package rdf

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file bgp.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
(*********************************************************************************)
(*                OCaml-RDF                                                      *)
(*                                                                               *)
(*    Copyright (C) 2012-2024 Institut National de Recherche en Informatique     *)
(*    et en Automatique. All rights reserved.                                    *)
(*                                                                               *)
(*    This program is free software; you can redistribute it and/or modify       *)
(*    it under the terms of the GNU Lesser General Public License version        *)
(*    3 as published by the Free Software Foundation.                            *)
(*                                                                               *)
(*    This program is distributed in the hope that it will be useful,            *)
(*    but WITHOUT ANY WARRANTY; without even the implied warranty of             *)
(*    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the              *)
(*    GNU General Public License for more details.                               *)
(*                                                                               *)
(*    You should have received a copy of the GNU General Public License          *)
(*    along with this program; if not, write to the Free Software                *)
(*    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA                   *)
(*    02111-1307  USA                                                            *)
(*                                                                               *)
(*    Contact: Maxence.Guesdon@inria.fr                                          *)
(*                                                                               *)
(*********************************************************************************)

(** *)

open Sparql_types;;
module A = Sparql_algebra;;

module type P =
  sig
    type g
    type term
    val term : Term.term -> term
    val compare : term -> term -> int
    val rdfterm : term -> Term.term
    val subjects : unit -> term list
    val objects : unit -> term list
    val find : ?sub: term -> ?pred: term -> ?obj: term -> unit ->
      (term * term * term) list
  end
;;


module type S =
  sig
    val eval_bgp :
      Sparql_algebra.triple list -> Sparql_ms.Multimu.t
  end

module Make (P : P) =
  struct
    module Mu = Sparql_types.SMap
    module TSet = Set.Make (struct type t = P.term let compare = P.compare end)

      (** Score of pattern selectivity, copied from
         https://bitbucket.org/dotnetrdf/dotnetrdf/wiki/DeveloperGuide/SPARQL/SPARQL%20Optimization. *)
    let triple_constraint_score =
      let of_var mu name =
        try ignore(Mu.find name mu); true
        with Not_found -> false
      in
      let of_node mu = function
        Var v -> of_var mu v.var_name
      | GraphTerm t ->
          match t with
            GraphTermBlank { bnode_label = Some s } -> of_var mu ("?"^s)
          | GraphTermBlank _ -> false
          | GraphTermNil -> false
          | GraphTermIri _
          | GraphTermLit _
          | GraphTermNumeric _
          | GraphTermBoolean _ -> true
          | GraphTermNode _ -> assert false
      in
      let rec of_path mu = function
      | A.Var v -> of_var mu v.var_name
      | A.Iri _ -> true
      | A.Inv p -> of_path mu p
      | _ -> false
      in
      fun mu (sub, path, obj) ->
        let sub = of_node mu sub in
        let pred = of_path mu path in
        let obj = of_node mu obj in
        match (sub, pred, obj) with
          true, true, true -> 7
        | true, true, false -> 6
        | true, false, true -> 4
        | false, true, true -> 4
        | true, false, false -> 3
        | false, true, false -> 2
        | false, false, true -> 1
        | false, false, false -> 0


    let triple_vars =
      let add = Sparql_types.SSet.add in
      let rec of_path set = function
        A.Var v -> add v.var_name set
      | A.Iri _ -> set
      | A.Inv p -> of_path set p
      | A.Alt (p1, p2) -> of_path (of_path set p1) p2
      | A.Seq (p1, p2) -> of_path (of_path set p1) p2
      | A.ZeroOrMore p -> of_path set p
      | A.OneOrMore p -> of_path set p
      | A.ZeroOrOne p -> of_path set p
      | A.NPS _ -> set
      in
      let of_node set = function
        Var v -> add v.var_name set
      | GraphTerm (GraphTermBlank { bnode_label = Some s }) -> add ("?"^s) set
      | _ -> set
      in
      fun (x,path,y) ->
        of_node (of_path (of_node Sparql_types.SSet.empty y) path) x


    let sort_triples =
      let add_data mu triple =
        (triple, triple_constraint_score mu triple, triple_vars triple)
      in
      let sort (t1,sc1,vars1) (t2,sc2,vars2) =
        (* sort: the most constrained first *)
        match sc2 - sc1 with
          0 ->
            (* then sort by variables used in triples*)
            Sparql_types.SSet.compare vars1 vars2
        | n -> n
      in
      let proj (t,s,_) = t in
      fun mu l ->
        match l with
          [] | [_] -> l
        | _ ->
            let l = List.map (add_data mu) l in
            List.map proj (List.sort sort l)


    let filter_of_var_or_term mu = function
      Sparql_types.Var v ->
        begin
          try
            let term = Mu.find v.var_name mu in
            (None, Some term)
          with Not_found -> (Some v.var_name, None)
        end
    | GraphTerm t ->
        match t with
          GraphTermIri (Iri iri) -> (None, Some (P.term (Term.Iri iri.iri_iri)))
        | GraphTermIri (PrefixedName _) -> assert false
        | GraphTermIri (Iriref _) -> assert false
        | GraphTermLit lit
        | GraphTermNumeric lit
        | GraphTermBoolean lit -> (None, Some (P.term (Term.Literal lit.rdf_lit)))
        | GraphTermBlank bn ->
            begin
              match bn.bnode_label with
                None -> (None, None)
              | Some s ->
                  let var_name = "?"^s in
                  try
                    let term = Mu.find var_name mu in
                    (*prerr_endline ("blank("^var_name^")=>"^(Term.string_of_term (P.rdfterm term)));*)
                    (None, Some term)
                  with Not_found -> (Some var_name, None)
            end
        | GraphTermNil -> (None, None)
        | GraphTermNode node -> (None, Some (P.term node))

    let eval_simple_triple =
      let add mu term = function
        None -> mu
      | Some name -> Mu.add name term mu
      in
      fun mu x path y ->
        Log.debug
          (fun m -> m "eval_simple_triple %s"
               (Sparql_algebra.string_of_triple (x, path, y)));
        let (vx, sub) = filter_of_var_or_term mu x in
        let (vy, obj) = filter_of_var_or_term mu y in
        let (vp, pred) =
          match path with
            A.Var v ->
              begin
                try
                  let term = Mu.find v.var_name mu in
                  (None, Some term)
                with Not_found ->
                    (Some v.var_name, None)
              end
          | A.Iri iri -> (None, Some (P.term (Term.Iri iri.iri_iri)))
          | _ -> assert false
        in
        Log.debug
          (fun m ->
             let p = function
             | None -> "NONE"
             | Some t -> Term.string_of_term (P.rdfterm t)
             in
             m "sub=%s\npred=%s\nobj=%s"
               (p sub) (p pred) (p obj)
          );
        let f acc (s,p,o) =
          Log.debug (fun m ->
            (m "simple_triple__f(%s, %s, %s)"
                 (Term.string_of_term (P.rdfterm s))
                 (Term.string_of_term (P.rdfterm p))
                 (Term.string_of_term (P.rdfterm o))
            ));
          let mu = add mu s vx in
          let mu = add mu p vp in
          let mu = add mu o vy in
          mu :: acc
        in
        (* FIXME: we will use a fold in the graph when it is implemented *)
        let matches = P.find ?sub ?pred ?obj () in
        List.fold_left f [] matches


    let active_graph_subjects_and_objects () =
      let add set node = TSet.add node set in
      let set = List.fold_left add TSet.empty (P.subjects ()) in
      List.fold_left add set (P.objects ())

    let add_if_not_present mu ms =
      (* FIXME: List may not be the best datastructure... *)
      let pred mu2 = Mu.compare P.compare mu mu2 = 0 in
      if List.exists pred ms then ms else mu :: ms

    let rec eval_triples =
      let rec iter_join triples acc_mus mu =
        let triples = sort_triples mu triples in
        (*(match triples with
           [] -> ()
         | _ ->
             prerr_endline "sorted triples:";
             List.iter (fun t ->
                prerr_endline (Sparql_algebra.string_of_triple t))
               triples
        );*)
        (*prerr_endline ("iter_join triples="^(string_of_int (List.length triples)));
           prerr_endline ("acc_mus: "^(string_of_int (List.length acc_mus)));*)
        match triples with
          [] ->
            (*prerr_endline "concat";*)
            mu :: acc_mus
        | triple :: q ->
            let mus = eval_triple mu triple in
            List.fold_left (iter_join q) acc_mus mus
      in
      function
        | [] -> [ Mu.empty ]
        | triples -> iter_join triples [] Mu.empty

    and eval_triple_path_zero_or_one mu x p y =
            let ms_one = eval_simple_triple mu x p y in
            match x, y with
            | Var v, ((GraphTerm _) as t)
            | ((GraphTerm _) as t), Var v ->
                (*
                   eval(Path(X:term, ZeroOrOnePath(P), Y:var)) = { (Y, yn) | yn = X or {(Y, yn)} in eval(Path(X,P,Y)) }
                   eval(Path(X:var, ZeroOrOnePath(P), Y:term)) = { (X, xn) | xn = Y or {(X, xn)} in eval(Path(X,P,Y)) }
                   *)
                let (_, term) = filter_of_var_or_term mu t in
                (
                 match term with
                   None -> ms_one
                 | Some term ->
                     let pred mu =
                       try P.compare (Mu.find v.var_name mu) term = 0
                       with Not_found -> false
                     in
                     if List.exists pred ms_one then
                       ms_one
                     else
                       (
                        let mu = Mu.singleton v.var_name term in
                        mu :: ms_one
                       )
                )
            | GraphTerm _, GraphTerm _ ->
                (*
                   eval(Path(X:term, ZeroOrOnePath(P), Y:term)) =
                   { {} } if X = Y or eval(Path(X,P,Y)) is not empty
                   { } othewise
                   *)
                let (_, term1) = filter_of_var_or_term mu x in
                let (_, term2) = filter_of_var_or_term mu y in
                if not (ms_one = []) ||
                  Misc.opt_compare P.compare term1 term2 = 0
                then
                  [ Mu.empty ]
                else
                  []

            | Var v1, Var v2 ->
                (*
                   eval(Path(X:var, ZeroOrOnePath(P), Y:var)) =
                   { (X, xn) (Y, yn) | either (yn in nodes(G) and xn = yn) or {(X,xn), (Y,yn)} in eval(Path(X,P,Y)) }
                   *)
                let all_sub_and_obj = active_graph_subjects_and_objects () in
                let f term ms =
                  let mu = Mu.singleton v1.var_name term in
                  let mu = Mu.add v2.var_name term mu in
                  add_if_not_present mu ms
                in
                TSet.fold f all_sub_and_obj ms_one

    and eval_reachable =
            let term_of_graphterm mu0 t =
              match filter_of_var_or_term mu0 t with
                (_, None) -> assert false
              | (_, Some term) -> term
            in
            let rec iter mu0 gterm path var (seen, acc_ms) =
              let term = term_of_graphterm mu0 gterm in
              match TSet.mem term seen with
                true -> (seen, acc_ms)
              | false ->
                  let seen = TSet.add term seen in
                  let ms = eval_triple mu0 (gterm, path, Sparql_types.Var var) in
                  (* for each solution, use the term associated to var as
                     starting point for next iteration *)
                  let f (seen, acc_ms) mu =
                    try
                      let acc_ms = add_if_not_present mu acc_ms in
                      let node = P.rdfterm (Mu.find var.var_name mu) in
                      iter mu0 (GraphTerm (GraphTermNode node)) path var (seen, acc_ms)
                    with Not_found -> (seen, acc_ms)
                  in
                  List.fold_left f (seen, acc_ms) ms
            in
            fun ?(zero=false) mu0 term path var ->
              (*dbg ~level: 2
                (fun () ->
                   "eval_reachable card(mu0)="^(string_of_int (SMap.cardinal mu0))^
                     " term="^(Term.string_of_term (P.rdfterm (term_of_graphterm mu0 term)))^
                     ", var="^var.var_name^"\nmu="^
                     (String.concat ", "
                      (SMap.fold
                       (fun key v acc ->
                          (Printf.sprintf "%s=%s" key (Term.string_of_term (P.rdfterm v)))::acc)
                         mu0 []
                      )
                     )
                );
              *)
              let (_,ms) =
                let ms_start =
                  if zero then
                    [ Mu.singleton var.var_name (term_of_graphterm mu0 term) ]
                  else
                    []
                in
                iter mu0 term path var (TSet.empty, ms_start)
              in
              ms

    and eval_triple_path_or_more mu ~zero x p y =
      match x, y with
      | GraphTerm _, Var v ->
          (*dbg ~level: 2 (fun () -> "eval_triple_path_or_more GraphTerm-V");*)
          eval_reachable ~zero mu x p v
      | Var v, GraphTerm _ ->
          (*dbg ~level: 2 (fun () -> "eval_triple_path_or_more V-GraphTerm");*)
          begin
            let p = match p with A.Inv p -> p | p -> A.Inv p in
            eval_reachable ~zero mu y p v
          end
      | GraphTerm _, GraphTerm _ ->
          (*dbg ~level: 2 (fun () -> "eval_triple_path_or_more GraphTerm-GraphTerm");*)
          let term =
            match filter_of_var_or_term mu y with
              (_, None) ->  assert false
            | (_, Some term) -> term
          in
          let v = { var_loc = Loc.dummy_loc ; var_name = "__"^(Sparql_ms.gen_blank_id()) } in
          let solutions = eval_reachable ~zero mu x p v in
          let pred mu =
            try P.compare (Mu.find v.var_name mu) term = 0
            with Not_found -> false
          in
          if List.exists pred solutions then
            [ Mu.empty ]
          else
            []

      | Var v1, Var v2 ->
          (*dbg ~level: 2 (fun () -> "eval_triple_path_or_more V-V");*)
          let all_sub_and_obj = active_graph_subjects_and_objects () in
          (*dbg ~level: 2 (fun () -> "card(all_sub_and_obj)="^(string_of_int (TSet.cardinal all_sub_and_obj)));*)
          let f term acc_ms =
            let ms = eval_reachable ~zero mu
              (GraphTerm (GraphTermNode (P.rdfterm term))) p v2
            in
            (*dbg ~level:2
              (fun () -> "eval_triple_path_or_more (Var "^v1.var_name^") _ (Var "^v2.var_name^") card(ms)="^(string_of_int (List.length ms)));
            *)
            (* add (v1 -> term) to each returned solution *)
            let f acc_ms mu =
              let mu = Mu.add v1.var_name term mu in
              mu :: acc_ms
            in
            List.fold_left f acc_ms ms
          in
          TSet.fold f all_sub_and_obj []

    and eval_triple_path_nps mu x iris y =
      (* compute the triples and remove solutions where the predicate
         is one of the iris. *)
          let forbidden = List.fold_left
            (fun set iri -> TSet.add (P.term (Term.Iri iri.iri_iri)) set)
              TSet.empty iris
          in
          (* we use a dummy variable to access the predicate in each solution *)
          let v = { var_loc = Loc.dummy_loc ; var_name = "__"^(Sparql_ms.gen_blank_id()) } in
          let ms = eval_simple_triple mu x (A.Var v) y in
          let pred mu =
            try
              let p = Mu.find v.var_name mu in
              not (TSet.mem p forbidden)
            with Not_found -> false
          in
          List.filter pred ms

            (* See http://www.w3.org/TR/sparql11-query/#PropertyPathPatterns *)
    and eval_triple mu (x, path, y) =
      match path with
        A.Var _
      | A.Iri _ -> eval_simple_triple mu x path y
      | A.Inv p -> eval_triple mu (y, p, x)
      | A.Seq (p1, p2) ->
          let blank =
            let id = Sparql_ms.gen_blank_id () in
            GraphTerm
              (GraphTermBlank
               { bnode_loc = Loc.dummy_loc ;
                 bnode_label = Some id ;
               })
          in
          eval_triples [ (x, p1, blank) ; (blank, p2, y) ]
      | A.Alt (p1, p2) ->
          let o1 = eval_triples [ (x, p1, y) ] in
          let o2 = eval_triples [ (x, p2, y) ] in
          List.rev_append o1 o2
            (*let bgp1 = BGP [ (x, p1, y) ] in
               let bgp2 = BGP [ (x, p2, y) ] in
               eval (Union (bgp1, bgp2))*)
      | A.ZeroOrOne p ->
          eval_triple_path_zero_or_one mu x p y
      | A.ZeroOrMore p ->
          eval_triple_path_or_more ~zero: true mu x p y
      | A.OneOrMore p ->
          (* dbg ~level: 2 (fun () -> "OneOrMore");*)
          let ms = eval_triple_path_or_more ~zero: false mu x p y in
          (*dbg ~level: 2
            (fun () ->
               "OneOrMore: ms="^
               (String.concat "\n"
                  (List.map
                    (fun mu ->
                       (String.concat ", "
                        (SMap.fold
                         (fun key v acc ->
                            (Printf.sprintf "%s=%s" key (Term.string_of_term (P.rdfterm v)))::acc)
                           mu []
                        )
                       )
                    )
                    ms)
                 )
            );
             *)
          ms
      | A.NPS iris ->
          eval_triple_path_nps mu x iris y

   let eval_bgp =
      let graphmu_to_mu mu =
        Mu.fold
          (fun v term mu -> Sparql_ms.mu_add v (P.rdfterm term) mu)
          mu Sparql_ms.mu_0
      in
      fun triples ->
        (*prerr_endline ("triples: "^(string_of_int (List.length triples)));*)
        let mus = eval_triples triples in
        List.fold_left (fun o mu -> Sparql_ms.omega_add (graphmu_to_mu mu) o)
          Sparql_ms.Multimu.empty mus

end
OCaml

Innovation. Community. Security.