Source file expr.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
type t = expr Hc.hash_consed
and expr =
| Val of Value.t
| Ptr of
{ base : Bitvector.t
; offset : t
}
| Symbol of Symbol.t
| List of t list
| App of Symbol.t * t list
| Unop of Ty.t * Ty.Unop.t * t
| Binop of Ty.t * Ty.Binop.t * t * t
| Triop of Ty.t * Ty.Triop.t * t * t * t
| Relop of Ty.t * Ty.Relop.t * t * t
| Cvtop of Ty.t * Ty.Cvtop.t * t
| Naryop of Ty.t * Ty.Naryop.t * t list
| Concat of t * t
| Binder of Binder.t * t list * t
module Expr = struct
type t = expr
let list_eq (l1 : 'a list) (l2 : 'a list) : bool =
if List.compare_lengths l1 l2 = 0 then List.for_all2 phys_equal l1 l2
else false
let equal (e1 : expr) (e2 : expr) : bool =
match (e1, e2) with
| Val v1, Val v2 -> Value.equal v1 v2
| Ptr { base = b1; offset = o1 }, Ptr { base = b2; offset = o2 } ->
Bitvector.equal b1 b2 && phys_equal o1 o2
| Symbol s1, Symbol s2 -> Symbol.equal s1 s2
| List l1, List l2 -> list_eq l1 l2
| App (s1, l1), App (s2, l2) -> Symbol.equal s1 s2 && list_eq l1 l2
| Unop (t1, op1, e1), Unop (t2, op2, e2) ->
Ty.equal t1 t2 && Ty.Unop.equal op1 op2 && phys_equal e1 e2
| Binop (t1, op1, e1, e3), Binop (t2, op2, e2, e4) ->
Ty.equal t1 t2 && Ty.Binop.equal op1 op2 && phys_equal e1 e2
&& phys_equal e3 e4
| Relop (t1, op1, e1, e3), Relop (t2, op2, e2, e4) ->
Ty.equal t1 t2 && Ty.Relop.equal op1 op2 && phys_equal e1 e2
&& phys_equal e3 e4
| Triop (t1, op1, e1, e3, e5), Triop (t2, op2, e2, e4, e6) ->
Ty.equal t1 t2 && Ty.Triop.equal op1 op2 && phys_equal e1 e2
&& phys_equal e3 e4 && phys_equal e5 e6
| Cvtop (t1, op1, e1), Cvtop (t2, op2, e2) ->
Ty.equal t1 t2 && Ty.Cvtop.equal op1 op2 && phys_equal e1 e2
| Naryop (t1, op1, l1), Naryop (t2, op2, l2) ->
Ty.equal t1 t2 && Ty.Naryop.equal op1 op2 && list_eq l1 l2
| Extract (e1, h1, l1), Extract (e2, h2, l2) ->
phys_equal e1 e2 && h1 = h2 && l1 = l2
| Concat (e1, e3), Concat (e2, e4) -> phys_equal e1 e2 && phys_equal e3 e4
| Binder (binder1, vars1, e1), Binder (binder2, vars2, e2) ->
Binder.equal binder1 binder2 && list_eq vars1 vars2 && phys_equal e1 e2
| ( ( Val _ | Ptr _ | Symbol _ | List _ | App _ | Unop _ | Binop _ | Triop _
| Relop _ | Cvtop _ | Naryop _ | Extract _ | Concat _ | Binder _ )
, _ ) ->
false
let hash (e : expr) : int =
let h x = Hashtbl.hash x in
match e with
| Val v -> h v
| Ptr { base; offset } -> h (base, offset.tag)
| Symbol s -> h s
| List v -> h v
| App (x, es) -> h (x, es)
| Unop (ty, op, e) -> h (ty, op, e.tag)
| Cvtop (ty, op, e) -> h (ty, op, e.tag)
| Binop (ty, op, e1, e2) -> h (ty, op, e1.tag, e2.tag)
| Relop (ty, op, e1, e2) -> h (ty, op, e1.tag, e2.tag)
| Triop (ty, op, e1, e2, e3) -> h (ty, op, e1.tag, e2.tag, e3.tag)
| Naryop (ty, op, es) -> h (ty, op, es)
| Extract (e, hi, lo) -> h (e.tag, hi, lo)
| Concat (e1, e2) -> h (e1.tag, e2.tag)
| Binder (b, vars, e) -> h (b, vars, e.tag)
end
module Hc = Hc.Make [@inlined hint] (Expr)
let equal (hte1 : t) (hte2 : t) = phys_equal hte1 hte2 [@@inline]
let hash (hte : t) = hte.tag [@@inline]
module Key = struct
type nonrec t = t
let to_int hte = hash hte
end
let[@inline] make e = Hc.hashcons e
let[@inline] view (hte : t) = hte.node
let[@inline] compare (hte1 : t) (hte2 : t) = compare hte1.tag hte2.tag
let symbol s = make (Symbol s)
(** The return type of an expression *)
let rec ty (hte : t) : Ty.t =
match view hte with
| Val x -> Value.type_of x
| Ptr _ -> Ty_bitv 32
| Symbol x -> Symbol.type_of x
| List _ -> Ty_list
| App (sym, _) -> begin match sym.ty with Ty_none -> Ty_app | ty -> ty end
| Unop (ty, _, _) -> ty
| Binop (ty, _, _, _) -> ty
| Triop (_, Ite, _, hte1, hte2) ->
let ty1 = ty hte1 in
let ty2 = ty hte2 in
assert (Ty.equal ty1 ty2);
ty1
| Triop (ty, _, _, _, _) -> ty
| Relop (ty, _, _, _) -> ty
| Cvtop (_, (Zero_extend m | Sign_extend m), hte) -> (
match ty hte with Ty_bitv n -> Ty_bitv (n + m) | _ -> assert false )
| Cvtop (ty, _, _) -> ty
| Naryop (ty, _, _) -> ty
| Extract (_, h, l) -> Ty_bitv ((h - l) * 8)
| Concat (e1, e2) -> (
match (ty e1, ty e2) with
| Ty_bitv n1, Ty_bitv n2 -> Ty_bitv (n1 + n2)
| t1, t2 ->
Fmt.failwith "Invalid concat of (%a) with (%a)" Ty.pp t1 Ty.pp t2 )
| Binder (_, _, e) -> ty e
let rec is_symbolic (v : t) : bool =
match view v with
| Val _ -> false
| Symbol _ -> true
| Ptr { offset; _ } -> is_symbolic offset
| List vs -> List.exists is_symbolic vs
| App (_, vs) -> List.exists is_symbolic vs
| Unop (_, _, v) -> is_symbolic v
| Binop (_, _, v1, v2) -> is_symbolic v1 || is_symbolic v2
| Triop (_, _, v1, v2, v3) ->
is_symbolic v1 || is_symbolic v2 || is_symbolic v3
| Cvtop (_, _, v) -> is_symbolic v
| Relop (_, _, v1, v2) -> is_symbolic v1 || is_symbolic v2
| Naryop (_, _, vs) -> List.exists is_symbolic vs
| Extract (e, _, _) -> is_symbolic e
| Concat (e1, e2) -> is_symbolic e1 || is_symbolic e2
| Binder (_, _, e) -> is_symbolic e
let get_symbols (hte : t list) =
let tbl = Hashtbl.create 64 in
let rec symbols (hte : t) =
match view hte with
| Val _ -> ()
| Ptr { offset; _ } -> symbols offset
| Symbol s -> Hashtbl.replace tbl s ()
| List es -> List.iter symbols es
| App (_, es) -> List.iter symbols es
| Unop (_, _, e1) -> symbols e1
| Binop (_, _, e1, e2) ->
symbols e1;
symbols e2
| Triop (_, _, e1, e2, e3) ->
symbols e1;
symbols e2;
symbols e3
| Relop (_, _, e1, e2) ->
symbols e1;
symbols e2
| Cvtop (_, _, e) -> symbols e
| Naryop (_, _, es) -> List.iter symbols es
| Extract (e, _, _) -> symbols e
| Concat (e1, e2) ->
symbols e1;
symbols e2
| Binder (_, vars, e) ->
List.iter symbols vars;
symbols e
in
List.iter symbols hte;
Hashtbl.fold (fun k () acc -> k :: acc) tbl []
let rec pp fmt (hte : t) =
match view hte with
| Val v -> Value.pp fmt v
| Ptr { base; offset } -> Fmt.pf fmt "(Ptr %a %a)" Bitvector.pp base pp offset
| Symbol s -> Fmt.pf fmt "@[<hov 1>%a@]" Symbol.pp s
| List v -> Fmt.pf fmt "@[<hov 1>[%a]@]" (Fmt.list ~sep:Fmt.comma pp) v
| App (s, v) ->
Fmt.pf fmt "@[<hov 1>(%a@ %a)@]" Symbol.pp s (Fmt.list ~sep:Fmt.comma pp) v
| Unop (ty, op, e) ->
Fmt.pf fmt "@[<hov 1>(%a.%a@ %a)@]" Ty.pp ty Ty.Unop.pp op pp e
| Binop (ty, op, e1, e2) ->
Fmt.pf fmt "@[<hov 1>(%a.%a@ %a@ %a)@]" Ty.pp ty Ty.Binop.pp op pp e1 pp e2
| Triop (ty, op, e1, e2, e3) ->
Fmt.pf fmt "@[<hov 1>(%a.%a@ %a@ %a@ %a)@]" Ty.pp ty Ty.Triop.pp op pp e1 pp
e2 pp e3
| Relop (ty, op, e1, e2) ->
Fmt.pf fmt "@[<hov 1>(%a.%a@ %a@ %a)@]" Ty.pp ty Ty.Relop.pp op pp e1 pp e2
| Cvtop (ty, op, e) ->
Fmt.pf fmt "@[<hov 1>(%a.%a@ %a)@]" Ty.pp ty Ty.Cvtop.pp op pp e
| Naryop (ty, op, es) ->
Fmt.pf fmt "@[<hov 1>(%a.%a@ (%a))@]" Ty.pp ty Ty.Naryop.pp op
(Fmt.list ~sep:Fmt.comma pp)
es
| Extract (e, h, l) -> Fmt.pf fmt "@[<hov 1>(extract@ %a@ %d@ %d)@]" pp e l h
| Concat (e1, e2) -> Fmt.pf fmt "@[<hov 1>(++@ %a@ %a)@]" pp e1 pp e2
| Binder (b, vars, e) ->
Fmt.pf fmt "@[<hov 1>(%a@ (%a)@ %a)@]" Binder.pp b (Fmt.list ~sep:Fmt.sp pp)
vars pp e
let pp_list fmt (es : t list) = Fmt.hovbox (Fmt.list ~sep:Fmt.comma pp) fmt es
let pp_smt fmt (es : t list) : unit =
let pp_symbols fmt syms =
Fmt.list ~sep:Fmt.semi
(fun fmt sym ->
let t = Symbol.type_of sym in
Fmt.pf fmt "(let-const %a %a)" Symbol.pp sym Ty.pp t )
fmt syms
in
let pp_asserts fmt es =
Fmt.list ~sep:Fmt.semi
(fun fmt e -> Fmt.pf fmt "(assert @[<h 2>%a@])" pp e)
fmt es
in
let syms = get_symbols es in
if List.length syms > 0 then Fmt.pf fmt "%a@\n" pp_symbols syms;
if List.length es > 0 then Fmt.pf fmt "%a@\n" pp_asserts es;
Fmt.string fmt "(check-sat)"
let to_string e = Fmt.str "%a" pp e
module Set = struct
include PatriciaTree.MakeHashconsedSet (Key) ()
let hash = to_int
let pp fmt v =
Fmt.pf fmt "@[<hov 1>%a@]"
(pretty ~pp_sep:(fun fmt () -> Fmt.pf fmt "@;") pp)
v
let get_symbols (set : t) =
let tbl = Hashtbl.create 64 in
let rec symbols hte =
match view hte with
| Val _ -> ()
| Ptr { offset; _ } -> symbols offset
| Symbol s -> Hashtbl.replace tbl s ()
| List es -> List.iter symbols es
| App (_, es) -> List.iter symbols es
| Unop (_, _, e1) -> symbols e1
| Binop (_, _, e1, e2) ->
symbols e1;
symbols e2
| Triop (_, _, e1, e2, e3) ->
symbols e1;
symbols e2;
symbols e3
| Relop (_, _, e1, e2) ->
symbols e1;
symbols e2
| Cvtop (_, _, e) -> symbols e
| Naryop (_, _, es) -> List.iter symbols es
| Extract (e, _, _) -> symbols e
| Concat (e1, e2) ->
symbols e1;
symbols e2
| Binder (_, vars, e) ->
List.iter symbols vars;
symbols e
in
iter symbols set;
Hashtbl.fold (fun k () acc -> k :: acc) tbl []
end
let value (v : Value.t) : t = make (Val v) [@@inline]
let ptr base offset = make (Ptr { base = Bitvector.of_int32 base; offset })
let list l = make (List l)
let app symbol args = make (App (symbol, args))
let[@inline] binder bt vars expr = make (Binder (bt, vars, expr))
let let_in vars body = binder Let_in vars body
let forall vars body = binder Forall vars body
let exists vars body = binder Exists vars body
let raw_unop ty op hte = make (Unop (ty, op, hte)) [@@inline]
let normalize_eq_or_ne op (ty', e1, e2) =
let make_relop lhs rhs = Relop (ty', op, lhs, rhs) in
let ty1, ty2 = (ty e1, ty e2) in
if not (Ty.equal ty1 ty2) then make_relop e1 e2
else begin
match ty1 with
| Ty_bitv m ->
let binop = make (Binop (ty1, Sub, e1, e2)) in
let zero = make (Val (Bitv (Bitvector.make Z.zero m))) in
make_relop binop zero
| Ty_int ->
let binop = make (Binop (ty1, Sub, e1, e2)) in
let zero = make (Val (Int Int.zero)) in
make_relop binop zero
| Ty_real ->
let binop = make (Binop (ty1, Sub, e1, e2)) in
let zero = make (Val (Real 0.)) in
make_relop binop zero
| _ -> make_relop e1 e2
end
let negate_relop (hte : t) : t =
let e =
match view hte with
| Relop (ty, Eq, e1, e2) -> normalize_eq_or_ne Ne (ty, e1, e2)
| Relop (ty, Ne, e1, e2) -> normalize_eq_or_ne Eq (ty, e1, e2)
| Relop (ty, Lt, e1, e2) -> Relop (ty, Le, e2, e1)
| Relop (ty, LtU, e1, e2) -> Relop (ty, LeU, e2, e1)
| Relop (ty, Le, e1, e2) -> Relop (ty, Lt, e2, e1)
| Relop (ty, LeU, e1, e2) -> Relop (ty, LtU, e2, e1)
| Relop (ty, Gt, e1, e2) -> Relop (ty, Le, e1, e2)
| Relop (ty, GtU, e1, e2) -> Relop (ty, LeU, e1, e2)
| Relop (ty, Ge, e1, e2) -> Relop (ty, Lt, e1, e2)
| Relop (ty, GeU, e1, e2) -> Relop (ty, LtU, e1, e2)
| _ -> Fmt.failwith "negate_relop: not a relop."
in
make e
let unop ty op hte =
match (op, view hte) with
| Ty.Unop.(Regexp_loop _ | Regexp_star), _ -> raw_unop ty op hte
| _, Val v -> value (Eval.unop ty op v)
| Not, Unop (_, Not, hte') -> hte'
| Not, Relop (Ty_fp _, _, _, _) -> raw_unop ty op hte
| Not, Relop (_, _, _, _) -> negate_relop hte
| Neg, Unop (_, Neg, hte') -> hte'
| Trim, Cvtop (Ty_real, ToString, _) -> hte
| Head, List (hd :: _) -> hd
| Tail, List (_ :: tl) -> make (List tl)
| Reverse, List es -> make (List (List.rev es))
| Length, List es -> value (Int (List.length es))
| _ -> raw_unop ty op hte
let raw_binop ty op hte1 hte2 = make (Binop (ty, op, hte1, hte2)) [@@inline]
let rec binop ty op hte1 hte2 =
match (op, view hte1, view hte2) with
| Ty.Binop.(String_in_re | Regexp_range), _, _ -> raw_binop ty op hte1 hte2
| op, Val v1, Val v2 -> value (Eval.binop ty op v1 v2)
| Sub, Ptr { base = b1; offset = os1 }, Ptr { base = b2; offset = os2 } ->
if Bitvector.equal b1 b2 then binop ty Sub os1 os2
else raw_binop ty op hte1 hte2
| Add, Ptr { base; offset }, _ ->
let m = Bitvector.numbits base in
make (Ptr { base; offset = binop (Ty_bitv m) Add offset hte2 })
| Sub, Ptr { base; offset }, _ ->
let m = Bitvector.numbits base in
make (Ptr { base; offset = binop (Ty_bitv m) Sub offset hte2 })
| Rem, Ptr { base; offset }, _ ->
let m = Bitvector.numbits base in
let rhs = value (Bitv base) in
let addr = binop (Ty_bitv m) Add rhs offset in
binop ty Rem addr hte2
| Add, _, Ptr { base; offset } ->
let m = Bitvector.numbits base in
make (Ptr { base; offset = binop (Ty_bitv m) Add offset hte1 })
| Sub, _, Ptr { base; offset } ->
let m = Bitvector.numbits base in
let base = value (Bitv base) in
binop ty Sub hte1 (binop (Ty_bitv m) Add base offset)
| (Add | Or), Val (Bitv bv), _ when Bitvector.eqz bv -> hte2
| (And | Div | DivU | Mul | Rem | RemU), Val (Bitv bv), _
when Bitvector.eqz bv ->
hte1
| (Add | Or), _, Val (Bitv bv) when Bitvector.eqz bv -> hte1
| (And | Mul), _, Val (Bitv bv) when Bitvector.eqz bv -> hte2
| Add, Binop (ty, Add, x, { node = Val v1; _ }), Val v2 ->
let v = value (Eval.binop ty Add v1 v2) in
raw_binop ty Add x v
| Sub, Binop (ty, Sub, x, { node = Val v1; _ }), Val v2 ->
let v = value (Eval.binop ty Add v1 v2) in
raw_binop ty Sub x v
| Mul, Val (Bitv bv), _ when Bitvector.eq_one bv -> hte2
| Mul, _, Val (Bitv bv) when Bitvector.eq_one bv -> hte1
| Mul, Binop (ty, Mul, x, { node = Val v1; _ }), Val v2 ->
let v = value (Eval.binop ty Mul v1 v2) in
raw_binop ty Mul x v
| Add, Val v1, Binop (ty, Add, x, { node = Val v2; _ }) ->
let v = value (Eval.binop ty Add v1 v2) in
raw_binop ty Add v x
| Mul, Val v1, Binop (ty, Mul, x, { node = Val v2; _ }) ->
let v = value (Eval.binop ty Mul v1 v2) in
raw_binop ty Mul v x
| At, List es, Val (Int n) ->
begin
match List.nth_opt es n with None -> assert false | Some v -> v
end
| List_cons, _, List es -> make (List (hte1 :: es))
| List_append, List _, (List [] | Val (List [])) -> hte1
| List_append, (List [] | Val (List [])), List _ -> hte2
| List_append, List l0, Val (List l1) -> make (List (l0 @ List.map value l1))
| List_append, Val (List l0), List l1 -> make (List (List.map value l0 @ l1))
| List_append, List l0, List l1 -> make (List (l0 @ l1))
| _ -> raw_binop ty op hte1 hte2
let raw_triop ty op e1 e2 e3 = make (Triop (ty, op, e1, e2, e3)) [@@inline]
let triop ty op e1 e2 e3 =
match (op, view e1, view e2, view e3) with
| Ty.Triop.Ite, Val True, _, _ -> e2
| Ite, Val False, _, _ -> e3
| op, Val v1, Val v2, Val v3 -> value (Eval.triop ty op v1 v2 v3)
| Ite, _, Triop (_, Ite, c2, r1, r2), Triop (_, Ite, _, _, _) ->
let else_ = raw_triop ty Ite e1 r2 e3 in
let cond = binop Ty_bool And e1 c2 in
raw_triop ty Ite cond r1 else_
| _ -> raw_triop ty op e1 e2 e3
let raw_relop ty op hte1 hte2 = make (Relop (ty, op, hte1, hte2)) [@@inline]
let rec relop ty op hte1 hte2 =
match (op, view hte1, view hte2) with
| op, Val v1, Val v2 -> value (if Eval.relop ty op v1 v2 then True else False)
| Ty.Relop.Ne, Val (Real v), _ | Ne, _, Val (Real v) ->
if Float.is_nan v || Float.is_infinite v then value True
else raw_relop ty op hte1 hte2
| _, Val (Real v), _ | _, _, Val (Real v) ->
if Float.is_nan v || Float.is_infinite v then value False
else raw_relop ty op hte1 hte2
| Eq, _, Val Nothing | Eq, Val Nothing, _ -> value False
| Ne, _, Val Nothing | Ne, Val Nothing, _ -> value True
| Eq, _, Val (App (`Op "symbol", [ Str _ ]))
| Eq, Val (App (`Op "symbol", [ Str _ ])), _ ->
value False
| Ne, _, Val (App (`Op "symbol", [ Str _ ]))
| Ne, Val (App (`Op "symbol", [ Str _ ])), _ ->
value True
| ( Eq
, Symbol ({ ty = Ty_fp prec1; _ } as s1)
, Symbol ({ ty = Ty_fp prec2; _ } as s2) )
when prec1 = prec2 && Symbol.equal s1 s2 ->
raw_unop Ty_bool Not (raw_unop (Ty_fp prec1) Is_nan hte1)
| Eq, Ptr { base = b1; offset = os1 }, Ptr { base = b2; offset = os2 } ->
if Bitvector.equal b1 b2 then relop Ty_bool Eq os1 os2 else value False
| Ne, Ptr { base = b1; offset = os1 }, Ptr { base = b2; offset = os2 } ->
if Bitvector.equal b1 b2 then relop Ty_bool Ne os1 os2 else value True
| ( (LtU | LeU)
, Ptr { base = b1; offset = os1 }
, Ptr { base = b2; offset = os2 } ) ->
if Bitvector.equal b1 b2 then relop ty op os1 os2
else
let b1 = Value.Bitv b1 in
let b2 = Value.Bitv b2 in
value (if Eval.relop ty op b1 b2 then True else False)
| ( op
, Val (Bitv _ as n)
, Ptr { base; offset = { node = Val (Bitv _ as o); _ } } ) ->
let base = Eval.binop (Ty_bitv 32) Add (Bitv base) o in
value (if Eval.relop ty op n base then True else False)
| op, Ptr { base; offset = { node = Val (Bitv _ as o); _ } }, Val (Bitv _ as n)
->
let base = Eval.binop (Ty_bitv 32) Add (Bitv base) o in
value (if Eval.relop ty op base n then True else False)
| op, List l1, List l2 -> relop_list op l1 l2
| Gt, _, _ -> relop ty Lt hte2 hte1
| GtU, _, _ -> relop ty LtU hte2 hte1
| Ge, _, _ -> relop ty Le hte2 hte1
| GeU, _, _ -> relop ty LeU hte2 hte1
| _, _, _ -> raw_relop ty op hte1 hte2
and relop_list op l1 l2 =
match (op, l1, l2) with
| Eq, [], [] -> value True
| Eq, _, [] | Eq, [], _ -> value False
| Eq, l1, l2 ->
if not (List.compare_lengths l1 l2 = 0) then value False
else
List.fold_left2
(fun acc a b ->
binop Ty_bool And acc
@@
match (ty a, ty b) with
| Ty_real, Ty_real -> relop Ty_real Eq a b
| _ -> relop Ty_bool Eq a b )
(value True) l1 l2
| Ne, _, _ -> unop Ty_bool Not @@ relop_list Eq l1 l2
| (Lt | LtU | Gt | GtU | Le | LeU | Ge | GeU), _, _ -> assert false
let raw_cvtop ty op hte = make (Cvtop (ty, op, hte)) [@@inline]
let rec cvtop theory op hte =
match (op, view hte) with
| Ty.Cvtop.String_to_re, _ -> raw_cvtop theory op hte
| _, Val v -> value (Eval.cvtop theory op v)
| String_to_float, Cvtop (Ty_real, ToString, hte) -> hte
| ( Reinterpret_float
, Cvtop (Ty_real, Reinterpret_int, { node = Symbol { ty = Ty_int; _ }; _ })
) ->
hte
| Zero_extend n, Ptr { base; offset } ->
let offset = cvtop theory op offset in
make (Ptr { base = Bitvector.zero_extend n base; offset })
| WrapI64, Ptr { base; offset } ->
let offset = cvtop theory op offset in
make (Ptr { base = Bitvector.extract base ~high:31 ~low:0; offset })
| WrapI64, Cvtop (Ty_bitv 64, Zero_extend 32, hte) ->
assert (Ty.equal theory (ty hte) && Ty.equal theory (Ty_bitv 32));
hte
| _ -> raw_cvtop theory op hte
let raw_naryop ty op es = make (Naryop (ty, op, es)) [@@inline]
let naryop ty op es =
if List.for_all (fun e -> match view e with Val _ -> true | _ -> false) es
then
let vs =
List.map (fun e -> match view e with Val v -> v | _ -> assert false) es
in
value (Eval.naryop ty op vs)
else
match (ty, op, List.map view es) with
| ( Ty_str
, Concat
, [ Naryop (Ty_str, Concat, l1); Naryop (Ty_str, Concat, l2) ] ) ->
raw_naryop Ty_str Concat (l1 @ l2)
| Ty_str, Concat, [ Naryop (Ty_str, Concat, htes); hte ] ->
raw_naryop Ty_str Concat (htes @ [ make hte ])
| Ty_str, Concat, [ hte; Naryop (Ty_str, Concat, htes) ] ->
raw_naryop Ty_str Concat (make hte :: htes)
| _ -> raw_naryop ty op es
let[@inline] (hte : t) ~(high : int) ~(low : int) : t =
make (Extract (hte, high, low))
let (hte : t) ~(high : int) ~(low : int) : t =
match (view hte, high, low) with
| Val (Bitv bv), high, low ->
let high = (high * 8) - 1 in
let low = low * 8 in
value (Bitv (Bitvector.extract bv ~high ~low))
| ( Cvtop
( _
, (Zero_extend 24 | Sign_extend 24)
, ({ node = Symbol { ty = Ty_bitv 8; _ }; _ } as sym) )
, 1
, 0 ) ->
sym
| Concat (_, e), h, l when Ty.size (ty e) = h - l -> e
| Concat (e, _), 8, 4 when Ty.size (ty e) = 4 -> e
| _ ->
if high - low = Ty.size (ty hte) then hte else raw_extract hte ~high ~low
let raw_concat (msb : t) (lsb : t) : t = make (Concat (msb, lsb)) [@@inline]
let rec concat (msb : t) (lsb : t) : t =
match (view msb, view lsb) with
| Val (Bitv a), Val (Bitv b) -> value (Bitv (Bitvector.concat a b))
| Val (Bitv _), Concat (({ node = Val (Bitv _); _ } as b), se) ->
raw_concat (concat msb b) se
| Extract (s1, h, m1), Extract (s2, m2, l) when equal s1 s2 && m1 = m2 ->
if h - l = Ty.size (ty s1) then s1 else raw_extract s1 ~high:h ~low:l
| Extract (_, _, _), Concat (({ node = Extract (_, _, _); _ } as e2), e3) ->
raw_concat (concat msb e2) e3
| _ -> raw_concat msb lsb
let rec simplify_expr ?(in_relop = false) (hte : t) : t =
match view hte with
| Val _ | Symbol _ -> hte
| Ptr { base; offset } ->
let offset = simplify_expr ~in_relop offset in
if not in_relop then make (Ptr { base; offset })
else binop (Ty_bitv 32) Add (value (Bitv base)) offset
| List es -> make @@ List (List.map (simplify_expr ~in_relop) es)
| App (x, es) -> make @@ App (x, List.map (simplify_expr ~in_relop) es)
| Unop (ty, op, e) ->
let e = simplify_expr ~in_relop e in
unop ty op e
| Binop (ty, op, e1, e2) ->
let e1 = simplify_expr ~in_relop e1 in
let e2 = simplify_expr ~in_relop e2 in
binop ty op e1 e2
| Relop (ty, op, e1, e2) ->
let e1 = simplify_expr ~in_relop:true e1 in
let e2 = simplify_expr ~in_relop:true e2 in
relop ty op e1 e2
| Triop (ty, op, c, e1, e2) ->
let c = simplify_expr ~in_relop c in
let e1 = simplify_expr ~in_relop e1 in
let e2 = simplify_expr ~in_relop e2 in
triop ty op c e1 e2
| Cvtop (ty, op, e) ->
let e = simplify_expr ~in_relop e in
cvtop ty op e
| Naryop (ty, op, es) ->
let es = List.map (simplify_expr ~in_relop) es in
naryop ty op es
| Extract (s, high, low) ->
let s = simplify_expr ~in_relop s in
extract s ~high ~low
| Concat (e1, e2) ->
let msb = simplify_expr ~in_relop e1 in
let lsb = simplify_expr ~in_relop e2 in
concat msb lsb
| Binder _ ->
hte
module Cache = Hashtbl.Make (struct
type nonrec t = t
let hash = hash
let equal = equal
end)
let simplify =
let cache = Cache.create 512 in
fun e ->
match Cache.find_opt cache e with
| Some simplified -> simplified
| None ->
let rec loop x =
let x' = simplify_expr x in
if equal x x' then begin
Cache.add cache e x';
x'
end
else loop x'
in
loop e
module Bool = struct
open Ty
let of_val = function
| Val True -> Some true
| Val False -> Some false
| _ -> None
let true_ = value True
let false_ = value False
let to_val b = if b then true_ else false_
let v b = to_val b [@@inline]
let not b =
let bexpr = view b in
match of_val bexpr with
| Some b -> to_val (not b)
| None -> (
match bexpr with
| Unop (Ty_bool, Not, cond) -> cond
| _ -> unop Ty_bool Not b )
let equal b1 b2 =
match (view b1, view b2) with
| Val True, Val True | Val False, Val False -> true_
| _ -> relop Ty_bool Eq b1 b2
let distinct b1 b2 =
match (view b1, view b2) with
| Val True, Val False | Val False, Val True -> true_
| _ -> relop Ty_bool Ne b1 b2
let and_ b1 b2 =
match (of_val (view b1), of_val (view b2)) with
| Some true, _ -> b2
| _, Some true -> b1
| Some false, _ | _, Some false -> false_
| _ -> binop Ty_bool And b1 b2
let or_ b1 b2 =
match (of_val (view b1), of_val (view b2)) with
| Some false, _ -> b2
| _, Some false -> b1
| Some true, _ | _, Some true -> true_
| _ -> binop Ty_bool Or b1 b2
let ite c r1 r2 = triop Ty_bool Ite c r1 r2
end
module Make (T : sig
type elt
val ty : Ty.t
val value : elt -> Value.t
end) =
struct
open Ty
let v i = value (T.value i)
let sym x = symbol Symbol.(x @: T.ty)
let ( ~- ) e = unop T.ty Neg e
let ( = ) e1 e2 = relop Ty_bool Eq e1 e2
let ( != ) e1 e2 = relop Ty_bool Ne e1 e2
let ( > ) e1 e2 = relop T.ty Gt e1 e2
let ( >= ) e1 e2 = relop T.ty Ge e1 e2
let ( < ) e1 e2 = relop T.ty Lt e1 e2
let ( <= ) e1 e2 = relop T.ty Le e1 e2
end
module Bitv = struct
open Ty
module I8 = Make (struct
type elt = int
let ty = Ty_bitv 8
let value i = Value.Bitv (Bitvector.of_int8 i)
end)
module I32 = Make (struct
type elt = int32
let ty = Ty_bitv 32
let value i = Value.Bitv (Bitvector.of_int32 i)
end)
module I64 = Make (struct
type elt = int64
let ty = Ty_bitv 64
let value i = Value.Bitv (Bitvector.of_int64 i)
end)
end
module Fpa = struct
open Ty
module F32 = struct
include Make (struct
type elt = float
let ty = Ty_fp 32
let value f = Value.Num (F32 (Int32.bits_of_float f))
end)
let ( = ) e1 e2 = relop (Ty_fp 32) Eq e1 e2
let ( != ) e1 e2 = relop (Ty_fp 32) Ne e1 e2
end
module F64 = struct
include Make (struct
type elt = float
let ty = Ty_fp 64
let value f = Value.Num (F64 (Int64.bits_of_float f))
end)
let ( = ) e1 e2 = relop (Ty_fp 64) Eq e1 e2
let ( != ) e1 e2 = relop (Ty_fp 64) Ne e1 e2
end
end