Source file langgen.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
module type SIGMA = sig
type t
val sigma : t
end
module[@inline always] Make
(Word : Word.S)
(Segment : Segments.S with type elt = Word.t)
(Sigma : SIGMA with type t = Segment.t)
= struct
module Word = Word
module Segment = Segment
(** Spline of a language, a cascade-like thunk list with multiple nils. *)
type node =
| Nothing
| Everything
| Cons of Segment.t * lang
and lang = unit -> node
(** Utilities *)
let segmentEpsilon = Segment.return Word.empty
let nothing () = Nothing
let everything () = Everything
let (@:) h t () = Cons (h, t)
let langEpsilon = segmentEpsilon @: nothing
module IMap = struct
include CCMap.Make(CCInt)
let save k s m =
if Segment.is_empty s then m
else add k (Segment.memoize s) m
end
(** Precomputed full language. Used to replace "Everything" when need *)
module Sigma_star = struct
type t = (Segment.t, CCVector.rw) CCVector.t
let v : t = CCVector.make 1 segmentEpsilon
let rec complete_from_to i j =
if i > j then ()
else
let s = Segment.append Sigma.sigma (CCVector.get v (i-1)) in
CCVector.push v @@ Segment.memoize s;
complete_from_to (i+1) j
let get i =
assert (i >= 0);
let l = CCVector.size v in
if i < l then CCVector.get v i
else begin
CCVector.ensure_with ~init:Segment.empty v (i+1);
complete_from_to l i ;
CCVector.get v i
end
let rec iter n k =
k (get n) ;
iter (n+1) k
end
let pp_item =
Fmt.parens @@
Fmt.hbox @@
Fmt.iter ~sep:(Fmt.unit ", ") (CCFun.flip Segment.to_iter) Word.pp
let pp fmt (l : lang) =
let pp_sep = Fmt.unit "@." in
let rec pp fmt l =
pp_sep fmt ();
match l() with
| Nothing -> Fmt.pf fmt "(Nothing)"
| Everything -> Fmt.pf fmt "(Everything)"
| Cons (x,l') ->
pp_item fmt x ; pp fmt l'
in
pp fmt l
let of_list l =
let rec aux n l () = match l with
| [] -> nothing ()
| _ ->
let x, rest = CCList.partition (fun s -> Word.length s = n) l in
Cons (Segment.of_list x, aux (n+1) rest)
in aux 0 l
(** Classic operations *)
let rec union s1 s2 () = match s1(), s2() with
| Everything, _ | _, Everything -> Everything
| Nothing, x | x, Nothing -> x
| Cons (x1, next1), Cons (x2, next2) ->
Cons (Segment.union x1 x2, union next1 next2)
let rec inter s1 s2 () = match s1(), s2() with
| Everything, x | x, Everything -> x
| Nothing, _ | _, Nothing -> Nothing
| Cons (x1, next1), Cons (x2, next2) ->
Cons (Segment.inter x1 x2, inter next1 next2)
let rec difference_aux i s1 s2 () = match s1(), s2() with
| Nothing, _ -> Nothing
| _, Everything -> Nothing
| x, Nothing -> x
| Everything, Cons (x2, next2) ->
let x1 = Sigma_star.get i and next1 = everything in
Cons (Segment.diff x1 x2, difference_aux (i+1) next1 next2)
| Cons (x1, next1), Cons (x2, next2) ->
Cons (Segment.diff x1 x2, difference_aux (i+1) next1 next2)
let difference = difference_aux 0
let compl = difference everything
(** Concatenation *)
(** Invariants for each language:
- [nbSeg = List.length indices]
- After [explode_head], [CCVector.size vec >= n]
- if [bound = Some n] then [n >= nbSeg] and [seqₙ = Nothing].
*)
let[@inline] explode_head vec (seq, bound, nbSeg, indices) n =
match bound with
| Some _ -> nothing, bound, nbSeg, indices
| None -> match seq() with
| Nothing -> nothing, Some n, nbSeg, indices
| Everything ->
begin if n = CCVector.size vec then
CCVector.push vec @@ Sigma_star.get n
end ;
everything, None, nbSeg+1, n :: indices
| Cons (segm, s) ->
begin if n = CCVector.size vec then
CCVector.push vec @@ Segment.memoize segm
end;
let b = Segment.is_empty segm in
let indices' = if b then indices else n :: indices in
let nbSeg' = if b then nbSeg else nbSeg+1 in
s, None, nbSeg', indices'
let[@inline] concat_subterms_of_length ~n ~f validIndicesA vecA vecB =
let rec combine_segments acc = function
| [] -> acc
| i :: l ->
if n - i >= CCVector.size vecB then acc
else
combine_segments
(f ~a:(CCVector.get vecA i) (CCVector.get vecB (n - i)) :: acc)
l
in
validIndicesA
|> combine_segments []
|> Segment.merge
let[@inline] combine_segments_left ~n indL vecL vecR =
concat_subterms_of_length
~n ~f:(fun ~a b -> Segment.append a b) indL vecL vecR
let[@inline] combine_segments_right ~n vecL indR vecR =
concat_subterms_of_length
~n ~f:(fun ~a b -> Segment.append b a) indR vecR vecL
let concatenate seqL0 seqR0 =
let vecL = CCVector.make 0 Segment.empty in
let vecR = CCVector.make 0 Segment.empty in
let[@specialize] rec collect n descL descR () =
let (_, boundL, nbSegL, indL) as descL = explode_head vecL descL n in
let (_, boundR, nbSegR, indR) as descR = explode_head vecR descR n in
match boundL, boundR with
| Some bL, Some bR when n >= bL + bR - 1 -> Nothing
| Some _, _ when nbSegL = 0 -> Nothing
| _, Some _ when nbSegR = 0 -> Nothing
| _ ->
let head =
if nbSegL <= nbSegR then
combine_segments_left ~n indL vecL vecR
else
combine_segments_right ~n vecL indR vecR
in
let tail = collect (n+1) descL descR in
Cons (head, tail)
in
collect 0 (seqL0, None, 0, []) (seqR0, None, 0, [])
(** Star *)
let star_subterms_of_length ~max validIndices mapS =
let combine_segments (i, segm) =
match IMap.get (max - i) mapS with
| None -> Segment.empty
| Some s -> Segment.append segm s
in
validIndices
|> List.rev_map combine_segments
|> Segment.merge
let star =
let rec collect n mapS seq validIndices () = match seq () with
| Everything -> Everything
| Nothing ->
let segmS = star_subterms_of_length ~max:n validIndices mapS in
let mapS = IMap.save n segmS mapS in
Cons (segmS, collect (n+1) mapS seq validIndices)
| Cons (segm, seq) ->
let validIndices =
if Segment.is_empty segm
then validIndices
else (n, segm) :: validIndices
in
let segmS = star_subterms_of_length ~max:n validIndices mapS in
let mapS = IMap.save n segmS mapS in
Cons (segmS, collect (n+1) mapS seq validIndices)
in
fun s () -> match s() with
| Nothing -> Cons (segmentEpsilon, nothing)
| Everything as v -> v
| Cons (_, seq) ->
match seq() with
| Nothing -> Cons (segmentEpsilon, nothing)
| seq ->
let mS = IMap.singleton 0 segmentEpsilon in
Cons (segmentEpsilon, collect 1 mS (fun () -> seq) [])
let add_epsilonX i x = if i = 0 then union x langEpsilon else x
let dec k = max (k-1) 0
let rec rep_with_acc acc i j lang =
match i, j with
| 0, None -> concatenate acc (star lang)
| 0, Some 0 -> acc
| i, j ->
let acc =
concatenate (add_epsilonX i lang) acc
in
rep_with_acc acc (dec i) (CCOpt.map dec j) lang
let rep i j lang = match i,j with
| 0, None -> star lang
| 0, Some 0 -> langEpsilon
| i, j ->
let acc = add_epsilonX i lang in
rep_with_acc acc (dec i) (CCOpt.map dec j) lang
(** Others *)
let charset b l = match l with
| [] when b -> nothing
| l ->
let set = Segment.of_list @@ List.map Word.singleton l in
let segm1 =
if b then set else Segment.diff Sigma.sigma set
in
Segment.empty @: segm1 @: nothing
let rec gen : Word.char Regex.t -> lang = function
| Set (b, l) -> charset b l
| One -> langEpsilon
| Seq (r1, r2) -> concatenate (gen r1) (gen r2)
| Or (r1, r2) -> union (gen r1) (gen r2)
| And (r1, r2) -> inter (gen r1) (gen r2)
| Not r -> compl (gen r)
| Rep (i, j, r) -> rep i j (gen r)
(** Exporting *)
let rec flatten_from n s k = match s () with
| Nothing -> ()
| Everything ->
Sigma_star.iter n (fun s -> Segment.to_iter s k)
| Cons (x, s) ->
Segment.to_iter x k;
flatten_from (n+1) s k
let flatten s = flatten_from 0 s
type res = Done | Finite | GaveUp
(** [sample ~skip ~n lang] returns a sequence of on average [n] elements.
[lang] is only consumed when needed.
We sample one element every [k], where [k] follows a power law of
average [skip]. Furthermore, if we consume more than [sqrt k] empty segments,
we assume that the rest of the segments will be infinitely empty and
stop.
If [firsts] is provided, we always output the [firsts] first elements.
*)
exception ExitSample
let sample ?(st=Random.State.make_self_init ()) ?n ?(firsts=0) ~skip lang (k : _ -> unit) =
let i = ref (-1) in
let rem_firsts = ref firsts in
let draw_skip st =
let f = !rem_firsts in
if f > 0
then (decr rem_firsts ; 0)
else
let u = Random.State.float st 1. in
1 + int_of_float (-. (float skip) *. log1p (-. u))
in
let next = ref (draw_skip st) in
let continue st =
match n with
| Some n -> Random.State.float st 1. > (1. /. float n)
| None -> true
in
let budget_of_skip n = 2 + (int_of_float @@ sqrt @@ float n) in
let budget = ref (budget_of_skip !next) in
let onSegm x =
incr i ;
if i < next then ()
else begin
k x ;
if not (continue st) then raise ExitSample
else begin
let newskip = draw_skip st in
next := !next + newskip ;
budget := budget_of_skip newskip ;
end
end
in
let rec walk_lang n seq =
let i0 = !i in
let next segm seq =
match Segment.to_iter segm onSegm with
| exception ExitSample -> Done
| () ->
let i1 = !i in
if i0 <> i1 then walk_lang (n+1) seq
else if !budget < 0 then GaveUp
else begin
decr budget ;
walk_lang (n+1) seq
end
in
match seq () with
| Nothing -> Finite
| Everything ->
let segm = Sigma_star.get n in
next segm everything
| Cons (segm, seq) ->
next segm seq
in
walk_lang 0 lang
end
let arbitrary
(type t) (type char)
(module W : Word.S with type char = char and type t = t)
(module S : Segments.S with type elt = W.t)
?(skip=8)
~compl
~pp
~samples
(alphabet : W.char list) =
let sigma = S.of_list @@ List.map W.singleton alphabet in
let module Sigma = struct type t = S.t let sigma = sigma end in
let module L = Make (W) (S) (Sigma) in
let gen st =
let open QCheck.Gen in
let re = Regex.gen ~compl (oneofl alphabet) st in
Fmt.epr "Regex: %a@." (Regex.pp pp) re;
let print_samples s l =
Fmt.epr "@[<2>%s:@ %a@]@." s Fmt.(list ~sep:(unit ",@ ") W.pp) l
in
let lang = L.gen re in
let f s l =
l
|> L.sample ~st ~skip ~n:samples
|> CCFun.(%) ignore
|> Iter.to_list
|> CCFun.tap (print_samples s)
in
let pos_examples = f "Pos" lang in
let neg_examples = f "Neg" @@ L.compl lang in
(re, pos_examples, neg_examples)
in
let pp fmt (x, l , l') =
Fmt.pf fmt "@[<2>Regex:@ %a@]@.@[<v2>Pos:@ %a@]@.@[<v2>Neg:@ %a@]"
(Regex.pp pp) x Fmt.(list W.pp) l Fmt.(list W.pp) l'
in
let print = Fmt.to_to_string pp in
let small (x, _, _) = Regex.size x in
let shrink = QCheck.Shrink.(triple nil list list) in
QCheck.make ~print ~small ~shrink gen