package stdcompat

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file stdcompat__set.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
module type OrderedType = Set.OrderedType

module type S  = sig type elt type t val empty : t val add : elt -> t -> t
val singleton : elt -> t val remove : elt -> t -> t val union : t -> t -> t
val inter : t -> t -> t val disjoint : t -> t -> bool val diff : t -> t -> t
val cardinal : t -> int val elements : t -> elt list val min_elt : t -> elt
val min_elt_opt : t -> elt option val max_elt : t -> elt
val max_elt_opt : t -> elt option val choose : t -> elt
val choose_opt : t -> elt option val find : elt -> t -> elt
val find_opt : elt -> t -> elt option
val find_first : (elt -> bool) -> t -> elt
val find_first_opt : (elt -> bool) -> t -> elt option
val find_last : (elt -> bool) -> t -> elt
val find_last_opt : (elt -> bool) -> t -> elt option
val iter : (elt -> unit) -> t -> unit
val fold : (elt -> 'acc -> 'acc) -> t -> 'acc -> 'acc
val map : (elt -> elt) -> t -> t val filter : (elt -> bool) -> t -> t
val filter_map : (elt -> elt option) -> t -> t
val partition : (elt -> bool) -> t -> (t * t)
val split : elt -> t -> (t * bool * t) val is_empty : t -> bool
val mem : elt -> t -> bool val equal : t -> t -> bool
val compare : t -> t -> int val subset : t -> t -> bool
val for_all : (elt -> bool) -> t -> bool
val exists : (elt -> bool) -> t -> bool val to_list : t -> elt list
val of_list : elt list -> t val to_seq_from : elt -> t -> elt Seq.t
val to_seq : t -> elt Seq.t val to_rev_seq : t -> elt Seq.t
val add_seq : elt Seq.t -> t -> t val of_seq : elt Seq.t -> t end

(*
module Make = Set.Make
*)

module Make (Ord : OrderedType) = struct
  include Set.Make (Ord)

  
    (*
    type internal = Empty | Node of internal * elt * internal * int
      
      [@@ocaml.warning "-37"]
      
    *)

    (*
    external t_of_internal : internal -> t = "%identity"
    *)

    (*
    external internal_of_t : t -> internal = "%identity"
    *)
  

  (*
    
      type enumeration = End | More of elt * internal * enumeration

      let rec snoc_enum s e =
        match s with
          Empty -> e
        | Node (l, v, r, _h) -> snoc_enum r (More(v, l, e))

      let rec rev_seq_of_enum_ c () = match c with
        | End -> Stdcompat__seq.Nil
        | More (x, t, rest) ->
            Stdcompat__seq.Cons (x, rev_seq_of_enum_ (snoc_enum t rest))

      let to_rev_seq (s : t) =
        let s = internal_of_t s in
        rev_seq_of_enum_ (snoc_enum s End)
    
    (*
      let to_rev_seq s =
        Stdcompat__list.to_seq (List.rev (elements s))
    *)
  *)

  (*
    let of_list l = List.fold_left (fun s item -> add item s) empty l
  *)

  (*
    
      let rec iter f = function
        | Empty -> ()
        | Node (l, v, r, _) as t ->
            iter f l;
            f v;
            iter f r

      let iter (f : elt -> unit) (s : t) : unit =
        iter f (internal_of_t s)

      let rec fold f s a =
        match s with
        | Empty -> a
        | Node (l, v, r, _) as t ->
            let a = fold f l a in
            let a = f v a in
            fold f r a

      let fold (f : elt -> 'a -> 'a) (s : t) (a : 'a) : 'a =
        fold f (internal_of_t s) a
    
    (*
      let iter f s =
        List.iter f (elements s)

      let fold f s a =
        List.fold_left (fun a item -> f item a) a (elements s)
    *)
  *)

  (*
    
    let height = function
      | Empty -> 0
      | Node (_, _, _, h) -> h

    let create l v r =
      let hl = height l in
      let hr = height r in
      Node (l, v, r, (if hl >= hr then hl + 1 else hr + 1))

    let bal l v r =
      let hl = match l with Empty -> 0 | Node (_, _, _, h) -> h in
      let hr = match r with Empty -> 0 | Node (_, _, _, h) -> h in
      if hl > hr + 2 then begin
        match l with
          Empty -> invalid_arg "Set.bal"
        | Node (ll, lv, lr, _) ->
            if height ll >= height lr then
              create ll lv (create lr v r)
            else begin
              match lr with
                Empty -> invalid_arg "Set.bal"
              | Node (lrl, lrv, lrr, _) ->
                  create (create ll lv lrl) lrv (create lrr v r)
            end
      end else if hr > hl + 2 then begin
        match r with
          Empty -> invalid_arg "Set.bal"
        | Node (rl, rv, rr, _) ->
            if height rr >= height rl then
              create (create l v rl) rv rr
            else begin
              match rl with
                Empty -> invalid_arg "Set.bal"
              | Node (rll, rlv, rlr, _) ->
                  create (create l v rll) rlv (create rlr rv rr)
            end
      end else
        Node (l, v, r, (if hl >= hr then hl + 1 else hr + 1))

    let rec add_min_element x = function
      | Empty -> internal_of_t (singleton x)
      | Node (l, v, r, _) ->
        bal (add_min_element x l) v r

    let rec add_max_element x = function
      | Empty -> internal_of_t (singleton x)
      | Node (l, v, r, _) ->
        bal l v (add_max_element x r)

    let rec join l v r =
      match (l, r) with
        (Empty, _) -> add_min_element v r
      | (_, Empty) -> add_max_element v l
      | (Node (ll, lv, lr, lh), Node (rl, rv, rr, rh)) ->
          if lh > rh + 2 then bal ll lv (join lr v r) else
          if rh > lh + 2 then bal (join l v rl) rv rr else
          create l v r

      let try_join l v r =
        if (l = Empty || Ord.compare (max_elt (t_of_internal l)) v < 0)
            && (r = Empty || Ord.compare v (min_elt (t_of_internal r)) < 0)
        then join l v r
        else internal_of_t (union (t_of_internal l) (add v (t_of_internal r)))

      let rec remove_min_elt = function
        | Empty -> invalid_arg "Set.remove_min_elt"
        | Node (Empty, _, r, _) -> r
        | Node (l, v, r, _) -> bal (remove_min_elt l) v r

      let try_concat t1 t2 =
        match (t1, t2) with
        | (Empty, t) -> t
        | (t, Empty) -> t
        | (_, _) ->
            try_join t1 (min_elt (t_of_internal t2))
              (remove_min_elt t2)

      let rec filter_map f = function
        | Empty -> Empty
        | Node (l, v, r, _) as t ->
           (* enforce left-to-right evaluation order *)
           let l' = filter_map f l in
           let v' = f v in
           let r' = filter_map f r in
           begin match v' with
             | Some v' ->
                if l == l' && v == v' && r == r' then t
                else try_join l' v' r'
             | None ->
                try_concat l' r'
           end

      let filter_map (f : elt -> elt option) (s : t) : t =
        t_of_internal (filter_map f (internal_of_t s))
    
    (*
      type map_changed =
        | Changed of t
        | Unchanged of elt list

      let filter_map f s =
        match
          fold (fun item accu ->
            match accu, f item with
            | Changed set, None -> Changed set
            | Changed set, Some item' -> Changed (add item' set)
            | Unchanged list, None -> Changed (of_list list)
            | Unchanged list, Some item' ->
               if item == item' then Unchanged (item :: list)
               else Changed (add item' (of_list list)))
          s (Unchanged [])
        with
        | Changed s -> s
        | Unchanged _ -> s
    *)
  *)

(*

    type split_bis =
      | Found
      | NotFound of internal * (unit -> internal)

    let rec split_bis x = function
      | Empty ->
          NotFound (Empty, (fun () -> Empty))
      | Node (l, v, r, _) ->
          let c = Ord.compare x v in
          if c = 0 then Found
          else if c < 0 then
            match split_bis x l with
            | Found -> Found
            | NotFound (ll, rl) -> NotFound (ll, (fun () -> join (rl ()) v r))
          else
            match split_bis x r with
            | Found -> Found
            | NotFound (lr, rr) -> NotFound (join l v lr, rr)

    let rec disjoint s1 s2 =
      match (s1, s2) with
        (Empty, _) | (_, Empty) -> true
      | (Node (l1, v1, r1, _), t2) ->
          if s1 == s2 then false
          else match split_bis v1 t2 with
              NotFound(l2, r2) -> disjoint l1 l2 && disjoint r1 (r2 ())
            | Found -> false

    let disjoint (s1 : t) (s2 : t) : bool =
      disjoint (internal_of_t s1) (internal_of_t s2)

(*
  let disjoint s s' =
    is_empty (inter s s')
*)
*)

(*
  let add_seq i m =
    Stdcompat__seq.fold_left (fun s x -> add x s) m i

  let of_seq i = add_seq i empty


  let rec cons_enum s e =
    match s with
      Empty -> e
    | Node (l, v, r, _h) -> cons_enum l (More(v, r, e))

  let rec seq_of_enum_ c () = match c with
    | End -> Stdcompat__seq.Nil
    | More (x, t, rest) ->
        Stdcompat__seq.Cons (x, seq_of_enum_ (cons_enum t rest))

  let to_seq (s : t) =
    let s : internal = internal_of_t s in
    seq_of_enum_ (cons_enum s End)

  let to_seq_from low s =
    let s : internal = internal_of_t s in
    let rec aux low s c = match s with
      | Empty -> c
      | Node (l, v, r, _h) ->
          begin match Ord.compare v low with
            | 0 -> More (v, r, c)
            | n when n<0 -> aux low r c
            | _ -> aux low l (More (v, r, c))
          end
    in
    seq_of_enum_ (aux low s End)

(*
  let to_seq s =
    Stdcompat__list.to_seq (elements s)

  let elements_from low s =
    let rec cut l =
      match l with
      | [] -> []
      | hd :: tl ->
        if Ord.compare low hd < 0 then
          cut tl
        else
          l in
     cut (elements s)

  let to_seq_from low s =
    Stdcompat__list.to_seq (elements_from low s)
*)
*)

(*
  exception Find of elt


  let rec find_internal x = function
      Empty -> raise Not_found
    | Node (l, v, r, _h) ->
        let c = Ord.compare x v in
        if c = 0 then v
        else find_internal x (if c < 0 then l else r)

  let find x (s : t) =
    let s : internal = internal_of_t s in
    find_internal x s

(*
  let find x s =
    try
      iter (fun y ->
        if Ord.compare x y = 0 then
          raise (Find y)) s;
      raise Not_found
    with Find y -> y
*)
*)

(*
  let min_elt_opt s =
    Stdcompat__tools.option_find min_elt s

  let max_elt_opt s =
    Stdcompat__tools.option_find max_elt s

  let choose_opt s =
    Stdcompat__tools.option_find choose s


  let rec find_first_aux v0 f = function
      Empty ->
        v0
    | Node (l, v, r, _h) ->
        if f v then
          find_first_aux v f l
        else
          find_first_aux v0 f r

  let rec find_first_internal f = function
      Empty ->
        raise Not_found
    | Node (l, v, r, _h) ->
        if f v then
          find_first_aux v f l
        else
          find_first_internal f r

  let find_first f (s : t) =
    let s : internal = internal_of_t s in
    find_first_internal f s

  let rec find_first_opt_aux v0 f = function
      Empty ->
        Some v0
    | Node (l, v, r, _h) ->
        if f v then
          find_first_opt_aux v f l
        else
          find_first_opt_aux v0 f r

  let rec find_first_opt_internal f = function
      Empty ->
        None
    | Node (l, v, r, _h) ->
        if f v then
          find_first_opt_aux v f l
        else
          find_first_opt_internal f r

  let find_first_opt f (s : t) =
    let s : internal = internal_of_t s in
    find_first_opt_internal f s

  let rec find_last_aux v0 f = function
      Empty ->
        v0
    | Node (l, v, r, _h) ->
        if f v then
          find_last_aux v f r
        else
          find_last_aux v0 f l

  let rec find_last_internal f = function
      Empty ->
        raise Not_found
    | Node (l, v, r, _h) ->
        if f v then
          find_last_aux v f r
        else
          find_last_internal f l

  let find_last f (s : t) =
    let s : internal = internal_of_t s in
    find_last_internal f s

  let rec find_last_opt_aux v0 f = function
      Empty ->
        Some v0
    | Node (l, v, r, _h) ->
        if f v then
          find_last_opt_aux v f r
        else
          find_last_opt_aux v0 f l

  let rec find_last_opt_internal f = function
      Empty ->
        None
    | Node (l, v, r, _h) ->
        if f v then
          find_last_opt_aux v f r
        else
          find_last_opt_internal f l

  let find_last_opt f (s : t) =
    let s : internal = internal_of_t s in
    find_last_opt_internal f s

  let rec find_opt_internal x = function
      Empty -> None
    | Node (l, v, r, _h) ->
        let c = Ord.compare x v in
        if c = 0 then Some v
        else find_opt_internal x (if c < 0 then l else r)

  let find_opt f (s : t) =
    let s : internal = internal_of_t s in
    find_opt_internal f s

(*
  let find_opt x s =
    Stdcompat__tools.option_find (find x) s

  exception Find of elt

  let find_first_opt p s =
    try
      iter (fun x ->
        if p x then
          raise (Find x)) s;
      None
    with Find x -> Some x

  let find_first p s =
    try
      iter (fun x ->
        if p x then
          raise (Find x)) s;
      raise Not_found
    with Find x -> x

  exception Local_not_found

  let find_last_opt p s =
    let last = ref None in
    try
      iter (fun x ->
        if p x then
          last := Some x
        else
          match !last with
          | None -> raise Local_not_found
          | Some x -> raise (Find x)) s;
      !last
    with
    | Local_not_found -> None
    | Find x -> !last

  let find_last p s =
    match find_last_opt p s with
    | None -> raise Not_found
    | Some x -> x
*)
*)

(*

  let rec map f = function
    | Empty -> Empty
    | Node (l, v, r, _) as t ->
       (* enforce left-to-right evaluation order *)
       let l' = map f l in
       let v' = f v in
       let r' = map f r in
       if l == l' && v == v' && r == r' then t
       else try_join l' v' r'

  let map f s =
    (t_of_internal (map f (internal_of_t s : internal)) : t)

(*
  let map f s =
    match
      fold (fun item accu ->
        let item' = f item in
        match accu with
        | Changed set -> Changed (add item' set)
        | Unchanged list ->
           if item == item' then Unchanged (item :: list)
           else Changed (add item' (of_list list)))
      s (Unchanged [])
    with
    | Changed s -> s
    | Unchanged _ -> s
*)
*)

(*
   let split x s =
     let add item (passed, (l, present, r)) =
       if passed then
         (passed, (l, present, add item r))
       else
         let o = Ord.compare item x in
         if o < 0 then (passed, (add item l, present, add item r))
         else if o > 0 then (true, (l, false, add item r))
         else (true, (l, true, r)) in
     snd (fold add s (false, (empty, false, empty)))
*)


  let to_list s =
    elements s

end

OCaml

Innovation. Community. Security.