Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
layered.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
(* * Copyright (c) 2015 Gabriel Radanne <drupyog@zoho.com> * * Permission to use, copy, modify, and distribute this software for any * purpose with or without fee is hereby granted, provided that the above * copyright notice and this permission notice appear in all copies. * * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. *) open Utils open Common let fold_sibling f acc (seq : _ Iter.t) = let prev = ref None in let acc = ref acc in seq (fun elt -> acc := f !acc !prev elt ; prev := Some elt) module type S = sig type t type vertex module H : Hashtbl.S with type key = vertex val layout : distance:(vertex -> vertex -> float) -> t -> vertex -> pos H.t end module type TREE = sig type t module V : Hashtbl.HashedType val children : t -> V.t -> (V.t -> unit) -> unit val rev_children : t -> V.t -> (V.t -> unit) -> unit val rightmost_child : t -> V.t -> V.t option val leftmost_child : t -> V.t -> V.t option val is_parent : t -> parent:V.t -> child:V.t -> bool end (** Implementation of Drawing routed trees in linear time -- Christoph Buchheim, Michael Jünger and Sebastian Leipert See there for proof/details of how it works. Also see https://github.com/abego/treelayout for another implementation. *) module Make (G : TREE) = struct module H = Hashtbl.Make (G.V) let get ~default tbl x = try H.find tbl x with Not_found -> default let find tbl x = try Some (H.find tbl x) with Not_found -> None type state = { ancestor : G.V.t H.t ; thread : G.V.t H.t ; modtbl : float H.t ; prelim : float H.t ; change : float H.t ; shift : float H.t ; numbers : int H.t ; distance : G.V.t -> G.V.t -> float ; g : G.t ; } let get_mod s v = get ~default:0. s.modtbl v let get_ancestor s v = get ~default:v s.ancestor v let get_prelim s v = get ~default:0. s.prelim v let incr tbl v x = H.add tbl v @@ get ~default:0. tbl v +. x let next_right s v = match G.rightmost_child s.g v with | Some w -> Some w | None -> find s.thread v let next_left s v = match G.leftmost_child s.g v with | Some w -> Some w | None -> find s.thread v let number ~s ~parent v = match find s.numbers v with | Some i -> i | None -> let f i v = H.add s.numbers v (i+1) in Iter.iteri f @@ G.children s.g parent ; H.find s.numbers v let move_subtree ~s ~parent wm wp shift = let subtrees = float @@ number ~s ~parent wp - number ~s ~parent wm in incr s.change wp @@ ~-. shift /. subtrees ; incr s.shift wp @@ shift ; incr s.change wm @@ shift /. subtrees ; incr s.prelim wp @@ shift ; incr s.modtbl wp @@ shift ; () let execute_shifts ~s v = let shift = ref 0. in let change = ref 0. in let f w = incr s.prelim w !shift ; incr s.modtbl w !shift ; change := !change +. get ~default:0. s.change w ; shift := !shift +. get ~default:0. s.shift w +. !change ; () in Iter.iter f (G.rev_children s.g v) ; () let ancestor ~s ~defaultAncestor ~parent vim = let child = get_ancestor s vim in if G.is_parent s.g ~parent ~child then child else defaultAncestor let apportion ~s ~parent ~sibling ~defaultAncestor v = match sibling with | None -> defaultAncestor | Some w -> let vip = ref v and vop = ref v and vim = ref w in let vom = ref @@ Opt.get @@ G.leftmost_child s.g parent in let sip = ref @@ get_mod s !vip and sop = ref @@ get_mod s !vop and sim = ref @@ get_mod s !vim and som = ref @@ get_mod s !vom in let rec aux () = match next_right s !vim, next_left s !vip with | Some vim_, Some vip_ -> vim := vim_ ; vip := vip_ ; vom := Opt.get @@ next_left s !vom ; vop := Opt.get @@ next_right s !vop ; H.add s.ancestor !vop v ; let shift = (get_prelim s !vim +. !sim) -. (get_prelim s !vip +. !sip) +. s.distance !vim !vip in if shift > 0. then begin move_subtree ~s ~parent (ancestor ~s ~defaultAncestor ~parent !vim) v shift ; sip := !sip +. shift ; sop := !sop +. shift ; end ; sip := !sip +. get_mod s !vip ; sop := !sop +. get_mod s !vop ; som := !som +. get_mod s !vom ; sim := !sim +. get_mod s !vim ; aux () | _ -> () in aux () ; begin match next_right s !vim, next_right s !vop with | Some vim_, None -> H.add s.thread !vop vim_ ; H.add s.modtbl !vop @@ get_mod s !vop +. !sim -. !sop ; | _ -> () end ; begin match next_left s !vip, next_left s !vom with | Some vip_, None -> H.add s.thread !vom vip_ ; H.add s.modtbl !vom @@ get_mod s !vom +. !sip -. !som ; v | _ -> defaultAncestor end let rec first_walk ~s ~sibling v = match G.leftmost_child s.g v with | None -> begin match sibling with | None -> () | Some w -> H.add s.prelim v @@ get_prelim s w +. s.distance v w end | Some vl -> begin let vr = Opt.get @@ G.rightmost_child s.g v in fold_sibling (fun defaultAncestor sibling w -> first_walk ~s ~sibling w ; apportion ~s ~parent:v ~defaultAncestor ~sibling w) vl (G.children s.g v) ; execute_shifts ~s v ; let midpoint = ((get_prelim s vl) +. (get_prelim s vr)) /. 2. in match sibling with | Some w -> H.add s.prelim v @@ get_prelim s w +. s.distance v w ; H.add s.modtbl v @@ get_prelim s v -. midpoint ; | None -> H.add s.prelim v midpoint ; end let rec second_walk s result level v m = let x = get_prelim s v +. m in let y = float level in H.add result v {x;y} ; let f w = second_walk s result (level+1) w (m +. get_mod s v) in Iter.iter f (G.children s.g v) ; () let layout ~distance g r = let modtbl = H.create 17 in let thread = H.create 17 in let ancestor = H.create 17 in let prelim = H.create 17 in let change = H.create 17 in let shift = H.create 17 in let result = H.create 17 in let numbers = H.create 17 in let s = { prelim ; modtbl ; thread ; ancestor ; change ; shift ; numbers ; distance ; g ; } in first_walk ~s ~sibling:None r ; second_walk s result 0 r (-. (H.find prelim r)) ; result end module type I = Hashtbl.HashedType module type VIEW = sig type t val children : t -> t array end let array_rev_iter f a = let last = Array.length a - 1 in for i = last downto 0 do f a.(i) done module MakeTree (V : I) (T : VIEW with type t = V.t) = struct type t = unit module V = V let children () a k = Array.iter k @@ T.children a let rev_children () a k = array_rev_iter k @@ T.children a let leftmost_child () a = let a = T.children a in let l = Array.length a in if l = 0 then None else Some a.(0) let rightmost_child () a = let a = T.children a in let l = Array.length a in if l = 0 then None else Some a.(l - 1) let is_parent () ~parent ~child = Array.exists (V.equal child) @@ T.children parent end let layout (type a) ?(m:(module I with type t = a) option) ~children : distance:_ -> _ -> _ = let (module I) = match m with | Some m -> m | None -> (module (struct type t = a let equal = (=) let hash = Hashtbl.hash end)) in let module X = struct type t = a let children = children end in let module T = MakeTree(I)(X) in let module L = Make(T) in fun ~distance t -> let h = L.layout ~distance () t in L.H.find h