package rocq-runtime

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file invfun.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
(************************************************************************)
(*         *      The Rocq Prover / The Rocq Development Team           *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

open Util
open Names
open Constr
open EConstr
open Tacmach
open Tactics
open Tacticals
open Indfun_common

(* funind doesn't support univ poly *)
open UnsafeMonomorphic

(***********************************************)

(* [revert_graph kn post_tac hid] transforme an hypothesis [hid] having type Ind(kn,num) t1 ... tn res
   when [kn] denotes a graph block  into
   f_num t1... tn = res (by applying [f_complete] to the first type) before apply post_tac on the result

   if the type of hypothesis has not this form or if we cannot find the completeness lemma then we do nothing
*)
let revert_graph kn post_tac hid =
  Proofview.Goal.enter (fun gl ->
      let env = Proofview.Goal.env gl in
      let sigma = project gl in
      let typ = pf_get_hyp_typ hid gl in
      match EConstr.kind sigma typ with
      | App (i, args) when isInd sigma i ->
        let ((kn', num) as ind'), u = destInd sigma i in
        if Environ.QMutInd.equal env kn kn' then
          (* We have generated a graph hypothesis so that we must change it if we can *)
          let info =
            match find_Function_of_graph ind' with
            | Some info -> info
            | None ->
              (* The graphs are mutually recursive but we cannot find one of them !*)
              CErrors.anomaly
                (Pp.str "Cannot retrieve infos about a mutual block.")
          in
          (* if we can find a completeness lemma for this function
             then we can come back to the functional form. If not, we do nothing
          *)
          match info.completeness_lemma with
          | None -> tclIDTAC
          | Some f_complete ->
            let f_args, res = Array.chop (Array.length args - 1) args in
            tclTHENLIST
              [ Generalize.generalize
                  [ applist
                      ( mkConst f_complete
                      , Array.to_list f_args @ [res.(0); mkVar hid] ) ]
              ; clear [hid]
              ; Simple.intro hid
              ; post_tac hid ]
        else tclIDTAC
      | _ -> tclIDTAC)

(*
   [functional_inversion hid fconst f_correct ] is the functional version of [inversion]

   [hid] is the hypothesis to invert, [fconst] is the function to invert and  [f_correct]
   is the correctness lemma for [fconst].

   The sketch is the following~:
   \begin{enumerate}
   \item Transforms the hypothesis [hid] such that its type is now $res\ =\ f\ t_1 \ldots t_n$
   (fails if it is not possible)
   \item replace [hid] with $R\_f t_1 \ldots t_n res$ using [f_correct]
   \item apply [inversion] on [hid]
   \item finally in each branch, replace each  hypothesis [R\_f ..]  by [f ...] using [f_complete] (whenever
   such a lemma exists)
   \end{enumerate}
*)

let functional_inversion kn hid fconst f_correct =
  Proofview.Goal.enter (fun gl ->
      let old_ids =
        List.fold_right Id.Set.add (pf_ids_of_hyps gl) Id.Set.empty
      in
      let sigma = project gl in
      let type_of_h = pf_get_hyp_typ hid gl in
      match EConstr.kind sigma type_of_h with
      | App (eq, args) when EConstr.eq_constr sigma eq (make_eq ()) ->
        let pre_tac, f_args, res =
          match (EConstr.kind sigma args.(1), EConstr.kind sigma args.(2)) with
          | App (f, f_args), _ when EConstr.eq_constr sigma f fconst ->
            ((fun hid -> intros_symmetry (Locusops.onHyp hid)), f_args, args.(2))
          | _, App (f, f_args) when EConstr.eq_constr sigma f fconst ->
            ((fun hid -> tclIDTAC), f_args, args.(1))
          | _ -> ((fun hid -> tclFAILn 1 Pp.(mt ())), [||], args.(2))
        in
        tclTHENLIST
          [ pre_tac hid
          ; Generalize.generalize
              [applist (f_correct, Array.to_list f_args @ [res; mkVar hid])]
          ; clear [hid]
          ; Simple.intro hid
          ; Inv.inv Inv.FullInversion None (Tactypes.NamedHyp (CAst.make hid))
          ; Proofview.Goal.enter (fun gl ->
                let new_ids =
                  List.filter
                    (fun id -> not (Id.Set.mem id old_ids))
                    (pf_ids_of_hyps gl)
                in
                tclMAP (revert_graph kn pre_tac) (hid :: new_ids)) ]
      | _ -> tclFAILn 1 Pp.(mt ()))

let invfun qhyp f =
  let f =
    match f with
    | GlobRef.ConstRef f -> f
    | _ -> CErrors.user_err Pp.(str "Not a function")
  in
  match find_Function_infos f with
  | None -> CErrors.user_err (Pp.str "No graph found")
  | Some finfos -> (
    match finfos.correctness_lemma with
    | None -> CErrors.user_err (Pp.str "Cannot use equivalence with graph!")
    | Some f_correct ->
      let f_correct = mkConst f_correct and kn = fst finfos.graph_ind in
      Tactics.try_intros_until
        (fun hid -> functional_inversion kn hid (mkConst f) f_correct)
        qhyp )

let invfun qhyp f =
  let exception NoFunction in
  match f with
  | Some f -> invfun qhyp f
  | None ->
    let tac_action hid gl =
      let sigma = project gl in
      let hyp_typ = pf_get_hyp_typ hid gl in
      match EConstr.kind sigma hyp_typ with
      | App (eq, args) when EConstr.eq_constr sigma eq (make_eq ()) -> (
        let f1, _ = decompose_app sigma args.(1) in
        try
          if not (isConst sigma f1) then raise NoFunction;
          let finfos =
            Option.get (find_Function_infos (fst (destConst sigma f1)))
          in
          let f_correct = mkConst (Option.get finfos.correctness_lemma)
          and kn = fst finfos.graph_ind in
          functional_inversion kn hid f1 f_correct
        with NoFunction | Option.IsNone ->
          let f2, _ = decompose_app sigma args.(2) in
          if isConst sigma f2 then
            match find_Function_infos (fst (destConst sigma f2)) with
            | None ->
              if do_observe () then
                CErrors.user_err
                  (Pp.str "No graph found for any side of equality")
              else
                CErrors.user_err
                  Pp.(
                    str "Cannot find inversion information for hypothesis "
                    ++ Ppconstr.pr_id hid)
            | Some finfos -> (
              match finfos.correctness_lemma with
              | None ->
                if do_observe () then
                  CErrors.user_err
                    (Pp.str
                       "Cannot use equivalence with graph for any side of the \
                        equality")
                else
                  CErrors.user_err
                    Pp.(
                      str "Cannot find inversion information for hypothesis "
                      ++ Ppconstr.pr_id hid)
              | Some f_correct ->
                let f_correct = mkConst f_correct
                and kn = fst finfos.graph_ind in
                functional_inversion kn hid f2 f_correct )
          else
            (* NoFunction *)
            CErrors.user_err
              Pp.(
                str "Hypothesis " ++ Ppconstr.pr_id hid
                ++ str " must contain at least one Function") )
      | _ ->
        CErrors.user_err Pp.(Ppconstr.pr_id hid ++ str " must be an equality ")
    in
    try_intros_until (tac_action %> Proofview.Goal.enter) qhyp
OCaml

Innovation. Community. Security.