package tezos-bls12-381-polynomial

  1. Overview
  2. Docs

Source file polynomial.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
(*****************************************************************************)
(*                                                                           *)
(* MIT License                                                               *)
(* Copyright (c) 2022 Nomadic Labs <contact@nomadic-labs.com>                *)
(*                                                                           *)
(* Permission is hereby granted, free of charge, to any person obtaining a   *)
(* copy of this software and associated documentation files (the "Software"),*)
(* to deal in the Software without restriction, including without limitation *)
(* the rights to use, copy, modify, merge, publish, distribute, sublicense,  *)
(* and/or sell copies of the Software, and to permit persons to whom the     *)
(* Software is furnished to do so, subject to the following conditions:      *)
(*                                                                           *)
(* The above copyright notice and this permission notice shall be included   *)
(* in all copies or substantial portions of the Software.                    *)
(*                                                                           *)
(* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR*)
(* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,  *)
(* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL   *)
(* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER*)
(* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING   *)
(* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER       *)
(* DEALINGS IN THE SOFTWARE.                                                 *)
(*                                                                           *)
(*****************************************************************************)

module Fr = Bls12_381.Fr

module Stubs = struct
  type fr = Fr.t
  type fr_array = Fr_carray.t

  external of_sparse : fr_array -> (fr * int) array -> int -> unit
    = "caml_polynomial_of_sparse_stubs"
    [@@noalloc]
  (** [of_sparse res p n] converts the sparse representation of a polynomial [p] to
  the dense representation, from an OCaml array [p] of size [n] to a C array [res] of
  size [degree p + 1]

  requires:
  - degree of each coeff [d_i >= 0] and [d_i] are unique
  - the result must be initialized with zero (as done by {!Fr_carray.allocate})
  - [size res = degree p + 1]
  - [size p = n] *)

  external add : fr_array -> fr_array -> fr_array -> int -> int -> unit
    = "caml_polynomial_add_stubs"
    [@@noalloc]
  (** [add res a b size_a size_b] writes the result of polynomial addition of [a] and [b]
  in [res]

  requires:
  - [size a = size_a]
  - [size b = size_b]
  - [size res = max (size_a, size_b)]
  - [res], [a] and [b] are either pairwise disjoint or equal *)

  external sub : fr_array -> fr_array -> fr_array -> int -> int -> unit
    = "caml_polynomial_sub_stubs"
    [@@noalloc]
  (** [sub res a b size_a size_b] writes the result of polynomial subtraction of [b] from [a]
  in [res]

  requires:
  - [size a = size_a]
  - [size b = size_b]
  - [size res = max (size_a, size_b)]
  - [res], [a] and [b] are either pairwise disjoint or equal *)

  external mul : fr_array -> fr_array -> fr_array -> int -> int -> unit
    = "caml_polynomial_mul_stubs"
    [@@noalloc]
  (** [mul res a b size_a size_b] writes the result of polynomial multiplication of [a] by [b]
  in [res]

  requires:
  - the result must be initialized with zero (as done by {!Fr_carray.allocate})
  - [size a = size_a]
  - [size b = size_b]
  - [size res = size_a + size_b - 1] *)

  external mul_by_scalar : fr_array -> fr -> fr_array -> int -> unit
    = "caml_polynomial_mul_by_scalar_stubs"
    [@@noalloc]
  (** [mul_by_scalar res b a size_a] writes the result of multiplying a polynomial [a]
  by a blst_fr element [b] in [res]

  requires:
  - [size a = size_a]
  - [size res = size_a]
  - [res] and [a] either disjoint or equal *)

  external linear : fr_array -> (fr_array * int * fr) array -> int -> unit
    = "caml_polynomial_linear_stubs"
    [@@noalloc]
  (** [linear res poly_polylen_coeff nb_polys] writes the result of
      computing [λ₁·p₁(x) + λ₂·p₂(x) + … + λₖ·pₖ(x)] in [res], where
      - [poly_polylen_coeff.[i] = (pᵢ, size_p_i, λᵢ)]
      - [nb_polys] is a number of polynomials, i.e., [i = 1..nb_polys]

   requires:
   - the result must be initialized with zero (as done by {!Fr_carray.allocate})
   - [size res = max (size_p_i)]
   - [size poly_polylen_coeff = nb_polys]
   - [size p_i = size_p_i] *)

  external linear_with_powers :
    fr_array -> fr -> (fr_array * int) array -> int -> unit
    = "caml_polynomial_linear_with_powers_stubs"
    [@@noalloc]
  (** [linear_with_powers res c poly_polylen nb_polys] writes the result of
      computing [c⁰·p₀(x) + c¹·p₁(x) + … + cᵏ·pₖ(x)] in [res], where
      - [poly_polylen.[i] = (pᵢ, size_p_i)]
      - [nb_polys] is a number of polynomials

   requires:
   - the result must be initialized with zero (as done by {!Fr_carray.allocate})
   - [size res = max (size_p_i)]
   - [size poly_polylen = nb_polys]
   - [size p_i = size_p_i] *)

  external negate : fr_array -> fr_array -> int -> unit
    = "caml_polynomial_negate_stubs"
    [@@noalloc]
  (** [negate res p n] writes the result of negating a polynomial [p] in [res]

  requires:
  - [size p = n]
  - [size res = n]
  - [res] and [p] either disjoint or equal *)

  external evaluate : fr -> fr_array -> int -> fr -> unit
    = "caml_polynomial_evaluate_stubs"
    [@@noalloc]
  (** [evaluate res p n x] writes the result of evaluating a polynomial [p] at [x]
  in [res]

  - requires: [size p = n] and [n > 0] *)

  external division_xn :
    fr_array -> fr_array -> fr_array -> int -> int * fr -> unit
    = "caml_polynomial_division_xn_stubs"
    [@@noalloc]
  (** [division_xn res_q res_r p size_p (n, c)] writes the quotient and remainder of
      the division of a polynomial [p] by [(X^n + c)] in [res]

  requires:
  - [size p = size_p] and [size_p > n]
  - [size res_q = size_p - n]
  - [size res_r = n] *)

  external mul_xn : fr_array -> fr_array -> int -> int -> fr -> unit
    = "caml_polynomial_mul_xn_stubs"
    [@@noalloc]
  (** [mul_xn res p size_p n c] writes the result of multiplying a polynomial [p]
      by [(X^n + c)] in [res]

  requires:
  - [res] is initialized with bls-fr zeros
  - [size p = size_p]
  - [size res = size_p + n] *)

  external derivative : fr_array -> fr_array -> int -> unit
    = "caml_polynomial_derivative_stubs"
    [@@noalloc]
end

module Polynomial_impl = struct
  type scalar = Fr.t
  type t = Fr_carray.t [@@deriving repr]

  let of_carray p = p
  let to_carray p = p
  let length = Fr_carray.length
  let erase p = Fr_carray.erase p (length p)
  let allocate = Fr_carray.allocate
  let copy = Fr_carray.copy
  let get = Fr_carray.get

  let degree p =
    let rec aux i =
      if i = -1 then -1 else if Fr.eq (get p i) Fr.zero then aux (i - 1) else i
    in
    aux (length p - 1)

  let equal p1 p2 =
    let n1 = length p1 in
    let n2 = length p2 in
    let short_n, long_p, long_n =
      if n1 <= n2 then (n1, p2, n2) else (n2, p1, n1)
    in
    if Bigstringaf.(memcmp p1 0 p2 0 (short_n * Fr.size_in_bytes)) = 0 then
      let rec stop_at_first_non_zero i =
        if i = long_n then true
        else if Fr.eq (get long_p i) Fr.zero then stop_at_first_non_zero (i + 1)
        else false
      in
      stop_at_first_non_zero short_n
    else false

  let to_string p =
    String.concat " ; "
      (List.map Fr.to_string (Array.to_list @@ Fr_carray.to_array p))

  (* ?of_sparse_coefficients *)
  let of_coefficients coefficients =
    let coefficients = Array.of_list coefficients in
    let degree =
      Array.fold_left
        (fun max_degree (_coeff, d) ->
          assert (d >= 0);
          max d max_degree)
        0 coefficients
    in
    let polynomial = allocate (degree + 1) in
    Stubs.of_sparse polynomial coefficients (Array.length coefficients);
    polynomial

  let of_dense = Fr_carray.of_array
  let zero = of_coefficients []
  let one = of_coefficients [ (Fr.one, 0) ]

  let generate_biased_random_polynomial n =
    assert (n >= 0);
    if Random.int 10 = 0 || n = 0 then zero
    else
      let poly =
        Array.init n (fun _ ->
            if Random.bool () then Fr.random () else Fr.copy Fr.zero)
      in
      Array.set poly (n - 1) Fr.one;
      Fr_carray.of_array poly

  let random n = List.init n (fun i -> (Fr.random (), i)) |> of_coefficients

  let to_dense_coefficients p =
    (* the polynomial could be padded with zero, so we instead of using [n] and
       wasting some space we recompute the size of the minimal representation *)
    let len = 1 + max 0 (degree p) in
    Fr_carray.to_array ~len p

  (* ensures: no coefficient in the result is zero *)
  let to_sparse_coefficients poly =
    let poly = to_dense_coefficients poly in
    let res = ref [] in
    for deg = Array.length poly - 1 downto 0 do
      let coef = poly.(deg) in
      if not (Fr.is_zero coef) then res := (Fr.copy coef, deg) :: !res
    done;
    !res

  let add p1 p2 =
    let n1 = length p1 in
    let n2 = length p2 in
    let res_size = max n1 n2 in
    let res = allocate res_size in
    Stubs.add res p1 p2 n1 n2;
    res

  let add_inplace res p1 p2 =
    let n1 = length p1 in
    let n2 = length p2 in
    let n_res = length res in
    assert (n_res = max n1 n2);
    Stubs.add res p1 p2 n1 n2

  let sub p1 p2 =
    let n1 = length p1 in
    let n2 = length p2 in
    let max_size = max n1 n2 in
    let res = allocate max_size in
    Stubs.sub res p1 p2 n1 n2;
    res

  let sub_inplace res p1 p2 =
    let n1 = length p1 in
    let n2 = length p2 in
    let n_res = length res in
    assert (n_res >= max n1 n2);
    Stubs.sub res p1 p2 n1 n2

  let mul p1 p2 =
    let n1 = length p1 in
    let n2 = length p2 in
    let res_size = n1 + n2 - 1 in
    let res = allocate res_size in
    Stubs.mul res p1 p2 n1 n2;
    res

  let mul_by_scalar scalar p =
    let n = length p in
    let res = allocate n in
    Stubs.mul_by_scalar res scalar p n;
    res

  let mul_by_scalar_inplace res scalar p =
    let n = length p in
    let n_res = length res in
    assert (n_res >= n);
    Stubs.mul_by_scalar res scalar p n

  let linear polys coeffs =
    let nb_polys = List.length polys in
    assert (nb_polys = List.length coeffs);
    let res_size =
      List.fold_left (fun res_size p -> max (length p) res_size) 0 polys
    in
    if res_size = 0 then zero
    else
      let res = allocate res_size in
      let poly_polylen_coeff =
        List.map2 (fun p coeff -> (p, length p, coeff)) polys coeffs
      in
      Stubs.linear res (Array.of_list poly_polylen_coeff) nb_polys;
      res

  let linear_with_powers polys coeff =
    let nb_polys = List.length polys in
    let polys = List.map (fun p -> (p, length p)) polys in
    let res_size =
      List.fold_left (fun res_size (_p, size) -> max size res_size) 0 polys
    in
    let res = allocate res_size in
    Stubs.linear_with_powers res coeff (Array.of_list polys) nb_polys;
    res

  let opposite p =
    let n = length p in
    let res = allocate n in
    Stubs.negate res p n;
    res

  let opposite_inplace p =
    let n = length p in
    Stubs.negate p p n

  let is_zero p = if degree p = -1 then true else false

  let evaluate p scalar =
    let n = length p in
    let res = Fr.copy scalar in
    Stubs.evaluate res p n scalar;
    res

  exception Rest_not_null of string

  let division_xn p n c =
    assert (n > 0);
    let poly_degree = degree p in
    let poly_size = poly_degree + 1 in
    if poly_degree = -1 || poly_degree < n then (zero, p)
    else
      let res_q = allocate (poly_size - n) in
      let res_r = allocate n in
      Stubs.division_xn res_q res_r p poly_size (n, c);
      let poly_q = res_q in
      let poly_r = res_r in
      (poly_q, poly_r)

  let mul_xn p n c =
    let l = length p in
    let res = allocate (l + n) in
    Stubs.mul_xn res p l n c;
    res

  let derivative p =
    let n = length p in
    if is_zero p || n = 1 then zero
    else
      let res = allocate (n - 1) in
      Stubs.derivative res p n;
      res

  (* for p polynomial, returns p splitted in nb_chunks parts of degree size_chunks ; the nb_chunks - 1 first parts have degree size_chunks or less (if it’s less the next parts are 0) ; the last part’s degree will contain the rest of p coefficients without any degree bound *)
  let split ~nb_chunks size_chunks p =
    let poly_degree = degree p in
    let nb_coeff_P = 1 + poly_degree in
    if poly_degree = -1 then List.init nb_chunks (fun _ -> zero)
    else
      List.init nb_chunks (fun i ->
          if (i + 1) * size_chunks <= nb_coeff_P then
            if i = nb_chunks - 1 then copy ~offset:(i * size_chunks) p
            else copy ~offset:(i * size_chunks) ~len:size_chunks p
          else if i * size_chunks < nb_coeff_P then
            copy ~offset:(i * size_chunks)
              ~len:(nb_coeff_P - (i * size_chunks))
              p
          else zero)

  let blind ~nb_blinds n p =
    let blinding_factor = random nb_blinds in
    (add p (mul_xn blinding_factor n Fr.(negate one)), blinding_factor)

  let ( = ) = equal
  let ( + ) = add
  let ( - ) = sub
  let ( * ) = mul
  let constant c = of_coefficients [ (c, 0) ]
end

module type Polynomial_sig = sig
  (**
   This library implements polynomials of Bls12_381.Fr as arrays of contiguous
   memory in C, allowing much better performances for algorithms that scan the
   polynomials.

   An array [a] of size [n] represents the polynomial $\sum_i^(n-1) a[i] X^i$
   The length of [a] is always greater or equal than the degree+1 of its
   corresponding polynomial, if greater it padded with zeros. As a consequence a
   polynomial has many representations, namely all arrays with trailing zeros.
 *)

  type scalar
  type t [@@deriving repr]

  val allocate : int -> t
  (** [allocate len] creates a zero polynomial of size [len] *)

  val erase : t -> unit
  (** [erase p] overwrites a polynomial [p] with a zero polynomial of
      the same size as the polynomial [p] *)

  val generate_biased_random_polynomial : int -> t
  (** [generate_biased_random_polynomial n] generates a random polynomial of
       degree strictly lower than [n], the distribution is NOT uniform, it is
       biased towards sparse polynomials and particularly towards the zero
       polynomial *)

  val random : int -> t
  (** [random n] generates a uniformly sampled polynomial among the set of all
      polynomials of degree strictly lower than [n] *)

  val degree : t -> int
  (** [degree p] returns the degree of a polynomial [p]. Returns [-1] for the
  zero polynomial *)

  val get : t -> int -> scalar
  (** [get p i] returns the [i]-th element of a given array [p], a coefficient of [X^i]
  in [p] *)

  val to_string : t -> string
  (** [to_string p] returns the string representation of a polynomial [p] *)

  val copy : ?offset:int -> ?len:int -> t -> t
  (** [copy p] returns a copy of a polynomial [p] *)

  val to_dense_coefficients : t -> scalar array
  (** [to_dense_coefficients p] returns the dense representation of
  a polynomial [p], i.e., it converts a C array to an OCaml array *)

  val of_dense : scalar array -> t
  (** [of_dense p] creates a value of type [t] from the dense representation of
  a polynomial [p], i.e., it converts an OCaml array to a C array *)

  val of_coefficients : (scalar * int) list -> t
  (** [of_coefficients p] creates a value of type [t] from the sparse representation of
  a polynomial [p], i.e., it converts an OCaml array to a C array *)

  val equal : t -> t -> bool
  (** [equal a b] checks whether a polynomial [a] is equal to a polynomial [b] *)

  val is_zero : t -> bool
  (** [is_zero p] checks whether a polynomial [p] is the zero polynomial *)

  val zero : t
  (** [zero] is the zero polynomial, the neutral element for polynomial addition *)

  val one : t
  (** [one] is the constant polynomial one, the neutral element for polynomial
  multiplication *)

  val add : t -> t -> t
  (** [add] computes polynomial addition *)

  val add_inplace : t -> t -> t -> unit
  (** [add_inplace res a b] computes polynomial addition of [a] and [b] and
      writes the result in [res]

  Note: [res] can be equal to either [a] or [b] *)

  val sub : t -> t -> t
  (** [sub] computes polynomial subtraction *)

  val sub_inplace : t -> t -> t -> unit
  (** [sub_inplace res a b] computes polynomial subtraction of [a] and [b] and
      writes the result in [res]

  Note: [res] can be equal to either [a] or [b] *)

  val mul : t -> t -> t
  (** [mul] computes polynomial multiplication

  Note: naive quadratic algorithm, result's size is the sum of arguments' size *)

  val mul_by_scalar : scalar -> t -> t
  (** [mul_by_scalar] computes multiplication of a polynomial by a blst_fr element *)

  val mul_by_scalar_inplace : t -> scalar -> t -> unit
  (** [mul_by_scalar_inplace res s p] computes multiplication of a polynomial [p]
  by a blst_fr element [s] and stores it in [res] *)

  val linear : t list -> scalar list -> t
  (** [linear p s] computes [∑ᵢ s.(i)·p.(i)] *)

  val linear_with_powers : t list -> scalar -> t
  (** [linear_with_powers p s] computes [∑ᵢ sⁱ·p.(i)]. This function is more efficient
      than [linear] + [powers] *)

  val opposite : t -> t
  (** [opposite] computes polynomial negation *)

  val opposite_inplace : t -> unit
  (** [opposite_inplace p] computes polynomial negation

  Note: The argument [p] is overwritten *)

  val evaluate : t -> scalar -> scalar
  (** [evaluate p x] evaluates a polynomial [p] at [x] *)

  exception Rest_not_null of string

  val division_xn : t -> int -> scalar -> t * t
  (** [division_xn p n c] returns the quotient and remainder of the division of
      [p] by [(X^n + c)] *)

  val mul_xn : t -> int -> scalar -> t
  (** [mul_xn p n c] returns the product of [p] and [(X^n + c)] *)

  val derivative : t -> t
  (** [derivative p] returns the formal derivative of [p] *)

  val split : nb_chunks:int -> int -> t -> t list

  val blind : nb_blinds:int -> int -> t -> t * t
  (** [blind ~nb_blinds n p] adds to polynomial [p] a random multiple of
      polynomial [(X^n - 1)], chosen by uniformly sampling a polynomial [b]
      of degree strictly lower than [nb_blinds] and multiplying it by
      [(X^n - 1)], [b] is returned as the second argument *)

  val ( = ) : t -> t -> bool
  (** Infix operator for {!equal} *)

  val ( + ) : t -> t -> t
  (** Infix operator for {!add} *)

  val ( - ) : t -> t -> t
  (** Infix operator for {!sub} *)

  val ( * ) : t -> t -> t
  (** Infix operator for {!mul} *)

  val constant : scalar -> t
  (** [constant s] creates a value of type [t] from a blst_fr element [s] *)
end

module type Polynomial_unsafe_sig = sig
  include Polynomial_sig

  val to_carray : t -> Fr_carray.t
  (** [to_carray p] converts [p] from type {!t} to type {!Fr_carray.t}

      Note: [to_carray p] doesn't create a copy of [p] *)

  val of_carray : Fr_carray.t -> t
  (** [of_carray p] converts [p] from type {!Fr_carray.t} to type {!t}

      Note: [of_carray p] doesn't create a copy of [p] *)
end

module Polynomial_unsafe :
  Polynomial_unsafe_sig with type scalar = Bls12_381.Fr.t =
  Polynomial_impl

include (
  Polynomial_unsafe :
    Polynomial_sig
      with type scalar = Polynomial_unsafe.scalar
       and type t = Polynomial_unsafe.t)
OCaml

Innovation. Community. Security.