package sklearn

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file isotonic.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
let () = Wrap_utils.init ();;
let ns = Py.import "sklearn.isotonic"

module BaseEstimator = struct
type t = Py.Object.t
let of_pyobject x = x
let to_pyobject x = x
let create () =
   Py.Module.get_function_with_keywords ns "BaseEstimator"
     [||]
     []

let get_params ?deep self =
   Py.Module.get_function_with_keywords self "get_params"
     [||]
     (Wrap_utils.keyword_args [("deep", Wrap_utils.Option.map deep Py.Bool.of_bool)])

let set_params ?params self =
   Py.Module.get_function_with_keywords self "set_params"
     [||]
     (match params with None -> [] | Some x -> x)

let to_string self = Py.Object.to_string self
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)

end
module IsotonicRegression = struct
type t = Py.Object.t
let of_pyobject x = x
let to_pyobject x = x
                  let create ?y_min ?y_max ?increasing ?out_of_bounds () =
                     Py.Module.get_function_with_keywords ns "IsotonicRegression"
                       [||]
                       (Wrap_utils.keyword_args [("y_min", y_min); ("y_max", y_max); ("increasing", Wrap_utils.Option.map increasing (function
| `Bool x -> Py.Bool.of_bool x
| `String x -> Py.String.of_string x
)); ("out_of_bounds", Wrap_utils.Option.map out_of_bounds Py.String.of_string)])

let fit ?sample_weight ~x ~y self =
   Py.Module.get_function_with_keywords self "fit"
     [||]
     (Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Ndarray.to_pyobject); ("X", Some(x |> Ndarray.to_pyobject)); ("y", Some(y |> Ndarray.to_pyobject))])

let fit_transform ?y ?fit_params ~x self =
   Py.Module.get_function_with_keywords self "fit_transform"
     [||]
     (List.rev_append (Wrap_utils.keyword_args [("y", Wrap_utils.Option.map y Ndarray.to_pyobject); ("X", Some(x |> Ndarray.to_pyobject))]) (match fit_params with None -> [] | Some x -> x))
     |> Ndarray.of_pyobject
let get_params ?deep self =
   Py.Module.get_function_with_keywords self "get_params"
     [||]
     (Wrap_utils.keyword_args [("deep", Wrap_utils.Option.map deep Py.Bool.of_bool)])

let predict ~t self =
   Py.Module.get_function_with_keywords self "predict"
     [||]
     (Wrap_utils.keyword_args [("T", Some(t |> Ndarray.to_pyobject))])
     |> Ndarray.of_pyobject
let score ?sample_weight ~x ~y self =
   Py.Module.get_function_with_keywords self "score"
     [||]
     (Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Ndarray.to_pyobject); ("X", Some(x |> Ndarray.to_pyobject)); ("y", Some(y |> Ndarray.to_pyobject))])
     |> Py.Float.to_float
let set_params ?params self =
   Py.Module.get_function_with_keywords self "set_params"
     [||]
     (match params with None -> [] | Some x -> x)

let transform ~t self =
   Py.Module.get_function_with_keywords self "transform"
     [||]
     (Wrap_utils.keyword_args [("T", Some(t |> Ndarray.to_pyobject))])
     |> Ndarray.of_pyobject
let x_min_ self =
  match Py.Object.get_attr_string self "X_min_" with
| None -> raise (Wrap_utils.Attribute_not_found "X_min_")
| Some x -> Py.Float.to_float x
let x_max_ self =
  match Py.Object.get_attr_string self "X_max_" with
| None -> raise (Wrap_utils.Attribute_not_found "X_max_")
| Some x -> Py.Float.to_float x
let f_ self =
  match Py.Object.get_attr_string self "f_" with
| None -> raise (Wrap_utils.Attribute_not_found "f_")
| Some x -> Wrap_utils.id x
let to_string self = Py.Object.to_string self
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)

end
module RegressorMixin = struct
type t = Py.Object.t
let of_pyobject x = x
let to_pyobject x = x
let create () =
   Py.Module.get_function_with_keywords ns "RegressorMixin"
     [||]
     []

let score ?sample_weight ~x ~y self =
   Py.Module.get_function_with_keywords self "score"
     [||]
     (Wrap_utils.keyword_args [("sample_weight", Wrap_utils.Option.map sample_weight Ndarray.to_pyobject); ("X", Some(x |> Ndarray.to_pyobject)); ("y", Some(y |> Ndarray.to_pyobject))])
     |> Py.Float.to_float
let to_string self = Py.Object.to_string self
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)

end
module TransformerMixin = struct
type t = Py.Object.t
let of_pyobject x = x
let to_pyobject x = x
let create () =
   Py.Module.get_function_with_keywords ns "TransformerMixin"
     [||]
     []

let fit_transform ?y ?fit_params ~x self =
   Py.Module.get_function_with_keywords self "fit_transform"
     [||]
     (List.rev_append (Wrap_utils.keyword_args [("y", Wrap_utils.Option.map y Ndarray.to_pyobject); ("X", Some(x |> Ndarray.to_pyobject))]) (match fit_params with None -> [] | Some x -> x))
     |> Ndarray.of_pyobject
let to_string self = Py.Object.to_string self
let show self = to_string self
let pp formatter self = Format.fprintf formatter "%s" (show self)

end
                  let check_array ?accept_sparse ?accept_large_sparse ?dtype ?order ?copy ?force_all_finite ?ensure_2d ?allow_nd ?ensure_min_samples ?ensure_min_features ?warn_on_dtype ?estimator ~array () =
                     Py.Module.get_function_with_keywords ns "check_array"
                       [||]
                       (Wrap_utils.keyword_args [("accept_sparse", Wrap_utils.Option.map accept_sparse (function
| `String x -> Py.String.of_string x
| `Bool x -> Py.Bool.of_bool x
| `StringList x -> (Py.List.of_list_map Py.String.of_string) x
)); ("accept_large_sparse", Wrap_utils.Option.map accept_large_sparse Py.Bool.of_bool); ("dtype", Wrap_utils.Option.map dtype (function
| `String x -> Py.String.of_string x
| `Dtype x -> Wrap_utils.id x
| `TypeList x -> Wrap_utils.id x
| `None -> Py.String.of_string "None"
)); ("order", Wrap_utils.Option.map order (function
| `F -> Py.String.of_string "F"
| `C -> Py.String.of_string "C"
| `None -> Py.String.of_string "None"
)); ("copy", Wrap_utils.Option.map copy Py.Bool.of_bool); ("force_all_finite", Wrap_utils.Option.map force_all_finite (function
| `Bool x -> Py.Bool.of_bool x
| `Allow_nan -> Py.String.of_string "allow-nan"
)); ("ensure_2d", Wrap_utils.Option.map ensure_2d Py.Bool.of_bool); ("allow_nd", Wrap_utils.Option.map allow_nd Py.Bool.of_bool); ("ensure_min_samples", Wrap_utils.Option.map ensure_min_samples Py.Int.of_int); ("ensure_min_features", Wrap_utils.Option.map ensure_min_features Py.Int.of_int); ("warn_on_dtype", Wrap_utils.Option.map warn_on_dtype (function
| `Bool x -> Py.Bool.of_bool x
| `None -> Py.String.of_string "None"
)); ("estimator", Wrap_utils.Option.map estimator (function
| `String x -> Py.String.of_string x
| `Estimator x -> Wrap_utils.id x
)); ("array", Some(array ))])

let check_consistent_length arrays =
   Py.Module.get_function_with_keywords ns "check_consistent_length"
     (Wrap_utils.pos_arg Wrap_utils.id arrays)
     []

let check_increasing ~x ~y () =
   Py.Module.get_function_with_keywords ns "check_increasing"
     [||]
     (Wrap_utils.keyword_args [("x", Some(x |> Ndarray.to_pyobject)); ("y", Some(y |> Ndarray.to_pyobject))])
     |> Py.Bool.to_bool
let isotonic_regression ?sample_weight ?y_min ?y_max ?increasing ~y () =
   Py.Module.get_function_with_keywords ns "isotonic_regression"
     [||]
     (Wrap_utils.keyword_args [("sample_weight", sample_weight); ("y_min", y_min); ("y_max", y_max); ("increasing", Wrap_utils.Option.map increasing Py.Bool.of_bool); ("y", Some(y ))])

let spearmanr ?b ?axis ?nan_policy ~a () =
   Py.Module.get_function_with_keywords ns "spearmanr"
     [||]
     (Wrap_utils.keyword_args [("b", b); ("axis", axis); ("nan_policy", nan_policy); ("a", Some(a ))])

OCaml

Innovation. Community. Security.