package rocq-runtime

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file pretyping.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
(************************************************************************)
(*         *      The Rocq Prover / The Rocq Development Team           *)
(*  v      *         Copyright INRIA, CNRS and contributors             *)
(* <O___,, * (see version control and CREDITS file for authors & dates) *)
(*   \VV/  **************************************************************)
(*    //   *    This file is distributed under the terms of the         *)
(*         *     GNU Lesser General Public License Version 2.1          *)
(*         *     (see LICENSE file for the text of the license)         *)
(************************************************************************)

(* This file contains the syntax-directed part of the type inference
   algorithm introduced by Murthy in Coq V5.10, 1995; the type
   inference algorithm was initially developed in a file named trad.ml
   which formerly contained a simple concrete-to-abstract syntax
   translation function introduced in CoC V4.10 for implementing the
   "exact" tactic, 1989 *)
(* Support for typing term in Ltac environment by David Delahaye, 2000 *)
(* Type inference algorithm made a functor of the coercion and
   pattern-matching compilation by Matthieu Sozeau, March 2006 *)
(* Fixpoint guard index computation by Pierre Letouzey, July 2007 *)

(* Structural maintainer: Hugo Herbelin *)
(* Secondary maintenance: collective *)


open Pp
open CErrors
open Util
open Names
open Evd
open Constr
open Context
open Termops
open Environ
open EConstr
open Vars
open Reductionops
open Type_errors
open Typing
open Evarutil
open Evardefine
open Pretype_errors
open Glob_term
open Glob_ops
open GlobEnv
open Evarconv

module NamedDecl = Context.Named.Declaration

type typing_constraint = IsType | OfType of types | WithoutTypeConstraint

let (!!) env = GlobEnv.env env

let bidi_hints =
  Summary.ref (GlobRef.Map.empty : int GlobRef.Map.t) ~name:"bidirectionalityhints"

let add_bidirectionality_hint gr n =
  bidi_hints := GlobRef.Map.add gr n !bidi_hints

let get_bidirectionality_hint gr =
  GlobRef.Map.find_opt gr !bidi_hints

let clear_bidirectionality_hint gr =
  bidi_hints := GlobRef.Map.remove gr !bidi_hints

(************************************************************************)
(* This concerns Cases *)
open Inductive
open Inductiveops

(************************************************************************)

(* An auxiliary function for searching for fixpoint guard indices *)

(* Tells the possible indices liable to guard a fixpoint *)
type possible_fix_indices = int list list

(* Tells if possibly a cofixpoint or a fixpoint over the given list of possible indices *)
type possible_guard = {
  possibly_cofix : bool;
  possible_fix_indices : possible_fix_indices;
} (* Note: if no fix indices are given, it has to be a cofix *)

exception Found of int array option

let nf_fix sigma (nas, cs, ts) =
  let inj c = EConstr.to_constr ~abort_on_undefined_evars:false sigma c in
  (Array.map EConstr.Unsafe.to_binder_annot nas, Array.map inj cs, Array.map inj ts)

let search_guard ?loc ?evars env {possibly_cofix; possible_fix_indices} fixdefs =
  let is_singleton = function [_] -> true | _ -> false in
  let one_fix_possibility = List.for_all is_singleton possible_fix_indices in
  if one_fix_possibility && not possibly_cofix then
    let indexes = Array.of_list (List.map List.hd possible_fix_indices) in
    let fix = ((indexes, 0), fixdefs) in
    try let () = check_fix ?evars env fix in Some indexes
    with reraise ->
      let (e, info) = Exninfo.capture reraise in
      let info = Option.cata (fun loc -> Loc.add_loc info loc) info loc in
      Exninfo.iraise (e, info)
  else
    let zero_fix_possibility = List.for_all List.is_empty possible_fix_indices in
    if zero_fix_possibility && possibly_cofix then
      (* Maybe can we skip this check since it will be done in the kernel again *)
      let cofix = (0, fixdefs) in
      try let () = check_cofix ?evars env cofix in None
      with reraise ->
        let (e, info) = Exninfo.capture reraise in
        let info = Option.cata (fun loc -> Loc.add_loc info loc) info loc in
        Exninfo.iraise (e, info)
    else
    (* we now search recursively among all combinations *)
    let combinations = List.combinations possible_fix_indices in
    let flags = { (typing_flags env) with Declarations.check_guarded = true } in
    let env = Environ.set_typing_flags flags env in
    try
       let () = List.iter
         (fun l ->
            let indexes = Array.of_list l in
            let fix = ((indexes, 0),fixdefs) in
            (* spiwack: We search for a unspecified structural
               argument under the assumption that we need to check the
               guardedness condition (otherwise the first inductive argument
               will be chosen). A more robust solution may be to raise an
               error when totality is assumed but the strutural argument is
               not specified. *)
            try
              let () = check_fix ?evars env fix in raise (Found (Some indexes))
            with TypeError _ -> ())
          combinations in
       let () =
         if possibly_cofix then
           (* Maybe can we skip this check since it will be done in the kernel again *)
           try let () = check_cofix env (0, fixdefs) in raise (Found None)
           with TypeError _ -> () in
       let errmsg = "Cannot guess decreasing argument of fix." in
       user_err ?loc (Pp.str errmsg)
     with Found indexes -> indexes

let search_fix_guard ?loc ?evars env possible_fix_indices fixdefs =
  Option.get (search_guard ?loc ?evars env {possibly_cofix=false; possible_fix_indices} fixdefs)

let esearch_guard ?loc env sigma indexes fix =
  (* not sure if we still need to nf_fix when calling search_guard with ~evars
     (here and other callers through the code)
     OTOH search_guard needs to go through the whole term to see possible recursive calls
     so we may as well upfront normalize *)
  let fix = nf_fix sigma fix in
  let evars = Evd.evar_handler sigma in
  try search_guard ?loc ~evars env indexes fix
  with TypeError (env,err) ->
    Loc.raise ?loc (PretypeError (env,sigma,TypingError (of_type_error err)))

let esearch_fix_guard ?loc env sigma possible_fix_indices fix =
  Option.get (esearch_guard ?loc env sigma {possibly_cofix=false; possible_fix_indices} fix)

let esearch_cofix_guard ?loc env sigma cofix =
  let res = esearch_guard ?loc env sigma {possibly_cofix=true; possible_fix_indices=[]} cofix in
  assert (Option.is_empty res)

(* To force universe name declaration before use *)

let { Goptions.get = is_strict_universe_declarations } =
  Goptions.declare_bool_option_and_ref
    ~key:["Strict";"Universe";"Declaration"]
    ~value:true
    ()

(** Miscellaneous interpretation functions *)

let universe_level_name evd ({CAst.v=id} as lid) =
  try evd, Evd.universe_of_name evd id
  with Not_found ->
    if not (is_strict_universe_declarations ()) then
      new_univ_level_variable ?loc:lid.CAst.loc ~name:id univ_rigid evd
    else user_err ?loc:lid.CAst.loc
        (Pp.(str "Undeclared universe: " ++ Id.print id ++ str "."))

let level_name sigma = function
  | GSProp | GProp -> None
  | GSet -> Some (sigma, Univ.Level.set)
  | GUniv u -> Some (sigma, u)
  | GRawUniv u ->
    let sigma = try Evd.add_forgotten_univ sigma u with UGraph.AlreadyDeclared -> sigma in
    Some (sigma, u)
  | GLocalUniv l ->
    let sigma, u = universe_level_name sigma l in
    Some (sigma, u)

let glob_level ?loc evd : glob_level -> _ = function
  | UAnonymous {rigid} ->
    assert (rigid <> UnivFlexible true);
    new_univ_level_variable ?loc rigid evd
  | UNamed s ->
    match level_name evd s with
    | None ->
      user_err ?loc
        (str "Universe instances cannot contain non-Set small levels," ++ spc() ++
         str "polymorphic universe instances must be greater or equal to Set.");
    | Some r -> r

let glob_qvar ?loc evd : glob_qvar -> _ = function
  | GQVar q -> evd, q
  | GLocalQVar {v=Anonymous} ->
    let evd, q = new_quality_variable ?loc evd in
    evd, q
  | GRawQVar q ->
    let evd = Evd.merge_sort_variables ~sideff:true evd (Sorts.QVar.Set.singleton q) in
    evd, q
  | GLocalQVar {v=Name id; loc} ->
    try evd, (Evd.quality_of_name evd id)
    with Not_found ->
      if not (is_strict_universe_declarations()) then
        let evd, q = new_quality_variable ?loc evd in
        evd, q
      else user_err ?loc Pp.(str "Undeclared quality: " ++ Id.print id ++ str".")

let glob_quality ?loc evd = let open Sorts.Quality in function
  | GQConstant q -> evd, QConstant q
  | GQualVar (GQVar _ | GLocalQVar _ | GRawQVar _ as q) ->
    let evd, q = glob_qvar ?loc evd q in
    evd, QVar q

type inference_hook = env -> evar_map -> Evar.t -> (evar_map * constr) option

type use_typeclasses = NoUseTC | UseTCForConv | UseTC

type inference_flags = {
  use_coercions : bool;
  use_typeclasses : use_typeclasses;
  solve_unification_constraints : bool;
  fail_evar : bool;
  expand_evars : bool;
  program_mode : bool;
  polymorphic : bool;
  undeclared_evars_patvars: bool;
  patvars_abstract : bool;
  unconstrained_sorts : bool;
}

type pretype_flags = {
  poly : bool;
  resolve_tc : bool;
  program_mode : bool;
  use_coercions : bool;
  undeclared_evars_patvars : bool;
  patvars_abstract : bool;
  unconstrained_sorts : bool;
}

let glob_opt_qvar ?loc ~flags sigma = function
  | None ->
    if flags.unconstrained_sorts then
      let sigma, q = new_quality_variable ?loc sigma in
      sigma, Some q
    else sigma, None
  | Some q ->
    let sigma, q = glob_qvar ?loc sigma q in
    sigma, Some q

let sort ?loc ~flags sigma (q, l) = match l with
| UNamed [] -> assert false
| UNamed [GSProp, 0] -> assert (Option.is_empty q); sigma, ESorts.sprop
| UNamed [GProp, 0] -> assert (Option.is_empty q); sigma, ESorts.prop
| UNamed [GSet, 0] when Option.is_empty q -> sigma, ESorts.set
| UNamed ((u, n) :: us) ->
  let open Pp in
  let sigma, q = glob_opt_qvar ?loc ~flags sigma q in
  let get_level sigma u n = match level_name sigma u with
  | None ->
    user_err ?loc
      (str "Non-Set small universes cannot be used in algebraic expressions.")
  | Some (sigma, u) ->
    let u = Univ.Universe.make u in
    let u = match n with
    | 0 -> u
    | 1 -> Univ.Universe.super u
    | n ->
      user_err ?loc
        (str "Cannot interpret universe increment +" ++ int n ++ str ".")
    in
    (sigma, u)
  in
  let fold (sigma, u) (l, n) =
    let sigma, u' = get_level sigma l n in
    (sigma, Univ.Universe.sup u u')
  in
  let (sigma, u) = get_level sigma u n in
  let (sigma, u) = List.fold_left fold (sigma, u) us in
  let s = match q with
    | None -> Sorts.sort_of_univ u
    | Some q -> Sorts.qsort q u
  in
  sigma, ESorts.make s
| UAnonymous {rigid} ->
  let sigma, q = glob_opt_qvar ?loc ~flags sigma q in
  let sigma, l = new_univ_level_variable ?loc rigid sigma in
  let u = Univ.Universe.make l in
  let s = match q with
    | None -> Sorts.sort_of_univ u
    | Some q -> Sorts.qsort q u
  in
  sigma, ESorts.make s

(* Compute the set of still-undefined initial evars up to restriction
   (e.g. clearing) and the set of yet-unsolved evars freshly created
   in the extension [sigma'] of [sigma] (excluding the restrictions of
   the undefined evars of [sigma] to be freshly created evars of
   [sigma']). Otherwise said, we partition the undefined evars of
   [sigma'] into those already in [sigma] or deriving from an evar in
   [sigma] by restriction, and the evars properly created in [sigma'] *)

type frozen_and_pending =
  Frz :
    'a Evar.Map.t
    (* Undefined from [sigma']. This is used only as a set,
       guaranteed by the existential type 'a, but we do not use
       Evar.Set to avoid reallocating. *)
    * Evar.Set.t Lazy.t option
    (* Undefined evars in [sigma'] which are neither in [sigma] or aliases thereof.
       [None] means empty.*)
    -> frozen_and_pending

let frozen_and_pending_holes (sigma, sigma') term =
  let undefined0 = Option.cata Evd.undefined_map Evar.Map.empty sigma in
  let included = Option.cata (Evd.evars_of_term sigma') Evar.Set.empty term in
  let pending =
    if undefined0 == Evd.undefined_map sigma' && Evar.Set.is_empty included
    then None
    else
      Some (lazy begin
        let pending, aliases =
          Evar.Map.symmetric_diff_fold (fun ev v v' (pending,aliases as acc) -> match v, v' with
              | None, None -> assert false
              | Some _, None ->
                (* ev got defined in sigma', but is it an alias? *)
                begin match advance sigma' ev with
                | None -> acc
                | Some ev -> pending, Evar.Set.add ev aliases
                end
              | None, Some _ ->
                (* ev is new in sigma' *)
                Evar.Set.add ev pending, aliases
              | Some _, Some _ -> (* ev is still undefined in sigma' *) acc)
            undefined0
            (Evd.undefined_map sigma')
            (Evar.Set.empty, Evar.Set.empty)
        in
        Evar.Set.union included (Evar.Set.diff pending aliases);
      end)
  in
  Frz (Evd.undefined_map sigma', pending)

let filter_frozen frozen = match frozen with
  | Frz (undf, None) -> fun evk -> Evar.Map.mem evk undf
  | Frz (undf, Some (lazy pending)) -> fun evk -> not (Evar.Set.mem evk pending) && Evar.Map.mem evk undf

let typeclasses_filter ~program_mode frozen =
  if program_mode
  then (fun evk evi -> Typeclasses.no_goals_or_obligations evk evi && not (filter_frozen frozen evk))
  else (fun evk evi -> Typeclasses.no_goals evk evi && not (filter_frozen frozen evk))

let apply_typeclasses ~program_mode ~fail_evar env sigma frozen =
  let sigma = Typeclasses.resolve_typeclasses
      ~filter:(typeclasses_filter ~program_mode frozen)
      ~fail:fail_evar env sigma in
  let sigma = if program_mode then (* Try optionally solving the obligations *)
      Typeclasses.resolve_typeclasses
        ~filter:(fun evk evi -> Typeclasses.all_evars evk evi && not (filter_frozen frozen evk)) ~fail:false env sigma
    else sigma in
  sigma

let apply_inference_hook (hook : inference_hook) env sigma frozen = match frozen with
| Frz (_, None) -> sigma
| Frz (_, Some (lazy pending)) ->
  Evar.Set.fold (fun evk sigma ->
    if Evd.is_undefined sigma evk (* in particular not defined by side-effect *)
    then
      match hook env sigma evk with
      | Some (sigma, c) ->
        Evd.define evk c sigma
      | None -> sigma
    else
      sigma) pending sigma

let allow_all_but_patvars sigma =
  let p evk =
    try
      let EvarInfo evi = Evd.find sigma evk in
      match snd (Evd.evar_source evi) with Evar_kinds.MatchingVar _ -> false | _ -> true
    with Not_found -> true
  in
  Evarsolve.AllowedEvars.from_pred p

let apply_heuristics ~patvars_abstract env sigma =
  (* Resolve eagerly, potentially making wrong choices *)
  let flags = default_flags_of (Conv_oracle.get_transp_state (Environ.oracle env)) in
  let flags = if patvars_abstract then { flags with allowed_evars = allow_all_but_patvars sigma } else flags in
  try solve_unif_constraints_with_heuristics ~flags env sigma
  with e when CErrors.noncritical e -> sigma

let check_typeclasses_instances_are_solved ~program_mode env sigma frozen =
  let tcs = Typeclasses.get_filtered_typeclass_evars
      (typeclasses_filter ~program_mode frozen)
      sigma
  in
  if not (Evar.Set.is_empty tcs) then begin
    Typeclasses.error_unresolvable env sigma tcs
  end

let check_extra_evars_are_solved env current_sigma frozen = match frozen with
| Frz (_, None) -> ()
| Frz (_, Some (lazy pending)) ->
  Evar.Set.iter
    (fun evk ->
      if not (Evd.is_defined current_sigma evk) then
        let (loc,k) = evar_source (Evd.find_undefined current_sigma evk) in
        match k with
        | Evar_kinds.ImplicitArg (gr, (i, id), false) -> ()
        | _ ->
            error_unsolvable_implicit ?loc env current_sigma evk None) pending

(* [check_evars] fails if some unresolved evar remains *)

let check_evars env ?initial sigma c =
  let rec proc_rec c =
    match EConstr.kind sigma c with
    | Evar (evk, _) ->
      (match initial with
       | Some initial when Evd.mem initial evk -> ()
       | _ ->
        let EvarInfo evi = Evd.find sigma evk in
         let (loc,k) = evar_source evi in
         begin match k with
           | Evar_kinds.ImplicitArg (gr, (i, id), false) -> ()
           | _ -> Pretype_errors.error_unsolvable_implicit ?loc env sigma evk None
         end)
    | _ -> EConstr.iter sigma proc_rec c
  in proc_rec c

let check_problems_are_solved env sigma = function
  | Frz (_, None) -> ()
  | Frz (_, Some (lazy pending)) -> check_problems_are_solved ~evars:pending env sigma

let check_evars_are_solved_from ~program_mode env sigma frozen frozen_for_pb =
  check_typeclasses_instances_are_solved ~program_mode env sigma frozen;
  check_problems_are_solved env sigma frozen_for_pb;
  check_extra_evars_are_solved env sigma frozen

(* Try typeclasses, hooks, unification heuristics ... *)

let solve_remaining_evars_from ?hook (flags : inference_flags) env ?initial sigma term =
  let program_mode = flags.program_mode in
  let sigma =
    match flags.use_typeclasses with
    | UseTC ->
      let frozen = frozen_and_pending_holes (initial, sigma) None in
      apply_typeclasses ~program_mode ~fail_evar:false env sigma frozen
    | NoUseTC | UseTCForConv -> sigma
  in
  let sigma = match hook with
  | None -> sigma
  | Some hook ->
    let frozen = frozen_and_pending_holes (initial, sigma) None in
    apply_inference_hook hook env sigma frozen
  in
  let sigma = if flags.solve_unification_constraints
    then apply_heuristics ~patvars_abstract:flags.patvars_abstract env sigma
    else sigma
  in
  let () = if flags.fail_evar then
    let frozen = frozen_and_pending_holes (initial, sigma) None in
    let frozen_for_pb = frozen_and_pending_holes (initial, sigma) term in
    check_evars_are_solved_from ~program_mode env sigma frozen frozen_for_pb in
  sigma

let solve_remaining_evars ?hook (flags : inference_flags) env ?initial sigma =
  solve_remaining_evars_from ?hook (flags : inference_flags) env ?initial sigma None

let check_evars_are_solved ~program_mode env ?initial current_sigma =
  let frozen = frozen_and_pending_holes (initial, current_sigma) None in
  check_evars_are_solved_from ~program_mode env current_sigma frozen frozen

let process_inference_flags flags env initial (sigma,c,cty) =
  let sigma = solve_remaining_evars_from flags env ~initial sigma (Some cty) in
  let c = if flags.expand_evars then nf_evar sigma c else c in
  sigma,c,cty

let adjust_evar_source sigma na c =
  match na, kind sigma c with
  | Name id, Evar (evk,args) ->
     let evi = Evd.find_undefined sigma evk in
     begin match Evd.evar_source evi with
     | loc, Evar_kinds.QuestionMark ({ Evar_kinds.qm_name=Anonymous } as qm) ->
       let src = (loc,Evar_kinds.QuestionMark { qm with Evar_kinds.qm_name=na }) in
       (* Evd.update_source doesn't work for some reason, cf test bug_18260_1.v *)
       let (sigma, evk') = Evd.restrict evk (evar_filter evi) ~src sigma in
       sigma, mkEvar (evk',args)
     | _ -> sigma, c
     end
  | _, _ -> sigma, c

(* coerce to tycon if any *)
let inh_conv_coerce_to_tycon ?loc ~flags:{ program_mode; resolve_tc; use_coercions; patvars_abstract } env sigma j = function
  | None -> sigma, j, Some Coercion.empty_coercion_trace
  | Some t ->
    Coercion.inh_conv_coerce_to ?loc ~program_mode ~resolve_tc ~use_coercions ~patvars_abstract !!env sigma j t

let check_instance subst = function
  | [] -> ()
  | (CAst.{loc;v=id},_) :: _ ->
      if List.mem_assoc id subst then
        user_err ?loc  (Id.print id ++ str "appears more than once.")
      else
        user_err ?loc  (str "No such variable in the signature of the existential variable: " ++ Id.print id ++ str ".")

(* used to enforce a name in Lambda when the type constraints itself
   is named, hence possibly dependent *)

let orelse_name name name' = match name with
  | Anonymous -> name'
  | _ -> name

let pretype_id pretype loc env sigma id =
  (* Look for the binder of [id] *)
  try
    let (n,_,typ) = lookup_rel_id id (rel_context !!env) in
    sigma, { uj_val  = mkRel n; uj_type = lift n typ }
  with Not_found ->
  try
    GlobEnv.interp_ltac_variable ?loc (fun env -> pretype env sigma) env sigma id
  with Not_found ->
  (* Check if [id] is a section or goal variable *)
  try
    sigma, { uj_val  = mkVar id; uj_type = NamedDecl.get_type (lookup_named id !!env) }
  with Not_found ->
    (* [id] not found, standard error message *)
    error_var_not_found ?loc !!env sigma id

(*************************************************************************)
(* Main pretyping function                                               *)

let instance ?loc evd (ql,ul) =
  let evd, ql' =
    List.fold_left
      (fun (evd, quals) l ->
         let evd, l = glob_quality ?loc evd l in
         (evd, l :: quals)) (evd, [])
      ql
  in
  let evd, ul' =
    List.fold_left
      (fun (evd, univs) l ->
         let evd, l = glob_level ?loc evd l in
         (evd, l :: univs)) (evd, [])
      ul
  in
  evd, Some (UVars.Instance.of_array (Array.rev_of_list ql', Array.rev_of_list ul'))

let pretype_global ?loc rigid env evd gr us =
  let evd, instance =
    match us with
    | None -> evd, None
    | Some l -> instance ?loc evd l
  in
  Evd.fresh_global ?loc ~rigid ?names:instance !!env evd gr

let pretype_ref ?loc sigma env ref us =
  match ref with
  | GlobRef.VarRef id ->
      (* Section variable *)
    (try
       let ty = NamedDecl.get_type (lookup_named id !!env) in
       (match us with
        | None | Some ([],[]) -> ()
        | Some (qs,us) ->
            let open UnivGen in
            Loc.raise ?loc (UniverseLengthMismatch {
              actual = List.length qs, List.length us;
              expect = 0, 0;
            }));
       sigma, make_judge (mkVar id) ty
       with Not_found ->
         (* This may happen if env is a goal env and section variables have
            been cleared - section variables should be different from goal
            variables *)
         Pretype_errors.error_var_not_found ?loc !!env sigma id)
  | ref ->
    let sigma, c = pretype_global ?loc univ_flexible env sigma ref us in
    let sigma, ty = type_of !!env sigma c in
    sigma, make_judge c ty

let judge_of_sort ?loc evd s =
  let judge =
    { uj_val = mkSort s; uj_type = mkSort (ESorts.super evd s) }
  in
    evd, judge

let pretype_sort ?loc ~flags sigma s =
  let sigma, s = sort ?loc ~flags sigma s in
  judge_of_sort ?loc sigma s

let new_typed_evar env sigma ?naming ~src tycon =
  match tycon with
  | Some ty ->
    let sigma, c = new_evar env sigma ~src ?naming ty in
    sigma, c, ty
  | None ->
    let sigma, ty = new_type_evar env sigma ~src in
    let sigma, c = new_evar env sigma ~src ?naming ty in
    let evk = fst (destEvar sigma c) in
    let ido = Evd.evar_ident evk sigma in
    let src = (fst src,Evar_kinds.EvarType (ido,evk)) in
    let sigma = update_source sigma (fst (destEvar sigma ty)) src in
    sigma, c, ty

let mark_obligation_evar sigma k evc =
  match k with
  | Evar_kinds.QuestionMark _
  | Evar_kinds.ImplicitArg (_, _, false) ->
    Evd.set_obligation_evar sigma (fst (destEvar sigma evc))
  | _ -> sigma

type 'a pretype_fun = ?loc:Loc.t -> flags:pretype_flags -> type_constraint -> GlobEnv.t -> evar_map -> evar_map * 'a

type pretyper = {
  pretype_ref : pretyper -> GlobRef.t * glob_instance option -> unsafe_judgment pretype_fun;
  pretype_var : pretyper -> Id.t -> unsafe_judgment pretype_fun;
  pretype_evar : pretyper -> existential_name CAst.t * (lident * glob_constr) list -> unsafe_judgment pretype_fun;
  pretype_patvar : pretyper -> Evar_kinds.matching_var_kind -> unsafe_judgment pretype_fun;
  pretype_app : pretyper -> glob_constr * glob_constr list -> unsafe_judgment pretype_fun;
  pretype_proj : pretyper -> (Constant.t * glob_instance option) * glob_constr list * glob_constr -> unsafe_judgment pretype_fun;
  pretype_lambda : pretyper -> Name.t * binding_kind * glob_constr * glob_constr -> unsafe_judgment pretype_fun;
  pretype_prod : pretyper -> Name.t * binding_kind * glob_constr * glob_constr -> unsafe_judgment pretype_fun;
  pretype_letin : pretyper -> Name.t * glob_constr * glob_constr option * glob_constr -> unsafe_judgment pretype_fun;
  pretype_cases : pretyper -> Constr.case_style * glob_constr option * tomatch_tuples * cases_clauses -> unsafe_judgment pretype_fun;
  pretype_lettuple : pretyper -> Name.t list * (Name.t * glob_constr option) * glob_constr * glob_constr -> unsafe_judgment pretype_fun;
  pretype_if : pretyper -> glob_constr * (Name.t * glob_constr option) * glob_constr * glob_constr -> unsafe_judgment pretype_fun;
  pretype_rec : pretyper -> glob_fix_kind * Id.t array * glob_decl list array * glob_constr array * glob_constr array -> unsafe_judgment pretype_fun;
  pretype_sort : pretyper -> glob_sort -> unsafe_judgment pretype_fun;
  pretype_hole : pretyper -> Evar_kinds.glob_evar_kind -> unsafe_judgment pretype_fun;
  pretype_genarg : pretyper -> Genarg.glob_generic_argument -> unsafe_judgment pretype_fun;
  pretype_cast : pretyper -> glob_constr * cast_kind option * glob_constr -> unsafe_judgment pretype_fun;
  pretype_int : pretyper -> Uint63.t -> unsafe_judgment pretype_fun;
  pretype_float : pretyper -> Float64.t -> unsafe_judgment pretype_fun;
  pretype_string : pretyper -> Pstring.t -> unsafe_judgment pretype_fun;
  pretype_array : pretyper -> glob_instance option * glob_constr array * glob_constr * glob_constr -> unsafe_judgment pretype_fun;
  pretype_type : pretyper -> glob_constr -> unsafe_type_judgment pretype_fun;
}

(** Tie the loop *)
let eval_pretyper self ~flags tycon env sigma t =
  let loc = t.CAst.loc in
  match DAst.get t with
  | GRef (ref,u) ->
    self.pretype_ref self (ref, u) ?loc ~flags tycon env sigma
  | GVar id ->
    self.pretype_var self id ?loc ~flags tycon env sigma
  | GEvar (evk, args) ->
    self.pretype_evar self (evk, args) ?loc ~flags tycon env sigma
  | GPatVar knd ->
    self.pretype_patvar self knd ?loc ~flags tycon env sigma
  | GApp (c, args) ->
    self.pretype_app self (c, args) ?loc ~flags tycon env sigma
  | GProj (hd, args, c) ->
    self.pretype_proj self (hd, args, c) ?loc ~flags tycon env sigma
  | GLambda (na, _, bk, t, c) ->
    self.pretype_lambda self (na, bk, t, c) ?loc ~flags tycon env sigma
  | GProd (na, _, bk, t, c) ->
    self.pretype_prod self (na, bk, t, c) ?loc ~flags tycon env sigma
  | GLetIn (na, _, b, t, c) ->
    self.pretype_letin self (na, b, t, c) ?loc ~flags tycon env sigma
  | GCases (st, c, tm, cl) ->
    self.pretype_cases self (st, c, tm, cl) ?loc ~flags tycon env sigma
  | GLetTuple (na, b, t, c) ->
    self.pretype_lettuple self (na, b, t, c) ?loc ~flags tycon env sigma
  | GIf (c, r, t1, t2) ->
    self.pretype_if self (c, r, t1, t2) ?loc ~flags tycon env sigma
  | GRec (knd, nas, decl, c, t) ->
    self.pretype_rec self (knd, nas, decl, c, t) ?loc ~flags tycon env sigma
  | GSort s ->
    self.pretype_sort self s ?loc ~flags tycon env sigma
  | GHole knd ->
    self.pretype_hole self knd ?loc ~flags tycon env sigma
  | GGenarg arg ->
    self.pretype_genarg self arg ?loc ~flags tycon env sigma
  | GCast (c, k, t) ->
    self.pretype_cast self (c, k, t) ?loc ~flags tycon env sigma
  | GInt n ->
    self.pretype_int self n ?loc ~flags tycon env sigma
  | GFloat f ->
    self.pretype_float self f ?loc ~flags tycon env sigma
  | GString s ->
    self.pretype_string self s ?loc ~flags tycon env sigma
  | GArray (u,t,def,ty) ->
    self.pretype_array self (u,t,def,ty) ?loc ~flags tycon env sigma

let eval_type_pretyper self ~flags tycon env sigma t =
  self.pretype_type self t ~flags tycon env sigma

let pretype_instance self ~flags env sigma loc hyps evk update =
  let f decl (subst,update,sigma) =
    let id = NamedDecl.get_id decl in
    let b = Option.map (replace_vars sigma subst) (NamedDecl.get_value decl) in
    let t = replace_vars sigma subst (NamedDecl.get_type decl) in
    let uflags = default_flags_of TransparentState.full in
    let uflags = if flags.patvars_abstract then { uflags with allowed_evars = allow_all_but_patvars sigma } else uflags in
    let check_body sigma id c =
      match b, c with
      | Some b, Some c -> begin
         try (Evarconv.unify_delay ~flags:uflags !!env sigma b c)
         with UnableToUnify (sigma, _) ->
           user_err ?loc  (str "Cannot interpret " ++
             pr_existential_key !!env sigma evk ++
             strbrk " in current context: binding for " ++ Id.print id ++
             strbrk " is not convertible to its expected definition (cannot unify " ++
             quote (Termops.Internal.print_constr_env !!env sigma b) ++
             strbrk " and " ++
             quote (Termops.Internal.print_constr_env !!env sigma c) ++
             str ").")
         end
      | Some b, None ->
           user_err ?loc  (str "Cannot interpret " ++
             pr_existential_key !!env sigma evk ++
             strbrk " in current context: " ++ Id.print id ++
             strbrk " should be bound to a local definition.")
      | None, _ -> sigma in
    let check_type sigma id t' =
      try (Evarconv.unify_delay ~flags:uflags !!env sigma t t')
      with UnableToUnify (sigma, _) ->
        user_err ?loc  (str "Cannot interpret " ++
          pr_existential_key !!env sigma evk ++
          strbrk " in current context: binding for " ++ Id.print id ++
          strbrk " is not well-typed.") in
    let sigma, c, update =
      try
        let c = snd (List.find (fun (CAst.{v=id'},c) -> Id.equal id id') update) in
        let sigma, c = eval_pretyper self ~flags (mk_tycon t) env sigma c in
        let sigma = check_body sigma id (Some c.uj_val) in
        sigma, c.uj_val, List.remove_first (fun (CAst.{v=id'},_) -> Id.equal id id') update
      with Not_found ->
      try
        let (n,b',t') = lookup_rel_id id (rel_context !!env) in
        let sigma = check_type sigma id (lift n t') in
        let sigma = check_body sigma id (Option.map (lift n) b') in
        sigma, mkRel n, update
      with Not_found ->
      try
        let decl = lookup_named id !!env in
        let sigma = check_type sigma id (NamedDecl.get_type decl) in
        let sigma = check_body sigma id (NamedDecl.get_value decl) in
        sigma, mkVar id, update
      with Not_found ->
        user_err ?loc  (str "Cannot interpret " ++
          pr_existential_key !!env sigma evk ++
          str " in current context: no binding for " ++ Id.print id ++ str ".") in
    ((id,c)::subst, update, sigma) in
  let subst,inst,sigma = List.fold_right f hyps ([],update,sigma) in
  check_instance subst inst;
  sigma, List.map snd subst

module Default =
struct

  let discard_trace (sigma,t,otrace) = sigma, t

  let pretype_ref self (ref, u) =
    fun ?loc ~flags tycon env sigma ->
    let sigma, t_ref = pretype_ref ?loc sigma env ref u in
    discard_trace @@ inh_conv_coerce_to_tycon ?loc ~flags env sigma t_ref tycon

  let pretype_var self id =
    fun ?loc ~flags tycon env sigma ->
    let pretype tycon env sigma t = eval_pretyper self ~flags tycon env sigma t in
    let sigma, t_id = pretype_id (fun e r t -> pretype tycon e r t) loc env sigma id in
    discard_trace @@ inh_conv_coerce_to_tycon ?loc ~flags env sigma t_id tycon

  let pretype_evar self (CAst.{v=id;loc=locid}, inst) ?loc ~flags tycon env sigma =
      (* Ne faudrait-il pas s'assurer que hyps est bien un
         sous-contexte du contexte courant, et qu'il n'y a pas de Rel "caché" *)
      let id = interp_ltac_id env id in
      let sigma, evk =
        match Evd.evar_key id sigma with
        | evk -> sigma, evk
        | exception Not_found ->
            if flags.undeclared_evars_patvars then
              let k = Evar_kinds.(MatchingVar (FirstOrderPatVar id)) in
              let sigma, uj_val, _ = new_typed_evar env sigma ~naming:(IntroIdentifier id) ~src:(loc,k) tycon in
              sigma, fst (destEvar sigma uj_val)
            else
              error_evar_not_found ?loc:locid !!env sigma id
      in
      let EvarInfo evi = Evd.find sigma evk in
      let hyps = evar_filtered_context evi in
      let sigma, args = pretype_instance self ~flags env sigma loc hyps evk inst in
      let c = mkLEvar sigma (evk, args) in
      let j = Retyping.get_judgment_of !!env sigma c in
      discard_trace @@ inh_conv_coerce_to_tycon ?loc ~flags env sigma j tycon

  let pretype_patvar self kind ?loc ~flags tycon env sigma =
    let k = Evar_kinds.MatchingVar kind in
    let sigma, uj_val, uj_type = new_typed_evar env sigma ~src:(loc,k) tycon in
    sigma, { uj_val; uj_type }

  let pretype_hole self k ?loc ~flags tycon env sigma =
    let open Namegen in
    let naming = naming_of_glob_kind k in
    let naming = match naming with
      | IntroIdentifier id -> IntroIdentifier (interp_ltac_id env id)
      | IntroAnonymous -> IntroAnonymous
      | IntroFresh id -> IntroFresh (interp_ltac_id env id) in
    let k = kind_of_glob_kind k in
    let sigma, uj_val, uj_type = new_typed_evar env sigma ~src:(loc,k) ~naming tycon in
    let sigma = if flags.program_mode then mark_obligation_evar sigma k uj_val else sigma in
    sigma, { uj_val; uj_type }

  let pretype_genarg self arg ?loc ~flags tycon env sigma =
    let j, sigma = GlobEnv.interp_glob_genarg ?loc ~poly:flags.poly env sigma tycon arg in
    sigma, j

  let pretype_rec self (fixkind, names, bl, lar, vdef) =
    fun ?loc ~flags tycon env sigma ->
    let open Context.Rel.Declaration in
    let pretype tycon env sigma c = eval_pretyper self ~flags tycon env sigma c in
    let pretype_type tycon env sigma c = eval_type_pretyper self ~flags tycon env sigma c in
    let vars = VarSet.variables (Global.env ()) in
    let hypnaming = if flags.program_mode then ProgramNaming vars else RenameExistingBut vars in
    let rec type_bl env sigma ctxt = function
      | [] -> sigma, ctxt
      | (na,_,bk,None,ty)::bl ->
        let sigma, ty' = pretype_type empty_valcon env sigma ty in
        let rty' = ESorts.relevance_of_sort ty'.utj_type in
        let dcl = LocalAssum (make_annot na rty', ty'.utj_val) in
        let dcl', env = push_rel ~hypnaming sigma dcl env in
        type_bl env sigma (Context.Rel.add dcl' ctxt) bl
      | (na,_,bk,Some bd,ty)::bl ->
        let sigma, ty' = pretype_type empty_valcon env sigma ty in
        let rty' = ESorts.relevance_of_sort ty'.utj_type in
        let sigma, bd' = pretype (mk_tycon ty'.utj_val) env sigma bd in
        let dcl = LocalDef (make_annot na rty', bd'.uj_val, ty'.utj_val) in
        let dcl', env = push_rel ~hypnaming sigma dcl env in
        type_bl env sigma (Context.Rel.add dcl' ctxt) bl in
    let sigma, ctxtv = Array.fold_left_map (fun sigma -> type_bl env sigma Context.Rel.empty) sigma bl in
    let sigma, larj =
      Array.fold_left2_map
        (fun sigma e ar ->
          pretype_type empty_valcon (snd (push_rel_context ~hypnaming sigma e env)) sigma ar)
        sigma ctxtv lar in
    let lara = Array.map (fun a -> a.utj_val) larj in
    let ftys = Array.map2 (fun e a -> it_mkProd_or_LetIn a e) ctxtv lara in
    let nbfix = Array.length lar in
    let names = Array.map (fun id -> Name id) names in
    let sigma =
      match tycon with
      | Some t ->
        let fixi = match fixkind with
          | GFix (vn,i) -> i
          | GCoFix i -> i
        in
        begin match Evarconv.unify_delay !!env sigma ftys.(fixi) t with
          | exception Evarconv.UnableToUnify _ -> sigma
          | sigma -> sigma
        end
      | None -> sigma
    in
    let names = Array.map2 (fun na t ->
        make_annot na (Retyping.relevance_of_type !!(env) sigma t))
        names ftys
    in
      (* Note: bodies are not used by push_rec_types, so [||] is safe *)
    let names,newenv = push_rec_types ~hypnaming sigma (names,ftys) env in
    let sigma, vdefj =
      Array.fold_left2_map_i
        (fun i sigma ctxt def ->
           (* we lift nbfix times the type in tycon, because of
            * the nbfix variables pushed to newenv *)
           let (ctxt,ty) =
             decompose_prod_n_decls sigma (Context.Rel.length ctxt)
               (lift nbfix ftys.(i)) in
           let ctxt,nenv = push_rel_context ~hypnaming sigma ctxt newenv in
           let sigma, j = pretype (mk_tycon ty) nenv sigma def in
           sigma, { uj_val = it_mkLambda_or_LetIn j.uj_val ctxt;
                    uj_type = it_mkProd_or_LetIn j.uj_type ctxt })
        sigma ctxtv vdef in
      let sigma = Typing.check_type_fixpoint ?loc !!env sigma names ftys vdefj in
      let nf c = nf_evar sigma c in
      let ftys = Array.map nf ftys in (* FIXME *)
      let fdefs = Array.map (fun x -> nf (j_val x)) vdefj in
      let fixj = match fixkind with
        | GFix (vn,i) ->
              (* First, let's find the guard indexes. *)
              (* If recursive argument was not given by user, we try all args.
                 An earlier approach was to look only for inductive arguments,
                 but doing it properly involves delta-reduction, and it finally
                 doesn't seem worth the effort (except for huge mutual
                 fixpoints ?) *)
          let possible_fix_indices =
            Array.to_list (Array.mapi
                             (fun i annot -> match annot with
                             | Some n -> [n]
                             | None -> List.interval 0 (Context.Rel.nhyps ctxtv.(i) - 1))
           vn)
          in
          let fixdecls = (names,ftys,fdefs) in
          let indexes = esearch_fix_guard ?loc !!env sigma possible_fix_indices fixdecls in
          make_judge (mkFix ((indexes,i),fixdecls)) ftys.(i)
        | GCoFix i ->
          let fixdecls = (names,ftys,fdefs) in
          let cofix = (i, fixdecls) in
          let () = esearch_cofix_guard ?loc !!env sigma fixdecls in
          make_judge (mkCoFix cofix) ftys.(i)
      in
      discard_trace @@ inh_conv_coerce_to_tycon ?loc ~flags env sigma fixj tycon

  let pretype_sort self s =
    fun ?loc ~flags tycon env sigma ->
    let sigma, j = pretype_sort ?loc ~flags sigma s in
    discard_trace @@ inh_conv_coerce_to_tycon ?loc ~flags env sigma j tycon

  let enforce_template_csts sigma bound csts =
    (* maybe could be smarter when something becomes Prop *)
    let bound = Univ.Level.Map.map (fun u -> TemplateUniv u) bound in
    let csts = Inductive.instantiate_template_constraints bound csts in
    Evd.add_constraints sigma csts

  let template_sort qopt boundus (s:Sorts.t) =
    match s with
    | SProp | Prop | Set -> ESorts.make s
    | Type u ->
      let subst_fn u = Univ.Level.Map.find_opt u boundus in
      let u = UnivSubst.subst_univs_universe subst_fn u in
      let s = match qopt with
        | None -> Sorts.sort_of_univ u
        | Some (_,q) -> Sorts.qsort q u
      in
      ESorts.make s
    | QSort (q,u) -> assert false

  let bind_template_univ ~domu u bound =
    Univ.Level.Map.update domu (function
        | None -> Some u
        | Some u' -> CErrors.anomaly Pp.(str "non linear template univ"))
      bound

  let rec finish_template qopt sigma boundus = let open TemplateArity in function
    | CtorType (csts, typ) ->
      let sigma = enforce_template_csts sigma boundus csts in
      sigma, typ
    | IndType (csts, ctx, s) ->
      let sigma = enforce_template_csts sigma boundus csts in
      let s = template_sort qopt boundus s in
      sigma, mkArity (ctx, s)
    | DefParam (na, v, t, codom) ->
      let sigma, codom = finish_template qopt sigma boundus codom in
      sigma, mkLetIn (na,v,t,codom)
    | NonTemplateArg (na,dom,codom) ->
      let sigma, codom = finish_template qopt sigma boundus codom in
      sigma, mkProd (na,dom,codom)
    | TemplateArg (na,ctx,domu,codom) ->
      (* partially applied template: use the global univ level, force quality = Type *)
      let sigma = match qopt with
        | Some (used_template_levels,q) when Univ.Level.Set.mem domu used_template_levels ->
          Evd.add_quconstraints sigma
            (Sorts.QConstraints.singleton (QVar q, Equal, QConstant QType),
             Univ.Constraints.empty)
        | _ -> sigma
      in
      let boundus = bind_template_univ ~domu (Univ.Universe.make domu) boundus in
      let sigma, codom = finish_template qopt sigma boundus codom in
      let s = ESorts.make @@ Sorts.sort_of_univ @@ Univ.Universe.make domu in
      sigma, mkProd (na,mkArity (ctx,s),codom)

  let rec apply_template qopt pretype_arg arg_state env sigma body subst boundus todoargs typ =
    let open TemplateArity in
    match todoargs, typ with
    | [], _
    | _, (CtorType _ | IndType _) ->
      let sigma, typ = finish_template qopt sigma boundus typ in
      sigma, body, subst, typ, arg_state, todoargs
    | _, DefParam (_, v, _, codom) ->
      (* eager subst may be inefficient but template inductives with
         letin params are hopefully rare enough that it doesn't
         matter *)
      let v = Vars.esubst Vars.lift_substituend subst v in
      let subst = Esubst.subs_cons (Vars.make_substituend v) subst in
      apply_template qopt pretype_arg arg_state env sigma body subst boundus todoargs codom
    | arg :: todoargs, NonTemplateArg (na, dom, codom) ->
      let dom = Vars.esubst Vars.lift_substituend subst dom in
      let sigma, arg_state, body, arg = pretype_arg env sigma arg_state body arg na.binder_name dom in
      let subst = Esubst.subs_cons (Vars.make_substituend arg) subst in
      apply_template qopt pretype_arg arg_state env sigma body subst boundus todoargs codom
    | arg :: todoargs, TemplateArg (na, ctx, domu, codom) ->
      let sigma, u = Evd.new_univ_level_variable UState.univ_flexible_alg sigma in
      let s = match qopt with
        | Some (used_template_levels, q) when Univ.Level.Set.mem domu used_template_levels ->
          ESorts.make @@ Sorts.qsort q @@ Univ.Universe.make u
        | _ -> ESorts.make @@ Sorts.sort_of_univ @@ Univ.Universe.make u
      in
      let dom = Vars.esubst Vars.lift_substituend subst (mkArity (ctx, s)) in
      let sigma, arg_state, body, arg = pretype_arg env sigma arg_state body arg na.binder_name dom in
      let u =
        (* get an algebraic instead of the generated variable *)
        let s =
          try
            snd @@ Reductionops.dest_arity !!env sigma @@ Retyping.get_type_of !!env sigma arg
          with Reduction.NotArity ->
            (* delayed constraints prevent getting the sort from retyping *)
            s
        in
        match ESorts.kind sigma s with
        | SProp -> assert false
        | Prop ->
          (* putting type0 here doesn't prevent getting Prop
             because the return type will be "qsort q type0" *)
          Univ.Universe.type0
        | Set -> Univ.Universe.type0
        | Type u -> u
        | QSort (_,u) ->
          (* quality guaranteed = Option.get qopt *)
          u
      in
      let boundus = bind_template_univ ~domu u boundus in
      let subst = Esubst.subs_cons (Vars.make_substituend arg) subst in
      apply_template qopt pretype_arg arg_state env sigma body subst boundus todoargs codom

  let pretype_app self (f, args) =
    fun ?loc ~flags tycon env sigma ->
    let pretype tycon env sigma c = eval_pretyper self ~flags tycon env sigma c in
    let sigma, fj = pretype empty_tycon env sigma f in
    let floc = loc_of_glob_constr f in
    let length = List.length args in
    let nargs_before_bidi =
      if Option.is_empty tycon then length
      (* We apply bidirectionality hints only if an expected type is specified *)
      else
      (* if `f` is a global, we retrieve bidirectionality hints *)
        try
          let (gr,_) = destRef sigma fj.uj_val in
          Option.default length @@ get_bidirectionality_hint gr
        with DestKO ->
          length
    in
    let candargs =
      (* Bidirectional typechecking hint:
         parameters of a constructor are completely determined
         by a typing constraint *)
      (* This bidirectionality machinery is the one of `Program` for
         constructors and is orthogonal to bidirectionality hints. However, we
         could probably factorize both by providing default bidirectionality hints
         for constructors corresponding to their number of parameters. *)
      if flags.program_mode && length > 0 && isConstruct sigma fj.uj_val then
        match tycon with
        | None -> []
        | Some ty ->
          let ((ind, i), u) = destConstruct sigma fj.uj_val in
          let npars = inductive_nparams !!env ind in
          if Int.equal npars 0 then []
          else
            try
              let IndType (indf, args) = find_rectype !!env sigma ty in
              let ((ind',u'),pars) = dest_ind_family indf in
              if QInd.equal !!env ind ind' then pars
              else (* Let the usual code throw an error *) []
            with Not_found -> []
      else []
    in
    let pretype_arg ?(trace=Coercion.empty_coercion_trace) env sigma (n, val_before_bidi, bidiargs, candargs) body arg na tycon =
      (* trace is the coercion trace from coercing the body to funclass *)
      let bidi = n >= nargs_before_bidi in
      let sigma, c, bidiargs =
        if bidi then
          (* We want to get some typing information from the context
             before typing the argument, so we replace it by an
             existential variable *)
          let sigma, c_hole = new_evar env sigma ~src:(loc,Evar_kinds.InternalHole) tycon in
          sigma, c_hole, (c_hole, tycon, arg, trace) :: bidiargs
        else
          let sigma, j = pretype (Some tycon) env sigma arg in
          sigma, j_val j, bidiargs
      in
      let sigma, candargs, c =
        match candargs with
        | [] -> sigma, [], c
        | arg :: args ->
          begin match Evarconv.unify_delay !!env sigma c arg with
          | exception Evarconv.UnableToUnify (sigma,e) ->
            raise (PretypeError (!!env,sigma,CannotUnify (c, arg, Some e)))
          | sigma ->
            sigma, args, nf_evar sigma c
          end
      in
      let sigma, c = adjust_evar_source sigma na c in
      let body = Coercion.push_arg body c in
      let val_before_bidi = if bidi then val_before_bidi else body in
      sigma, (n+1,val_before_bidi,bidiargs,candargs), body, c
    in
    let rec apply_rec env sigma arg_state body (subs, typ) = function
      | [] ->
        let typ = Vars.esubst Vars.lift_substituend subs typ in
        let body = Coercion.force_app_body body in
        let resj = { uj_val = body; uj_type = typ } in
        let _,val_before_bidi, bidiargs,_ = arg_state in
        sigma, resj, val_before_bidi, List.rev bidiargs
      | c::rest ->
        let argloc = loc_of_glob_constr c in
        let sigma, body, na, c1, subs, c2, trace = match EConstr.kind sigma typ with
        | Prod (na, c1, c2) ->
          (* Fast path *)
          let c1 = Vars.esubst Vars.lift_substituend subs c1 in
          sigma, body, na, c1, subs, c2, Coercion.empty_coercion_trace
        | _ ->
          let typ = Vars.esubst Vars.lift_substituend subs typ in
          let sigma, body, typ, trace = Coercion.inh_app_fun ~program_mode:flags.program_mode ~resolve_tc:flags.resolve_tc ~use_coercions:flags.use_coercions !!env sigma body typ in
          let resty = whd_all !!env sigma typ in
          let na, c1, c2 = match EConstr.kind sigma resty with
          | Prod (na, c1, c2) -> (na, c1, c2)
          | _ ->
            let sigma, hj = pretype empty_tycon env sigma c in
            let resj = { uj_val = Coercion.force_app_body body; uj_type = typ } in
            error_cant_apply_not_functional
              ?loc:(Loc.merge_opt floc argloc) !!env sigma resj [|hj|]
          in
          sigma, body, na, c1, Esubst.subs_id 0, c2, trace
        in
        let sigma, arg_state, body, arg =
          pretype_arg env sigma arg_state ~trace body c na.binder_name c1
        in
        let subs = Esubst.subs_cons (Vars.make_substituend arg) subs in
        apply_rec env sigma arg_state body (subs, c2) rest
    in
    let body = (Coercion.start_app_body sigma fj.uj_val) in
    let sigma, template_arity = match EConstr.kind sigma fj.uj_val with
      | Ind (ind,u) | Construct ((ind,_),u) as k
        when EInstance.is_empty u && Environ.template_polymorphic_ind ind !!env ->
        let ctoropt = match k with
          | Ind _ -> None
          | Construct ((_,ctor),_) -> Some ctor
          | _ -> assert false
        in
        let can_be_prop, arity = TemplateArity.get_template_arity !!env ind ~ctoropt in
        let sigma, quality = match can_be_prop.template_can_be_prop with
          | None -> sigma, None
          | Some used_levels ->
            let sigma, q = Evd.new_quality_variable sigma in
            (* make q in cumulativity with Prop/Type *)
            let sigma =
              Evd.set_leq_sort !!env sigma
                ESorts.prop
                (ESorts.make (Sorts.qsort q Univ.Universe.type0))
            in
            sigma, Some (used_levels,q)
        in
        sigma, Some (quality, arity)
      | _ -> sigma, None
    in
    let arg_state = (0,body,[],candargs) in
    let subst =  Esubst.subs_id 0 in
    let typ = fj.uj_type in
    let sigma, body, subst, typ, arg_state, args =
      match template_arity with
      | None -> sigma, body, subst, typ, arg_state, args
      | Some (q,typ) ->
        let pretype_arg env sigma arg_state body arg na tycon =
          pretype_arg env sigma arg_state body arg na tycon
        in
        apply_template q pretype_arg arg_state env sigma body subst Univ.Level.Map.empty args typ
    in
    let sigma, resj, val_before_bidi, bidiargs =
      apply_rec env sigma arg_state body (subst,typ) args
    in
    let sigma, resj, otrace = inh_conv_coerce_to_tycon ?loc ~flags env sigma resj tycon in
    let refine_arg (sigma,t) (newarg,ty,origarg,trace) =
      (* Refine an argument (originally `origarg`) represented by an evar
         (`newarg`) to use typing information from the context *)
      (* Type the argument using the expected type *)
      let sigma, j = pretype (Some ty) env sigma origarg in
      (* Unify the (possibly refined) existential variable with the
         (typechecked) original value *)
      let sigma = try Evarconv.unify_delay !!env sigma newarg (j_val j)
        with Evarconv.UnableToUnify (sigma,e) ->
          raise (PretypeError (!!env,sigma,CannotUnify (newarg,j_val j,Some e)))
      in
      sigma, Coercion.push_arg (Coercion.reapply_coercions_body sigma trace t) (j_val j)
    in
    (* We now refine any arguments whose typing was delayed for
       bidirectionality *)
    let t = val_before_bidi in
    let sigma, t = List.fold_left refine_arg (sigma,t) bidiargs in
    let t = Coercion.force_app_body t in
    (* If we did not get a coercion trace (e.g. with `Program` coercions, we
       replaced user-provided arguments with inferred ones. Otherwise, we apply
       the coercion trace to the user-provided arguments. *)
    let resj =
      match otrace with
      | None -> resj
      | Some trace ->
        let resj = { resj with uj_val = t } in
        { resj with uj_val = Coercion.reapply_coercions sigma trace t }
    in
    (sigma, resj)

  let pretype_proj self ((f,us), args, c) =
    fun ?loc ~flags tycon env sigma ->
    pretype_app self (DAst.make ?loc (GRef (GlobRef.ConstRef f,us)), args @ [c])
      ?loc ~flags tycon env sigma

  let pretype_lambda self (name, bk, c1, c2) =
    fun ?loc ~flags tycon env sigma ->
    let open Context.Rel.Declaration in
    let tycon' = if flags.program_mode && flags.use_coercions
      then Option.map (Coercion.remove_subset !!env sigma) tycon
      else tycon
    in
    let sigma,name',dom,rng =
      match tycon' with
      | None -> sigma,Anonymous, None, None
      | Some ty ->
        let sigma, ty = Evardefine.presplit !!env sigma ty in
        match EConstr.kind sigma ty with
        | Prod (na,dom,rng) ->
          sigma, na.binder_name, Some dom, Some rng
        | Evar ev ->
          (* define_evar_as_product works badly when impredicativity
             is possible but not known (#12623). OTOH if we know we
             are impredicative (typically Prop) we want to keep the
             information when typing the body. *)
          let s = Retyping.get_sort_of !!env sigma ty in
          if Environ.is_impredicative_sort !!env (ESorts.kind sigma s)
             || Evd.check_leq sigma ESorts.type1 s
          then
            let sigma, prod = define_evar_as_product !!env sigma ev in
            let na,dom,rng = destProd sigma prod in
            sigma, na.binder_name, Some dom, Some rng
          else
            sigma, Anonymous, None, None
        | _ ->
          if Reductionops.is_head_evar !!env sigma ty then sigma, Anonymous, None, None
          else
            (* No chance of unifying with a product.
               NB: Funclass cannot be a source class so no coercions. *)
            error_not_product ?loc !!env sigma ty
    in
    let dom_valcon = valcon_of_tycon dom in
    let sigma, j = eval_type_pretyper self ~flags dom_valcon env sigma c1 in
    let name = {binder_name=name; binder_relevance=ESorts.relevance_of_sort j.utj_type} in
    let var = LocalAssum (name, j.utj_val) in
    let vars = VarSet.variables (Global.env ()) in
    let hypnaming = if flags.program_mode then ProgramNaming vars else RenameExistingBut vars in
    let var',env' = push_rel ~hypnaming sigma var env in
    let sigma, j' = eval_pretyper self ~flags rng env' sigma c2 in
    let name = get_name var' in
    let resj = judge_of_abstraction !!env sigma (orelse_name name name') j j' in
    discard_trace @@ inh_conv_coerce_to_tycon ?loc ~flags env sigma resj tycon

  let pretype_prod self (name, bk, c1, c2) =
    fun ?loc ~flags tycon env sigma ->
    let open Context.Rel.Declaration in
    let pretype_type tycon env sigma c = eval_type_pretyper self ~flags tycon env sigma c in
    let sigma, j = pretype_type empty_valcon env sigma c1 in
    let vars = VarSet.variables (Global.env ()) in
    let hypnaming = if flags.program_mode then ProgramNaming vars else RenameExistingBut vars in
    let sigma, name, j' = match name with
      | Anonymous ->
        let sigma, j = pretype_type empty_valcon env sigma c2 in
        sigma, name, { j with utj_val = lift 1 j.utj_val }
      | Name _ ->
        let r = ESorts.relevance_of_sort j.utj_type in
        let var = LocalAssum (make_annot name r, j.utj_val) in
        let var, env' = push_rel ~hypnaming sigma var env in
        let sigma, c2_j = pretype_type empty_valcon env' sigma c2 in
        sigma, get_name var, c2_j
    in
    let resj =
      try
        judge_of_product !!env sigma name j j'
      with TypeError _ as e ->
        let (e, info) = Exninfo.capture e in
        let info = Option.cata (Loc.add_loc info) info loc in
        Exninfo.iraise (e, info) in
      discard_trace @@ inh_conv_coerce_to_tycon ?loc ~flags env sigma resj tycon

  let pretype_letin self (name, c1, t, c2) =
    fun ?loc ~flags tycon env sigma ->
    let open Context.Rel.Declaration in
    let pretype tycon env sigma c = eval_pretyper self ~flags tycon env sigma c in
    let pretype_type tycon env sigma c = eval_type_pretyper self ~flags tycon env sigma c in
    let sigma, tycon1 =
      match t with
      | Some t ->
        let sigma, t_j = pretype_type empty_valcon env sigma t in
        sigma, mk_tycon t_j.utj_val
      | None ->
        sigma, empty_tycon in
    let sigma, j = pretype tycon1 env sigma c1 in
    let sigma, t = Evarsolve.refresh_universes
      ~onlyalg:true ~status:Evd.univ_flexible (Some false) !!env sigma j.uj_type in
    let r = Retyping.relevance_of_term !!env sigma j.uj_val in
    let var = LocalDef (make_annot name r, j.uj_val, t) in
    let tycon = lift_tycon 1 tycon in
    let vars = VarSet.variables (Global.env ()) in
    let hypnaming = if flags.program_mode then ProgramNaming vars else RenameExistingBut vars in
    let var, env = push_rel ~hypnaming sigma var env in
    let sigma, j' = pretype tycon env sigma c2 in
    let name = get_name var in
    sigma, { uj_val = mkLetIn (make_annot name r, j.uj_val, t, j'.uj_val) ;
             uj_type = subst1 j.uj_val j'.uj_type }

  let pretype_lettuple self (nal, (na, po), c, d) =
    fun ?loc ~flags tycon env sigma ->
    let open Context.Rel.Declaration in
    let pretype tycon env sigma c = eval_pretyper self ~flags tycon env sigma c in
    let pretype_type tycon env sigma c = eval_type_pretyper self ~flags tycon env sigma c in
    let sigma, cj = pretype empty_tycon env sigma c in
    let (IndType (indf,realargs)) as indty =
      try find_rectype !!env sigma cj.uj_type
      with Not_found ->
        let cloc = loc_of_glob_constr c in
          error_case_not_inductive ?loc:cloc !!env sigma cj
    in
    let ind = fst (fst (dest_ind_family indf)) in
    let cstrs = get_constructors !!env indf in
    if not (Int.equal (Array.length cstrs) 1) then
      user_err ?loc  (str "Destructing let is only for inductive types" ++
        str " with one constructor.");
    let cs = cstrs.(0) in
    if not (Int.equal (List.length nal) cs.cs_nargs) then
      user_err ?loc:loc (str "Destructing let on this type expects " ++
        int cs.cs_nargs ++ str " variables.");
    let fsign, record =
      match Environ.get_projections !!env ind with
      | None ->
         List.map2 set_name (List.rev nal) cs.cs_args, false
      | Some ps ->
        let rec aux n k names l =
          match names, l with
          | na :: names, (LocalAssum (na', t) :: l) ->
            let proj = Projection.make (fst ps.(cs.cs_nargs - k)) true in
            LocalDef ({na' with binder_name = na},
                      lift (cs.cs_nargs - n) (mkProj (proj, na'.binder_relevance, cj.uj_val)), t)
            :: aux (n+1) (k + 1) names l
          | na :: names, (decl :: l) ->
            set_name na decl :: aux (n+1) k names l
          | [], [] -> []
          | _ -> assert false
        in aux 1 1 (List.rev nal) cs.cs_args, true in
    let fsign = Context.Rel.map (whd_betaiota !!env sigma) fsign in
    let vars = VarSet.variables (Global.env ()) in
    let hypnaming = if flags.program_mode then ProgramNaming vars else RenameExistingBut vars in
    let fsign,env_f = push_rel_context ~hypnaming sigma fsign env in
    let obj indt rci p v f =
      if not record then
        let f = it_mkLambda_or_LetIn f fsign in
        let ci = make_case_info !!env (ind_of_ind_type indt) LetStyle in
          mkCase (EConstr.contract_case !!env sigma (ci, (p,rci), make_case_invert !!env sigma indt ~case_relevance:rci ci, cj.uj_val,[|f|]))
      else it_mkLambda_or_LetIn f fsign
    in
    (* Make dependencies from arity signature impossible *)
    let arsgn, indr =
      let arsgn = get_arity !!env indf in
      List.map (set_name Anonymous) arsgn, Inductiveops.relevance_of_inductive_family !!env indf
    in
      let indt = build_dependent_inductive !!env indf in
      let psign = LocalAssum (make_annot na indr, indt) :: arsgn in (* For locating names in [po] *)
      let predenv = Cases.make_return_predicate_ltac_lvar env sigma na c cj.uj_val in
      let nar = List.length arsgn in
      let psign',env_p = push_rel_context ~hypnaming ~force_names:true sigma psign predenv in
          (match po with
          | Some p ->
            let sigma, pj = pretype_type empty_valcon env_p sigma p in
            let ccl = nf_evar sigma pj.utj_val in
            let p = it_mkLambda_or_LetIn ccl psign' in
            let inst =
              (Array.to_list cs.cs_concl_realargs)
              @ [build_dependent_constructor cs] in
            let lp = lift cs.cs_nargs p in
            let fty = hnf_lam_applist !!env sigma lp inst in
            let sigma, fj = pretype (mk_tycon fty) env_f sigma d in
            let sigma, v =
              let ind,_ = dest_ind_family indf in
                let sigma, rci = Typing.check_allowed_sort !!env sigma ind cj.uj_val p in
                sigma, obj indty rci p cj.uj_val fj.uj_val
            in
            sigma, { uj_val = v; uj_type = (substl (realargs@[cj.uj_val]) ccl) }

          | None ->
            let tycon = lift_tycon cs.cs_nargs tycon in
            let sigma, fj = pretype tycon env_f sigma d in
            let ccl = nf_evar sigma fj.uj_type in
            let ccl =
              if noccur_between sigma 1 cs.cs_nargs ccl then
                lift (- cs.cs_nargs) ccl
              else
                error_cant_find_case_type ?loc !!env sigma
                  cj.uj_val in
                 (* let ccl = refresh_universes ccl in *)
            let p = it_mkLambda_or_LetIn (lift (nar+1) ccl) psign' in
            let sigma, v =
              let ind,_ = dest_ind_family indf in
                let sigma, rci = Typing.check_allowed_sort !!env sigma ind cj.uj_val p in
                sigma, obj indty rci p cj.uj_val fj.uj_val
            in sigma, { uj_val = v; uj_type = ccl })

  let pretype_cases self (sty, po, tml, eqns)  =
    fun ?loc ~flags tycon env sigma ->
    let pretype tycon env sigma c = eval_pretyper self ~flags tycon env sigma c in
    Cases.compile_cases ?loc ~program_mode:flags.program_mode sty (pretype, sigma) tycon env (po,tml,eqns)

  let pretype_if self (c, (na, po), b1, b2) =
    fun ?loc ~flags tycon env sigma ->
    let open Context.Rel.Declaration in
    let pretype tycon env sigma c = eval_pretyper self ~flags tycon env sigma c in
    let sigma, cj = pretype empty_tycon env sigma c in
    let (IndType (indf,realargs)) as indty =
      try find_rectype !!env sigma cj.uj_type
      with Not_found ->
        let cloc = loc_of_glob_constr c in
          error_case_not_inductive ?loc:cloc !!env sigma cj in
    let cstrs = get_constructors !!env indf in
      if not (Int.equal (Array.length cstrs) 2) then
        user_err ?loc
                      (str "If is only for inductive types with two constructors.");

      let arsgn, indr =
        let arsgn = get_arity !!env indf in
        (* Make dependencies from arity signature impossible *)
        List.map (set_name Anonymous) arsgn, Inductiveops.relevance_of_inductive_family !!env indf
      in
      let nar = List.length arsgn in
      let indt = build_dependent_inductive !!env indf in
      let psign = LocalAssum (make_annot na indr, indt) :: arsgn in (* For locating names in [po] *)
      let predenv = Cases.make_return_predicate_ltac_lvar env sigma na c cj.uj_val in
      let vars = VarSet.variables (Global.env ()) in
      let hypnaming = if flags.program_mode then ProgramNaming vars else RenameExistingBut vars in
      let psign,env_p = push_rel_context ~hypnaming sigma psign predenv in
      let sigma, pred, p = match po with
        | Some p ->
          let sigma, pj = eval_type_pretyper self ~flags empty_valcon env_p sigma p in
          let ccl = nf_evar sigma pj.utj_val in
          let pred = it_mkLambda_or_LetIn ccl psign in
          let typ = lift (- nar) (beta_applist sigma (pred,[cj.uj_val])) in
          sigma, pred, typ
        | None ->
          let sigma, p = match tycon with
            | Some ty -> sigma, ty
            | None -> new_type_evar env sigma ~src:(loc,Evar_kinds.CasesType false)
          in
          sigma, it_mkLambda_or_LetIn (lift (nar+1) p) psign, p in
      let pred = nf_evar sigma pred in
      let p = nf_evar sigma p in
      let f sigma cs b =
        let n = Context.Rel.length cs.cs_args in
        let pi = lift n pred in (* liftn n 2 pred ? *)
        let pi = beta_applist sigma (pi, [build_dependent_constructor cs]) in
        let cs_args = cs.cs_args in
        let cs_args = Context.Rel.map (whd_betaiota !!env sigma) cs_args in
        let csgn =
          List.map (set_name Anonymous) cs_args
        in
        let _,env_c = push_rel_context ~hypnaming sigma csgn env in
        let sigma, bj = pretype (mk_tycon pi) env_c sigma b in
        sigma, it_mkLambda_or_LetIn bj.uj_val cs_args in
      let sigma, b1 = f sigma cstrs.(0) b1 in
      let sigma, b2 = f sigma cstrs.(1) b2 in
      let sigma, v =
        let ind,_ = dest_ind_family indf in
        let pred = nf_evar sigma pred in
        let sigma, rci = Typing.check_allowed_sort !!env sigma ind cj.uj_val pred in
        let ci = make_case_info !!env (fst ind) IfStyle in
        sigma, mkCase (EConstr.contract_case !!env sigma
                  (ci, (pred,rci),
                   make_case_invert !!env sigma indty ~case_relevance:rci ci, cj.uj_val,
                   [|b1;b2|]))
      in
      let cj = { uj_val = v; uj_type = p } in
      discard_trace @@ inh_conv_coerce_to_tycon ?loc ~flags env sigma cj tycon

  let pretype_cast self (c, k, t) =
    fun ?loc ~flags tycon env sigma ->
    let pretype tycon env sigma c = eval_pretyper self ~flags tycon env sigma c in
    let sigma, cj =
      let sigma, tj = eval_type_pretyper self ~flags empty_valcon env sigma t in
      let tval = nf_evar sigma tj.utj_val in
      let (sigma, cj), tval = match k with
        | Some VMcast ->
          let sigma, cj = pretype empty_tycon env sigma c in
          let cty = nf_evar sigma cj.uj_type and tval = nf_evar sigma tval in
          begin match Reductionops.vm_infer_conv !!env sigma cty tval with
            | Some sigma -> (sigma, cj), tval
            | None ->
              error_actual_type ?loc !!env sigma cj tval
                (ConversionFailed (!!env,cty,tval))
          end
        | Some NATIVEcast ->
          let sigma, cj = pretype empty_tycon env sigma c in
          let cty = nf_evar sigma cj.uj_type and tval = nf_evar sigma tval in
          begin
            match Reductionops.native_infer_conv !!env sigma cty tval with
            | Some sigma -> (sigma, cj), tval
            | None ->
              error_actual_type ?loc !!env sigma cj tval
                (ConversionFailed (!!env,cty,tval))
          end
        | None | Some DEFAULTcast ->
          pretype (mk_tycon tval) env sigma c, tval
      in
      let v = match k with
        | None -> cj.uj_val
        | Some k -> mkCast (cj.uj_val, k, tval)
      in
      sigma, { uj_val = v; uj_type = tval }
    in discard_trace @@ inh_conv_coerce_to_tycon ?loc ~flags env sigma cj tycon

(* [pretype_type valcon env sigma c] coerces [c] into a type *)
let pretype_type self c ?loc ~flags valcon (env : GlobEnv.t) sigma = match DAst.get c with
  | GHole knd ->
      let loc = loc_of_glob_constr c in
      let naming = naming_of_glob_kind knd in
      let knd = kind_of_glob_kind knd in
      (match valcon with
       | Some v ->
           let sigma, s =
             let t = Retyping.get_type_of !!env sigma v in
               match EConstr.kind sigma (whd_all !!env sigma t) with
               | Sort s ->
                 sigma, s
               | Evar ev when is_Type sigma (existential_type sigma ev) ->
                 define_evar_as_sort !!env sigma ev
               | _ -> anomaly (Pp.str "Found a type constraint which is not a type.")
           in
           (* Correction of bug #5315 : we need to define an evar for *all* holes *)
           let sigma, evkt = new_evar env sigma ~src:(loc, knd) ~naming (mkSort s) in
           let ev,_ = destEvar sigma evkt in
           let sigma = Evd.define ev (nf_evar sigma v) sigma in
           (* End of correction of bug #5315 *)
           sigma, { utj_val = v;
                    utj_type = s }
       | None ->
         let sigma, s = new_sort_variable univ_flexible_alg sigma in
         let sigma, utj_val = new_evar env sigma ~src:(loc, knd) ~naming (mkSort s) in
         let sigma = if flags.program_mode then mark_obligation_evar sigma knd utj_val else sigma in
         sigma, { utj_val; utj_type = s})
  | _ ->
      let sigma, j = eval_pretyper self ~flags empty_tycon env sigma c in
      let loc = loc_of_glob_constr c in
      let sigma, tj =
        let use_coercions = flags.use_coercions in
        Coercion.inh_coerce_to_sort ?loc ~use_coercions !!env sigma j in
      match valcon with
      | None -> sigma, tj
      | Some v ->
        begin match Evarconv.unify_leq_delay !!env sigma v tj.utj_val with
        | sigma -> sigma, tj
        | exception Evarconv.UnableToUnify (sigma,e) ->
          error_unexpected_type
            ?loc:(loc_of_glob_constr c) !!env sigma tj.utj_val v e
        end

  let pretype_int self i =
    fun ?loc ~flags tycon env sigma ->
        let resj =
          try Typing.judge_of_int !!env i
          with Invalid_argument _ ->
            user_err ?loc (str "Type of int63 should be registered first.")
        in
        discard_trace @@ inh_conv_coerce_to_tycon ?loc ~flags env sigma resj tycon

  let pretype_float self f =
    fun ?loc ~flags tycon env sigma ->
      let resj =
        try Typing.judge_of_float !!env f
        with Invalid_argument _ ->
          user_err ?loc (str "Type of float should be registered first.")
        in
        discard_trace @@ inh_conv_coerce_to_tycon ?loc ~flags env sigma resj tycon

  let pretype_string self s =
    fun ?loc ~flags tycon env sigma ->
      let resj =
        try Typing.judge_of_string !!env s
        with Invalid_argument _ ->
          user_err ?loc (str "Type of string should be registered first.")
        in
        discard_trace @@ inh_conv_coerce_to_tycon ?loc ~flags env sigma resj tycon

  let pretype_array self (u,t,def,ty) =
    fun ?loc ~flags tycon env sigma ->
    let sigma, u = match u with
      | None -> sigma, None
      | Some ([],[u]) ->
        let sigma, u = glob_level ?loc sigma u in
        sigma, Some u
      | Some (qs,us) ->
          let open UnivGen in
          Loc.raise ?loc (UniverseLengthMismatch {
            actual = List.length qs, List.length us;
            expect = 0, 1;
          })
    in
    let sigma, tycon' = split_as_array !!env sigma tycon in
    let sigma, jty = eval_type_pretyper self ~flags tycon' env sigma ty in
    let sigma, jdef = eval_pretyper self ~flags (mk_tycon jty.utj_val) env sigma def in
    let pretype_elem = eval_pretyper self ~flags (mk_tycon jty.utj_val) env in
    let sigma, jt = Array.fold_left_map pretype_elem sigma t in
    let sigma, u = match u with
      | Some u -> sigma, u
      | None -> Evd.new_univ_level_variable UState.univ_flexible sigma
    in
    let sigma = Evd.set_leq_sort !!env sigma
        (* we retype because it may be an evar which has been defined, resulting in a lower sort
           cf #18480 *)
        (Retyping.get_sort_of !!env sigma jty.utj_val)
        (ESorts.make (Sorts.sort_of_univ (Univ.Universe.make u)))
    in
    let u = UVars.Instance.of_array ([||],[| u |]) in
    let ta = EConstr.of_constr @@ Typeops.type_of_array !!env u in
    let j = {
      uj_val = EConstr.mkArray(EInstance.make u, Array.map (fun j -> j.uj_val) jt, jdef.uj_val, jty.utj_val);
      uj_type = EConstr.mkApp(ta,[|jdef.uj_type|])
    } in
    discard_trace @@ inh_conv_coerce_to_tycon ?loc ~flags env sigma j tycon

end

(* [pretype tycon env sigma lvar lmeta cstr] attempts to type [cstr] *)
(* in environment [env], with existential variables [sigma] and *)
(* the type constraint tycon *)

let default_pretyper =
  let open Default in
  {
    pretype_ref = pretype_ref;
    pretype_var = pretype_var;
    pretype_evar = pretype_evar;
    pretype_patvar = pretype_patvar;
    pretype_app = pretype_app;
    pretype_proj = pretype_proj;
    pretype_lambda = pretype_lambda;
    pretype_prod = pretype_prod;
    pretype_letin = pretype_letin;
    pretype_cases = pretype_cases;
    pretype_lettuple = pretype_lettuple;
    pretype_if = pretype_if;
    pretype_rec = pretype_rec;
    pretype_sort = pretype_sort;
    pretype_hole = pretype_hole;
    pretype_genarg = pretype_genarg;
    pretype_cast = pretype_cast;
    pretype_int = pretype_int;
    pretype_float = pretype_float;
    pretype_string = pretype_string;
    pretype_array = pretype_array;
    pretype_type = pretype_type;
  }

let pretype ~flags tycon env sigma c =
  eval_pretyper default_pretyper ~flags tycon env sigma c

let pretype_type ~flags tycon env sigma c =
  eval_type_pretyper default_pretyper ~flags tycon env sigma c

let ise_pretype_gen (flags : inference_flags) env sigma lvar kind c =
  let pretype_flags = {
    program_mode = flags.program_mode;
    use_coercions = flags.use_coercions;
    poly = flags.polymorphic;
    undeclared_evars_patvars = flags.undeclared_evars_patvars;
    patvars_abstract = flags.patvars_abstract;
    unconstrained_sorts = flags.unconstrained_sorts;
    resolve_tc = match flags.use_typeclasses with
      | NoUseTC -> false
      | UseTC | UseTCForConv -> true
  } in
  let vars = VarSet.variables (Global.env ()) in
  let hypnaming = if flags.program_mode then ProgramNaming vars else RenameExistingBut vars in
  let env = GlobEnv.make ~hypnaming env sigma lvar in
  let sigma', c', c'_ty = match kind with
    | WithoutTypeConstraint ->
      let sigma, j = pretype ~flags:pretype_flags empty_tycon env sigma c in
      sigma, j.uj_val, j.uj_type
    | OfType exptyp ->
      let sigma, j = pretype ~flags:pretype_flags (mk_tycon exptyp) env sigma c in
      sigma, j.uj_val, j.uj_type
    | IsType ->
      let sigma, tj = pretype_type ~flags:pretype_flags empty_valcon env sigma c in
      sigma, tj.utj_val, mkSort tj.utj_type
  in
  process_inference_flags flags !!env sigma (sigma',c',c'_ty)

let ise_pretype_gen flags env sigma lvar kind c : _ * _ * _ =
  NewProfile.profile "pretyping" (fun () ->
      ise_pretype_gen flags env sigma lvar kind c)
    ()

let default_inference_flags fail = {
  use_coercions = true;
  use_typeclasses = UseTC;
  solve_unification_constraints = true;
  fail_evar = fail;
  expand_evars = true;
  program_mode = false;
  polymorphic = false;
  undeclared_evars_patvars = false;
  patvars_abstract = false;
  unconstrained_sorts = false;
}

let no_classes_no_fail_inference_flags = {
  use_coercions = true;
  use_typeclasses = NoUseTC;
  solve_unification_constraints = true;
  fail_evar = false;
  expand_evars = true;
  program_mode = false;
  polymorphic = false;
  undeclared_evars_patvars = false;
  patvars_abstract = false;
  unconstrained_sorts = false;
}

let all_and_fail_flags = default_inference_flags true
let all_no_fail_flags = default_inference_flags false

let ise_pretype_gen_ctx flags env sigma lvar kind c =
  let sigma, c, _ = ise_pretype_gen flags env sigma lvar kind c in
  c, Evd.ustate sigma

(** Entry points of the high-level type synthesis algorithm *)

let understand
    ?(flags=all_and_fail_flags)
    ?(expected_type=WithoutTypeConstraint)
    env sigma c =
  ise_pretype_gen_ctx flags env sigma empty_lvar expected_type c

let understand_tcc_ty ?(flags=all_no_fail_flags) env sigma ?(expected_type=WithoutTypeConstraint) c =
  ise_pretype_gen flags env sigma empty_lvar expected_type c

let understand_tcc ?flags env sigma ?expected_type c =
  let sigma, c, _ = understand_tcc_ty ?flags env sigma ?expected_type c in
  sigma, c

let understand_ltac flags env sigma lvar kind c =
  let (sigma, c, _) = ise_pretype_gen flags env sigma lvar kind c in
  (sigma, c)

let understand_ltac_ty flags env sigma lvar kind c =
  ise_pretype_gen flags env sigma lvar kind c

(* Fully evaluate an untyped constr *)
let understand_uconstr ?(flags = all_and_fail_flags)
  ?(expected_type = WithoutTypeConstraint) env sigma c =
  let open Ltac_pretype in
  let { closure; term } = c in
  let vars = {
    ltac_constrs = closure.typed;
    ltac_uconstrs = closure.untyped;
    ltac_idents = closure.idents;
    ltac_genargs = closure.genargs;
  } in
  understand_ltac flags env sigma vars expected_type term

let path_convertible env sigma cl p q =
  let open Coercionops in
  let mkGRef ref          = DAst.make @@ Glob_term.GRef(ref,None) in
  let mkGVar id           = DAst.make @@ Glob_term.GVar(id) in
  let mkGApp(rt,rtl)      = DAst.make @@ Glob_term.GApp(rt,rtl) in
  let mkGLambda(n,t,b)    = DAst.make @@ Glob_term.GLambda(n,None,Explicit,t,b) in
  let mkGSort u           = DAst.make @@ Glob_term.GSort u in
  let mkGHole ()          = DAst.make @@ Glob_term.GHole (GBinderType Anonymous) in
  let path_to_gterm p =
    match p with
    | ic :: p' ->
      let names =
        List.init (ic.coe_param + 1)
          (fun n -> Id.of_string ("x" ^ string_of_int n))
      in
      List.fold_right
        (fun id t -> mkGLambda (Name id, mkGHole (), t)) names @@
        List.fold_left
          (fun t ic ->
             mkGApp (mkGRef ic.coe_value,
                     List.make ic.coe_param (mkGHole ()) @ [t]))
          (mkGApp (mkGRef ic.coe_value, List.map mkGVar names))
          p'
    | [] ->
      (* identity function for the class [i]. *)
      let params = class_nparams cl in
      let clty =
        match cl with
        | CL_SORT -> mkGSort (None, Glob_term.UAnonymous {rigid=UnivFlexible false})
        | CL_FUN -> anomaly (str "A source class must not be Funclass.")
        | CL_SECVAR v -> mkGRef (GlobRef.VarRef v)
        | CL_CONST c -> mkGRef (GlobRef.ConstRef c)
        | CL_IND i -> mkGRef (GlobRef.IndRef i)
        | CL_PROJ p -> mkGRef (GlobRef.ConstRef (Projection.Repr.constant p))
      in
      let names =
        List.init params (fun n -> Id.of_string ("x" ^ string_of_int n))
      in
      List.fold_right
        (fun id t -> mkGLambda (Name id, mkGHole (), t)) names @@
        mkGLambda (Name (Id.of_string "x"),
                   mkGApp (clty, List.map mkGVar names),
                   mkGVar (Id.of_string "x"))
  in
  try
    let sigma,tp = understand_tcc env sigma (path_to_gterm p) in
    let sigma,tq = understand_tcc env sigma (path_to_gterm q) in
    if Evd.has_undefined sigma then
      false
    else
      let _ = Evarconv.unify_delay env sigma tp tq in true
  with Evarconv.UnableToUnify _ | PretypeError _ -> false

let () = Coercionops.install_path_comparator path_convertible
OCaml

Innovation. Community. Security.