 'a t
end
module Make_named_for_closure (X : sig
type 'a input
type 'a output
type 'a t = 'a input -> 'a output
end) = struct
module Context = struct
type t = unit
let create = ignore
end
type 'a t = {
runtime_dereference : 'a X.t;
runtime_reference : 'a X.t ref;
compiletime_dereference : 'a X.t option ref;
}
exception Undefined of string
let init () name =
let path = Typename.Uid.name (Typename.uid name) in
let r = ref (fun _ -> raise (Undefined path)) in
{
runtime_dereference = (fun input -> !r input);
runtime_reference = r;
compiletime_dereference = ref None;
}
let get_wip_computation shared =
match shared.compiletime_dereference.contents with
| Some clos -> clos
| None -> shared.runtime_dereference
let set_final_computation shared computation =
let compiletime_dereference = shared.compiletime_dereference in
match compiletime_dereference.contents with
| Some _ -> assert false
| None ->
if Base.phys_equal shared.runtime_dereference computation then assert false;
compiletime_dereference := Some computation;
shared.runtime_reference := computation;
computation
let share _ = true
end
module Ident = struct
type t = {
name : string;
implements : Typename.Uid.t -> bool;
}
exception Broken_dependency of string
let check_dependencies name required =
match required with
| [] -> (fun _ -> ())
| _ ->
(fun uid ->
List.iter (fun { name = name'; implements } ->
if not (implements uid) then begin
let message =
Printf.sprintf "Type_generic %S requires %S for uid %S\n"
name name' (Typename.Uid.name uid)
in
prerr_endline message;
raise (Broken_dependency message)
end
) required)
end
module type Extending = sig
type 'a t
type 'a computation = 'a t
val ident : Ident.t
exception Not_implemented of string * string
module type S = sig
type t
include Typerepable.S with type t := t
val compute : t computation
end
module type S1 = sig
type 'a t
include Typerepable.S1 with type 'a t := 'a t
val compute : 'a computation -> 'a t computation
end
module type S2 = sig
type ('a, 'b) t
include Typerepable.S2 with type ('a, 'b) t := ('a, 'b) t
val compute : 'a computation -> 'b computation -> ('a, 'b) t computation
end
module type S3 = sig
type ('a, 'b, 'c) t
include Typerepable.S3 with type ('a, 'b, 'c) t := ('a, 'b, 'c) t
val compute :
'a computation
-> 'b computation
-> 'c computation
-> ('a, 'b, 'c) t computation
end
module type S4 = sig
type ('a, 'b, 'c, 'd) t
include Typerepable.S4 with type ('a, 'b, 'c, 'd) t := ('a, 'b, 'c, 'd) t
val compute :
'a computation
-> 'b computation
-> 'c computation
-> 'd computation
-> ('a, 'b, 'c, 'd) t computation
end
module type S5 = sig
type ('a, 'b, 'c, 'd, 'e) t
include Typerepable.S5 with type ('a, 'b, 'c, 'd, 'e) t := ('a, 'b, 'c, 'd, 'e) t
val compute :
'a computation
-> 'b computation
-> 'c computation
-> 'd computation
-> 'e computation
-> ('a, 'b, 'c, 'd, 'e) t computation
end
val register0 : (module S) -> unit
val register1 : (module S1) -> unit
val register2 : (module S2) -> unit
val register3 : (module S3) -> unit
val register4 : (module S4) -> unit
val register5 : (module S5) -> unit
val register : 'a Typerep.t -> 'a computation -> unit
end
module type S_implementation = sig
include Extending
val raise_not_implemented : string -> 'a
type implementation = {
generic : 'a. 'a Typerep.t -> 'a computation;
}
val _using_extended_implementation :
implementation
-> 'a Typerep.Named.t
-> 'a Typerep.t lazy_t option
-> 'a computation
val find_extended_implementation :
implementation -> 'a Typerep.Named.t -> 'a computation option
end
module type S = sig
include Extending
val of_typerep : 'a Typerep.t -> [ `generic of 'a computation ]
module Computation : Computation with type 'a t = 'a t
end
module Make_S_implementation(X : sig
type 'a t
val name : string
val required : Ident.t list
end) : S_implementation with type 'a t = 'a X.t = struct
type 'a t = 'a X.t
type 'a computation = 'a t
include Type_generic_intf.M(struct type 'a t = 'a computation end)
module Uid_table = struct
include Hashtbl.Make(Typename.Uid)
let find table key =
if Lazy.is_val table then
let table = Lazy.force table in
try Some (find table key) with Base.Not_found_s _ | Caml.Not_found -> None
else None
let check_dependencies = Ident.check_dependencies X.name X.required
let replace table key value =
check_dependencies key;
replace (Lazy.force table) key value
let mem table key =
if Lazy.is_val table then
let table = Lazy.force table in
mem table key
else false
end
let size = 256
let table0 = lazy (Uid_table.create size)
let table1 = lazy (Uid_table.create size)
let table2 = lazy (Uid_table.create size)
let table3 = lazy (Uid_table.create size)
let table4 = lazy (Uid_table.create size)
let table5 = lazy (Uid_table.create size)
let is_registered uid =
Uid_table.mem table0 uid
|| Uid_table.mem table1 uid
|| Uid_table.mem table2 uid
|| Uid_table.mem table3 uid
|| Uid_table.mem table4 uid
|| Uid_table.mem table5 uid
let ident = { Ident.
name = X.name;
implements = is_registered;
}
module Find0(T : Typerep.Named.T0) : sig
val compute : unit -> T.named computation option
end = struct
let compute () =
match Uid_table.find table0 (Typename.uid T.typename_of_t) with
| None -> None
| Some rep ->
let module S = (val rep : S) in
let witness = Typename.same_witness_exn S.typename_of_t T.typename_of_named in
let module L = Type_equal.Lift(struct
type 'a t = 'a computation
end) in
Some (Type_equal.conv (L.lift witness) S.compute)
end
module Find1(T : Typerep.Named.T1) : sig
val compute : unit -> (T.a computation -> T.a T.named computation) option
end = struct
let compute () =
match Uid_table.find table1 (Typename.uid T.typename_of_t) with
| None -> None
| Some rep ->
let module S1 = (val rep : S1) in
let module Conv = Typename.Same_witness_exn_1(S1)(struct
type 'a t = 'a T.named
let typename_of_t = T.typename_of_named
end) in
let module L = Type_equal.Lift(struct
type 'a t = T.a computation -> 'a computation
end) in
Some (Type_equal.conv (L.lift Conv.(witness.eq)) S1.compute)
end
module Find2(T : Typerep.Named.T2) : sig
val compute : unit
-> (T.a computation
-> T.b computation
-> (T.a, T.b) T.named computation) option
end = struct
let compute () =
match Uid_table.find table2 (Typename.uid T.typename_of_t) with
| None -> None
| Some rep ->
let module S2 = (val rep : S2) in
let module Conv = Typename.Same_witness_exn_2(S2)(struct
type ('a, 'b) t = ('a, 'b) T.named
let typename_of_t = T.typename_of_named
end) in
let module L = Type_equal.Lift(struct
type 'a t =
T.a computation
-> T.b computation
-> 'a computation
end) in
Some (Type_equal.conv (L.lift Conv.(witness.eq)) S2.compute)
end
module Find3(T : Typerep.Named.T3) : sig
val compute : unit
-> (T.a computation
-> T.b computation
-> T.c computation
-> (T.a, T.b, T.c) T.named computation) option
end = struct
let compute () =
match Uid_table.find table3 (Typename.uid T.typename_of_t) with
| None -> None
| Some rep ->
let module S3 = (val rep : S3) in
let module Conv = Typename.Same_witness_exn_3(S3)(struct
type ('a, 'b, 'c) t = ('a, 'b, 'c) T.named
let typename_of_t = T.typename_of_named
end) in
let module L = Type_equal.Lift(struct
type 'a t =
T.a computation
-> T.b computation
-> T.c computation
-> 'a computation
end) in
Some (Type_equal.conv (L.lift Conv.(witness.eq)) S3.compute)
end
module Find4(T : Typerep.Named.T4) : sig
val compute : unit
-> (T.a computation
-> T.b computation
-> T.c computation
-> T.d computation
-> (T.a, T.b, T.c, T.d) T.named computation) option
end = struct
let compute () =
match Uid_table.find table4 (Typename.uid T.typename_of_t) with
| None -> None
| Some rep ->
let module S4 = (val rep : S4) in
let module Conv = Typename.Same_witness_exn_4(S4)(struct
type ('a, 'b, 'c, 'd) t = ('a, 'b, 'c, 'd) T.named
let typename_of_t = T.typename_of_named
end) in
let module L = Type_equal.Lift(struct
type 'a t =
T.a computation
-> T.b computation
-> T.c computation
-> T.d computation
-> 'a computation
end) in
Some (Type_equal.conv (L.lift Conv.(witness.eq)) S4.compute)
end
module Find5(T : Typerep.Named.T5) : sig
val compute : unit
-> (T.a computation
-> T.b computation
-> T.c computation
-> T.d computation
-> T.e computation
-> (T.a, T.b, T.c, T.d, T.e) T.named computation) option
end = struct
let compute () =
match Uid_table.find table5 (Typename.uid T.typename_of_t) with
| None -> None
| Some rep ->
let module S5 = (val rep : S5) in
let module Conv = Typename.Same_witness_exn_5(S5)(struct
type ('a, 'b, 'c, 'd, 'e) t = ('a, 'b, 'c, 'd, 'e) T.named
let typename_of_t = T.typename_of_named
end) in
let module L = Type_equal.Lift(struct
type 'a t =
T.a computation
-> T.b computation
-> T.c computation
-> T.d computation
-> T.e computation
-> 'a computation
end) in
Some (Type_equal.conv (L.lift Conv.(witness.eq)) S5.compute)
end
let unit = Typename.static
let register0 compute =
let module S = (val compute : S) in
let uid = Typename.uid S.typename_of_t in
Uid_table.replace table0 uid compute
let register1 compute =
let module S1 = (val compute : S1) in
let uid = Typename.uid (S1.typename_of_t unit) in
Uid_table.replace table1 uid compute
let register2 compute =
let module S2 = (val compute : S2) in
let uid = Typename.uid (S2.typename_of_t unit unit) in
Uid_table.replace table2 uid compute
let register3 compute =
let module S3 = (val compute : S3) in
let uid = Typename.uid (S3.typename_of_t unit unit unit) in
Uid_table.replace table3 uid compute
let register4 compute =
let module S4 = (val compute : S4) in
let uid = Typename.uid (S4.typename_of_t unit unit unit unit) in
Uid_table.replace table4 uid compute
let register5 compute =
let module S5 = (val compute : S5) in
let uid = Typename.uid (S5.typename_of_t unit unit unit unit unit) in
Uid_table.replace table5 uid compute
let register (type a) typerep_of_a compute =
let module S = struct
type t = a
let typename_of_t = Typerep.typename_of_t typerep_of_a
let typerep_of_t = typerep_of_a
let compute = compute
end in
register0 (module S : S)
type implementation = {
generic : 'a. 'a Typerep.t -> 'a computation;
}
let find_extended_implementation (type a) aux = function
| Typerep.Named.T0 rep -> begin
let module T = (val rep : Typerep.Named.T0 with type t = a) in
let module Custom = Find0(T) in
match Custom.compute () with
| Some custom ->
let Type_equal.T = T.witness in
Some (custom : a computation)
| None -> None
end
| Typerep.Named.T1 rep -> begin
let module T = (val rep : Typerep.Named.T1 with type t = a) in
let module Custom = Find1(T) in
match Custom.compute () with
| Some custom ->
let custom = (custom (aux.generic T.a) : T.a T.named computation) in
let Type_equal.T = T.witness in
Some (custom : a computation)
| None -> None
end
| Typerep.Named.T2 rep -> begin
let module T = (val rep : Typerep.Named.T2 with type t = a) in
let module Custom = Find2(T) in
match Custom.compute () with
| Some custom ->
let custom =
(custom
(aux.generic T.a)
(aux.generic T.b)
: (T.a, T.b) T.named computation) in
let Type_equal.T = T.witness in
Some (custom : a computation)
| None -> None
end
| Typerep.Named.T3 rep -> begin
let module T = (val rep : Typerep.Named.T3 with type t = a) in
let module Custom = Find3(T) in
match Custom.compute () with
| Some custom ->
let custom =
(custom
(aux.generic T.a)
(aux.generic T.b)
(aux.generic T.c)
: (T.a, T.b, T.c) T.named computation) in
let Type_equal.T = T.witness in
Some (custom : a computation)
| None -> None
end
| Typerep.Named.T4 rep -> begin
let module T = (val rep : Typerep.Named.T4 with type t = a) in
let module Custom = Find4(T) in
match Custom.compute () with
| Some custom ->
let custom =
(custom
(aux.generic T.a)
(aux.generic T.b)
(aux.generic T.c)
(aux.generic T.d)
: (T.a, T.b, T.c, T.d) T.named computation) in
let Type_equal.T = T.witness in
Some (custom : a computation)
| None -> None
end
| Typerep.Named.T5 rep -> begin
let module T = (val rep : Typerep.Named.T5 with type t = a) in
let module Custom = Find5(T) in
match Custom.compute () with
| Some custom ->
let custom =
(custom
(aux.generic T.a)
(aux.generic T.b)
(aux.generic T.c)
(aux.generic T.d)
(aux.generic T.e)
: (T.a, T.b, T.c, T.d, T.e) T.named computation) in
let Type_equal.T = T.witness in
Some (custom : a computation)
| None -> None
end
exception Not_implemented of string * string
let raise_not_implemented string = raise (Not_implemented (X.name, string))
let _using_extended_implementation aux rep content =
match find_extended_implementation aux rep with
| Some computation -> computation
| None -> begin
match content with
| Some (lazy content) -> aux.generic content
| None ->
let typename = Typerep.Named.typename_of_t rep in
let name = Typename.Uid.name (Typename.uid typename) in
raise_not_implemented name
end
end
module Key_table = Hashtbl.Make(Typename.Key)
module Make(X : sig
type 'a t
val name : string
val required : Ident.t list
include Computation with type 'a t := 'a t
end) = struct
module Computation = X
include Make_S_implementation(X)
module Memo = Typename.Table(struct type 'a t = 'a X.Named.t end)
module Helper = Helper(Typerep)(Computation)
let of_typerep rep =
let context = X.Named.Context.create () in
let memo_table = Memo.create 32 in
let rec of_typerep : type a. a Typerep.t -> a t = function
| Typerep.Int -> X.int
| Typerep.Int32 -> X.int32
| Typerep.Int64 -> X.int64
| Typerep.Nativeint -> X.nativeint
| Typerep.Char -> X.char
| Typerep.Float -> X.float
| Typerep.String -> X.string
| Typerep.Bytes -> X.bytes
| Typerep.Bool -> X.bool
| Typerep.Unit -> X.unit
| Typerep.Option rep -> X.option (of_typerep rep)
| Typerep.List rep -> X.list (of_typerep rep)
| Typerep.Array rep -> X.array (of_typerep rep)
| Typerep.Lazy rep -> X.lazy_t (of_typerep rep)
| Typerep.Ref rep -> X.ref_ (of_typerep rep)
| Typerep.Function (dom, rng) ->
X.function_ (of_typerep dom) (of_typerep rng)
| Typerep.Tuple tuple -> begin
match tuple with
| Typerep.Tuple.T2 (a, b) ->
let ra = of_typerep a in
let rb = of_typerep b in
X.tuple2 ra rb
| Typerep.Tuple.T3 (a, b, c) ->
let ra = of_typerep a in
let rb = of_typerep b in
let rc = of_typerep c in
X.tuple3 ra rb rc
| Typerep.Tuple.T4 (a, b, c, d) ->
let ra = of_typerep a in
let rb = of_typerep b in
let rc = of_typerep c in
let rd = of_typerep d in
X.tuple4 ra rb rc rd
| Typerep.Tuple.T5 (a, b, c, d, e) ->
let ra = of_typerep a in
let rb = of_typerep b in
let rc = of_typerep c in
let rd = of_typerep d in
let re = of_typerep e in
X.tuple5 ra rb rc rd re
end
| Typerep.Record record ->
X.record (Helper.map_record { Helper.map = of_typerep } record)
| Typerep.Variant variant ->
X.variant (Helper.map_variant { Helper.map = of_typerep } variant)
| Typerep.Named (named, content) -> begin
let typename = Typerep.Named.typename_of_t named in
match Memo.find memo_table typename with
| Some shared ->
X.Named.get_wip_computation shared
| None -> begin
match find_extended_implementation { generic = of_typerep } named with
| Some computation -> computation
| None -> begin
match content with
| None ->
let name = Typename.Uid.name (Typename.uid typename) in
raise_not_implemented name
| Some (lazy content) ->
if X.Named.share content
then
let shared = X.Named.init context typename in
Memo.set memo_table typename shared;
let computation = of_typerep content in
X.Named.set_final_computation shared computation
else
of_typerep content
end
end
end
in
let computation = of_typerep rep in
`generic computation
end