package solid
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Source file conf.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451
(*********************************************************************************) (* OCaml-LDP *) (* *) (* Copyright (C) 2016-2023 Institut National de Recherche en Informatique *) (* et en Automatique. All rights reserved. *) (* *) (* This program is free software; you can redistribute it and/or modify *) (* it under the terms of the GNU Lesser General Public License version *) (* 3 as published by the Free Software Foundation. *) (* *) (* This program is distributed in the hope that it will be useful, *) (* but WITHOUT ANY WARRANTY; without even the implied warranty of *) (* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *) (* GNU General Public License for more details. *) (* *) (* You should have received a copy of the GNU General Public License *) (* along with this program; if not, write to the Free Software *) (* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA *) (* 02111-1307 USA *) (* *) (* Contact: Maxence.Guesdon@inria.fr *) (* *) (*********************************************************************************) (** *) open Rdf.Graph open Rdf.Term type path_elt = [`S of string | `I of Iri.t] type path = path_elt list module P = struct type t = path_elt let compare (e1:t) (e2:t) = match e1, e2 with `S s1, `S s2 -> Stdlib.compare s1 s2 | `S _, `I _ -> 1 | `I _, `S _ -> -1 | `I i1, `I i2 -> Iri.compare i1 i2 end module PMap = Map.Make(P) let string_of_path l = let f = function `S s -> s | `I i -> Iri.to_string i in String.concat "." (List.map f l) type error = | Invalid_value of Rdf.Term.term | Invalid_path of path | Path_conflict of path | Error_at_path of path * error | Exn_at_path of path * exn exception Error of error let rec string_of_error = function | Invalid_value term -> Printf.sprintf "Invalid value %s" (Rdf.Term.string_of_term term) | Invalid_path p -> Printf.sprintf "Invalid path %S" (string_of_path p) | Path_conflict p -> Printf.sprintf "Path conflict on %S" (string_of_path p) | Error_at_path (p, e) -> Printf.sprintf "%S: %s" (string_of_path p) (string_of_error e) | Exn_at_path (p, e) -> Printf.sprintf "%S: %s" (string_of_path p) (Printexc.to_string e) let error e = raise (Error e) let invalid_value t = error (Invalid_value t) let invalid_path p = error (Invalid_path p) let path_conflict p = error (Path_conflict p) let error_at_path p e = error (Error_at_path (p, e)) let exn_at_path p e = error (Exn_at_path (p, e)) module Wrapper = struct type 'a t = { to_term : ?with_doc: bool -> Rdf.Graph.graph -> 'a -> Rdf.Term.term ; from_term : ?def: 'a -> Rdf.Graph.graph -> Rdf.Term.term -> 'a ; } let make to_term from_term = { to_term ; from_term } let int = let to_term ?with_doc g n = Rdf.Term.term_of_int n in let from_term ?def _ t = match t with Literal lit -> (try int_of_string lit.lit_value with _ -> invalid_value t) | _ -> invalid_value t in make to_term from_term let float = let to_term ?with_doc g n = Rdf.Term.term_of_double n in let from_term ?def _ t = match t with Literal lit -> (try float_of_string lit.lit_value with _ -> invalid_value t) | _ -> invalid_value t in make to_term from_term let bool = let to_term ?with_doc g b = Rdf.Term.term_of_bool b in let from_term ?def _ t = match t with Literal lit -> (try bool_of_literal lit with _ -> invalid_value t) | _ -> invalid_value t in make to_term from_term let string_ ?typ to_s of_s = let to_term ?with_doc g x = Rdf.Term.term_of_literal_string ?typ (to_s x) in let from_term ?def _ t = match t with Literal lit -> (try of_s lit.lit_value with _ -> invalid_value t) | _ -> invalid_value t in make to_term from_term let iri = let to_term ?with_doc g iri = Iri iri in let from_term ?def _ t = match t with Iri iri -> iri | _ -> invalid_value t in make to_term from_term let string = string_ (fun x -> x) (fun x -> x) let typed_string typ = string_ ~typ (fun x -> x) (fun x -> x) let add_list g l = let add term tail = let sub = Rdf.Term.blank_ (g.new_blank_id ()) in g.add_triple ~sub ~pred:Rdf.Rdf_.rest ~obj:tail ; g.add_triple ~sub ~pred:Rdf.Rdf_.first ~obj:term ; sub in List.fold_right add l (Iri Rdf.Rdf_.nil) let read_list g head = let rec iter acc sub = let acc = match g.objects_of ~sub ~pred: Rdf.Rdf_.first with [] -> acc | term :: _ -> term :: acc in match g.objects_of ~sub ~pred: Rdf.Rdf_.rest with [] -> List.rev acc | (Iri h) :: _ when Iri.equal h Rdf.Rdf_.nil -> List.rev acc | h :: _ -> iter acc h in iter [] head let list ?typ w = let to_term ?with_doc g l = let terms = List.map (w.to_term ?with_doc g) l in let head = add_list g terms in ( match typ with | None -> () | Some typ -> match head with Iri head when Iri.equal head Rdf.Rdf_.nil -> () | _ -> g.add_triple ~sub:head ~pred: Rdf.Rdf_.type_ ~obj:(Iri typ) ); head in let from_term ?def g t = let terms = read_list g t in List.map (w.from_term ?def:None g) terms in make to_term from_term let option w = let to_term ?with_doc g = function None -> Iri Rdf.Rdf_.nil | Some v -> w.to_term ?with_doc g v in let from_term ?def g t = match t with Iri i when Iri.equal i Rdf.Rdf_.nil -> None | _ -> Some (w.from_term g t) in make to_term from_term let pair w1 w2 = let to_term ?with_doc g (v1, v2) = let terms = [ w1.to_term ?with_doc g v1 ; w2.to_term ?with_doc g v2 ; ] in add_list g terms in let from_term ?def g t = match read_list g t with [t1 ; t2] -> (w1.from_term g t1, w2.from_term g t2) | _ -> invalid_value t in make to_term from_term let triple w1 w2 w3 = let to_term ?with_doc g (v1, v2, v3) = let terms = [ w1.to_term ?with_doc g v1 ; w2.to_term ?with_doc g v2 ; w3.to_term ?with_doc g v3 ; ] in add_list g terms in let from_term ?def g t = match read_list g t with [t1 ; t2 ; t3] -> (w1.from_term g t1, w2.from_term g t2, w3.from_term g t3) | _ -> invalid_value t in make to_term from_term end type 'a wrapper = 'a Wrapper.t type conf_option_ = { wrapper : 'a. 'a wrapper ; mutable value : 'a. 'a ; doc : string option ; cb : 'a. ('a -> unit) option ; } type 'a conf_option = conf_option_ let get o = o.value let set (o : 'a conf_option) (v : 'a) = o.value <- Obj.magic v; match o.cb with | None -> () | Some f -> f v let option : ?doc: string -> ?cb: ('a -> unit) -> 'a wrapper -> 'a -> 'a conf_option = fun ?doc ?cb wrapper value -> { wrapper = Obj.magic wrapper ; value = Obj.magic value ; doc ; cb = Obj.magic cb ; } let int ?doc ?cb n = option ?doc ?cb Wrapper.int n let float ?doc ?cb x = option ?doc ?cb Wrapper.float x let bool ?doc ?cb x = option ?doc ?cb Wrapper.bool x let string ?doc ?cb s = option ?doc ?cb Wrapper.string s let iri ?doc ?cb i = option ?doc ?cb Wrapper.iri i let list ?doc ?cb w l = option ?doc ?cb (Wrapper.list w) l let option_ ?doc ?cb w l = option ?doc ?cb (Wrapper.option w) l let pair ?doc ?cb w1 w2 x = option ?doc ?cb (Wrapper.pair w1 w2) x let triple ?doc ?cb w1 w2 w3 x = option ?doc ?cb (Wrapper.triple w1 w2 w3) x type node = | Option of conf_option_ | Group of node PMap.t and 'a group = node let group = Group PMap.empty let rec add ?(acc_path=[]) group path node = match path with [] -> invalid_path [] | [h] -> begin match PMap.find h group with | exception Not_found -> PMap.add h node group | _ -> path_conflict (List.rev (h::acc_path)) end | h :: q -> match PMap.find h group with | exception Not_found -> let map = add ~acc_path: (h::acc_path) PMap.empty q node in PMap.add h (Group map) group | Option _ -> path_conflict (List.rev (h::acc_path)) | Group _ when q = [] -> path_conflict (List.rev (h::acc_path)) | Group map -> let map = add ~acc_path: (h::acc_path) map q node in PMap.add h (Group map) group let add_group group path g = match group with Option _ -> assert false | Group map -> Group (add ?acc_path: None map path g) let add group path option = match group with | Option _ -> assert false | Group map -> Group (add ?acc_path: None map path (Option option)) let as_group o = Option o let from_term_option path option g term = try let v = option.wrapper.Wrapper.from_term ~def: option.value g term in set option v with Error e -> error_at_path path e | e -> exn_at_path path e let assocs g sub = let ds = Rdf.Ds.simple_dataset g in let q = [%sparql "PREFIX rdf: %{term} SELECT ?name ?term WHERE { %{term} rdf:value _:p . _:p rdf:ID ?name . _:p rdf:value ?term .}" (Iri Rdf.Rdf_.rdf) sub] in let map = try let solutions = Rdf.Sparql.select ~base:(g.name()) ds q in List.fold_left (fun acc sol -> let k = `S (Rdf.Sparql.get_string sol "name") in let t = Rdf.Sparql.get_term sol "term" in PMap.add k t acc) PMap.empty solutions with e -> Ldp.Log.debug (fun f -> f "assocs: %s" (Printexc.to_string e)); PMap.empty in let q = [%sparql "PREFIX rdf: %{term} SELECT ?pred ?term WHERE { %{term} ?pred ?term . FILTER (?pred != rdf:value) }" (Iri Rdf.Rdf_.rdf) sub] in let map = try let base = g.name() in let solutions = Rdf.Sparql.select ~base ds q in List.fold_left (fun acc sol -> let k = `I (Rdf.Sparql.get_iri sol base "pred") in let t = Rdf.Sparql.get_term sol "term" in PMap.add k t acc) map solutions with e -> Ldp.Log.debug (fun f -> f "assocs: %s" (Printexc.to_string e)); map in map let rec from_term_group = let f path (assocs:Rdf.Term.term PMap.t) g str node = match PMap.find str assocs with | exception Not_found -> () | term -> match node with Option o -> from_term_option (List.rev (str :: path)) o g term | Group map -> from_term_group ~path: (str :: path) map g term in fun ?(path=[]) map g term -> let assocs = assocs g term in PMap.iter (f path assocs g) map let from_term = function Option o -> from_term_option [] o | Group g -> from_term_group ?path: None g let from_graph map ?root g = let term = match root with None -> Iri (g.name ()) | Some t -> t in from_term map g term let add_term_option ?with_doc ?(pred=Rdf.Rdf_.value) option prop_node g = let t = option.wrapper.Wrapper.to_term ?with_doc g option.value in g.add_triple ~sub:prop_node ~pred ~obj:t; match with_doc, option.doc with | Some true, Some str when Iri.equal pred Rdf.Rdf_.value -> g.add_triple ~sub:prop_node ~pred:Rdf.Rdf_.description ~obj:(Rdf.Term.term_of_literal_string str) | _, _ -> () let rec add_term_group ?with_doc ?(pred=Rdf.Rdf_.value) map ?(first=false) root g = let prop_node = if first then root else ( let b = blank_ (g.new_blank_id()) in g.add_triple ~sub:root ~pred ~obj:b; b ) in let f name node = let (group_node, pred) = match name with | `S name -> let b = blank_ (g.new_blank_id()) in g.add_triple ~sub:prop_node ~pred:Rdf.Rdf_.value ~obj:b; g.add_triple ~sub:b ~pred:Rdf.Rdf_.id ~obj:(Rdf.Term.term_of_literal_string name); (b, Rdf.Rdf_.value) | `I iri -> (prop_node, iri) in match node with | Group map -> add_term_group ?with_doc ~pred map group_node g | Option o -> add_term_option ?with_doc ~pred o group_node g in PMap.iter f map let to_graph_ ?(with_doc=true) = function | Option o -> add_term_option ~with_doc o | Group g -> add_term_group ~with_doc ~first: true g let to_graph ?with_doc map base = let g = open_graph base in to_graph_ ?with_doc map (Iri base) g; g