Source file trie.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
(** *)
module type S =
sig
type symbol
type path = symbol list
type 'a t
exception Already_present of path
val empty : 'a t
val add : ?fail: bool -> path -> 'a -> 'a t -> 'a t
val find : path -> 'a t -> 'a list
val to_string : (symbol -> string) -> 'a t -> string
end
module Make (P : Map.OrderedType) =
struct
module Map = Map.Make (P)
type symbol = P.t
type path = symbol list
type 'a doc = path * 'a list
type 'a t = Node of 'a t Map.t * 'a list | Leaf of 'a doc
exception Already_present of path
let empty = Node (Map.empty, [])
let is_empty t = t = empty
let common_prefix l1 l2 =
let rec iter acc l1 l2 =
match l1, l2 with
| [], _
| _, [] -> (List.rev acc, l1, l2)
| h1 :: q1, h2 :: q2 ->
match P.compare h1 h2 with
0 -> iter (h1 :: acc) q1 q2
| _ -> (List.rev acc, l1, l2)
in
iter [] l1 l2
let rec add ?(fail=false) ?(backpath=[]) path data t =
match path with
[] -> t
| sym :: q ->
if is_empty t then
Leaf (path, [data])
else
match t with
Leaf (orig_path2, data2) ->
let (pref, path1, path2) = common_prefix path orig_path2 in
if path1 = [] && path2 = [] then
if fail then
raise (Already_present ((List.rev backpath) @ orig_path2))
else
Leaf (pref, data :: data2)
else
let rec iter = function
[] ->
let map, data_opt =
match path1 with
[] -> (Map.empty, [data])
| sym :: q -> (Map.add sym (Leaf (q, [data])) Map.empty, [])
in
let map, data_opt =
match path2 with
[] ->
assert (data_opt = []);
(map, data2)
| sym :: q -> (Map.add sym (Leaf (q, data2)) map, data_opt)
in
Node (map, data_opt)
| sym :: q ->
let t = iter q in
Node (Map.add sym t Map.empty, [])
in
iter pref
| Node (map, data_opt) ->
match Map.find_opt sym map with
| None -> Node (Map.add sym (Leaf (q, [data])) map, data_opt)
| Some t2 ->
match q, data_opt with
| [], [] ->
Node (map, [data])
| [], d ->
if fail then
raise (Already_present (List.rev (sym :: backpath)))
else
Node (map, data :: d)
| _, _ ->
let x = add ~backpath: (sym :: backpath) q data t2 in
Node (Map.add sym x map, data_opt)
let add ?fail path data t = add ?fail path data t
let rec is_path_prefix p1 p2 =
match p1, p2 with
[], [] -> true
| [], _ -> true
| _, [] -> false
| h1 :: q1, h2 :: q2 ->
match P.compare h1 h2 with
0 -> is_path_prefix q1 q2
| _ -> false
let rec docs ?(acc=[]) path = function
Leaf (p, data) ->
let path = path @ p in
List.fold_left (fun acc d -> (path, d) :: acc) acc data
| Node (map, data_opt) ->
let acc =
match data_opt with
[] -> acc
| data -> List.fold_left (fun acc d -> (path, d) :: acc) acc data
in
Map.fold (fun sym t acc -> docs ~acc (path @ [sym]) t) map acc
let rec find ?(backpath=[]) path t =
match path with
[] -> List.map snd (docs (List.rev backpath) t)
| sym :: q ->
match t with
Leaf (p, data) ->
if is_path_prefix path p then
data
else
[]
| Node (map, _) ->
match Map.find_opt sym map with
| None -> []
| Some t -> find ~backpath: (sym :: backpath) q t
let find path t = find path t
let to_string f t =
let b = Buffer.create 256 in
let rec iter margin = function
Leaf (p, data) ->
Printf.bprintf b "%s[%s(leaf)]\n" margin
(String.concat "/" (List.map f (List.rev p)))
| Node (map, opt) ->
begin
match opt with
[] -> ()
| _ -> Printf.bprintf b "%s[data]\n" margin
end;
Map.iter
(fun k v ->
Printf.bprintf b "%s%s\n" margin (f k); iter (margin^" ") v)
map
in
iter "" t;
Buffer.contents b
end