Source file bgp.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
(** *)
open Sparql_types;;
module A = Sparql_algebra;;
module type P =
sig
type g
type term
val term : Term.term -> term
val compare : term -> term -> int
val rdfterm : term -> Term.term
val subjects : unit -> term list
val objects : unit -> term list
val find : ?sub: term -> ?pred: term -> ?obj: term -> unit ->
(term * term * term) list
end
;;
module type S =
sig
val eval_bgp :
Sparql_algebra.triple list -> Sparql_ms.Multimu.t
end
module Make (P : P) =
struct
module Mu = Sparql_types.SMap
module TSet = Set.Make (struct type t = P.term let compare = P.compare end)
(** Score of pattern selectivity, copied from
https://bitbucket.org/dotnetrdf/dotnetrdf/wiki/DeveloperGuide/SPARQL/SPARQL%20Optimization. *)
let triple_constraint_score =
let of_var mu name =
try ignore(Mu.find name mu); true
with Not_found -> false
in
let of_node mu = function
Var v -> of_var mu v.var_name
| GraphTerm t ->
match t with
GraphTermBlank { bnode_label = Some s } -> of_var mu ("?"^s)
| GraphTermBlank _ -> false
| GraphTermNil -> false
| GraphTermIri _
| GraphTermLit _
| GraphTermNumeric _
| GraphTermBoolean _ -> true
| GraphTermNode _ -> assert false
in
let rec of_path mu = function
| A.Var v -> of_var mu v.var_name
| A.Iri _ -> true
| A.Inv p -> of_path mu p
| _ -> false
in
fun mu (sub, path, obj) ->
let sub = of_node mu sub in
let pred = of_path mu path in
let obj = of_node mu obj in
match (sub, pred, obj) with
true, true, true -> 7
| true, true, false -> 6
| true, false, true -> 4
| false, true, true -> 4
| true, false, false -> 3
| false, true, false -> 2
| false, false, true -> 1
| false, false, false -> 0
let triple_vars =
let add = Sparql_types.SSet.add in
let rec of_path set = function
A.Var v -> add v.var_name set
| A.Iri _ -> set
| A.Inv p -> of_path set p
| A.Alt (p1, p2) -> of_path (of_path set p1) p2
| A.Seq (p1, p2) -> of_path (of_path set p1) p2
| A.ZeroOrMore p -> of_path set p
| A.OneOrMore p -> of_path set p
| A.ZeroOrOne p -> of_path set p
| A.NPS _ -> set
in
let of_node set = function
Var v -> add v.var_name set
| GraphTerm (GraphTermBlank { bnode_label = Some s }) -> add ("?"^s) set
| _ -> set
in
fun (x,path,y) ->
of_node (of_path (of_node Sparql_types.SSet.empty y) path) x
let sort_triples =
let add_data mu triple =
(triple, triple_constraint_score mu triple, triple_vars triple)
in
let sort (t1,sc1,vars1) (t2,sc2,vars2) =
match sc2 - sc1 with
0 ->
Sparql_types.SSet.compare vars1 vars2
| n -> n
in
let proj (t,s,_) = t in
fun mu l ->
match l with
[] | [_] -> l
| _ ->
let l = List.map (add_data mu) l in
List.map proj (List.sort sort l)
let filter_of_var_or_term mu = function
Sparql_types.Var v ->
begin
try
let term = Mu.find v.var_name mu in
(None, Some term)
with Not_found -> (Some v.var_name, None)
end
| GraphTerm t ->
match t with
GraphTermIri (Iri iri) -> (None, Some (P.term (Term.Iri iri.iri_iri)))
| GraphTermIri (PrefixedName _) -> assert false
| GraphTermIri (Iriref _) -> assert false
| GraphTermLit lit
| GraphTermNumeric lit
| GraphTermBoolean lit -> (None, Some (P.term (Term.Literal lit.rdf_lit)))
| GraphTermBlank bn ->
begin
match bn.bnode_label with
None -> (None, None)
| Some s ->
let var_name = "?"^s in
try
let term = Mu.find var_name mu in
(None, Some term)
with Not_found -> (Some var_name, None)
end
| GraphTermNil -> (None, None)
| GraphTermNode node -> (None, Some (P.term node))
let eval_simple_triple =
let add mu term = function
None -> mu
| Some name -> Mu.add name term mu
in
fun mu x path y ->
Log.debug
(fun m -> m "eval_simple_triple %s"
(Sparql_algebra.string_of_triple (x, path, y)));
let (vx, sub) = filter_of_var_or_term mu x in
let (vy, obj) = filter_of_var_or_term mu y in
let (vp, pred) =
match path with
A.Var v ->
begin
try
let term = Mu.find v.var_name mu in
(None, Some term)
with Not_found ->
(Some v.var_name, None)
end
| A.Iri iri -> (None, Some (P.term (Term.Iri iri.iri_iri)))
| _ -> assert false
in
Log.debug
(fun m ->
let p = function
| None -> "NONE"
| Some t -> Term.string_of_term (P.rdfterm t)
in
m "sub=%s\npred=%s\nobj=%s"
(p sub) (p pred) (p obj)
);
let f acc (s,p,o) =
Log.debug (fun m ->
(m "simple_triple__f(%s, %s, %s)"
(Term.string_of_term (P.rdfterm s))
(Term.string_of_term (P.rdfterm p))
(Term.string_of_term (P.rdfterm o))
));
let mu = add mu s vx in
let mu = add mu p vp in
let mu = add mu o vy in
mu :: acc
in
let matches = P.find ?sub ?pred ?obj () in
List.fold_left f [] matches
let active_graph_subjects_and_objects () =
let add set node = TSet.add node set in
let set = List.fold_left add TSet.empty (P.subjects ()) in
List.fold_left add set (P.objects ())
let add_if_not_present mu ms =
let pred mu2 = Mu.compare P.compare mu mu2 = 0 in
if List.exists pred ms then ms else mu :: ms
let rec eval_triples =
let rec iter_join triples acc_mus mu =
let triples = sort_triples mu triples in
match triples with
[] ->
mu :: acc_mus
| triple :: q ->
let mus = eval_triple mu triple in
List.fold_left (iter_join q) acc_mus mus
in
function
| [] -> [ Mu.empty ]
| triples -> iter_join triples [] Mu.empty
and eval_triple_path_zero_or_one mu x p y =
let ms_one = eval_simple_triple mu x p y in
match x, y with
| Var v, ((GraphTerm _) as t)
| ((GraphTerm _) as t), Var v ->
let (_, term) = filter_of_var_or_term mu t in
(
match term with
None -> ms_one
| Some term ->
let pred mu =
try P.compare (Mu.find v.var_name mu) term = 0
with Not_found -> false
in
if List.exists pred ms_one then
ms_one
else
(
let mu = Mu.singleton v.var_name term in
mu :: ms_one
)
)
| GraphTerm _, GraphTerm _ ->
let (_, term1) = filter_of_var_or_term mu x in
let (_, term2) = filter_of_var_or_term mu y in
if not (ms_one = []) ||
Misc.opt_compare P.compare term1 term2 = 0
then
[ Mu.empty ]
else
[]
| Var v1, Var v2 ->
let all_sub_and_obj = active_graph_subjects_and_objects () in
let f term ms =
let mu = Mu.singleton v1.var_name term in
let mu = Mu.add v2.var_name term mu in
add_if_not_present mu ms
in
TSet.fold f all_sub_and_obj ms_one
and eval_reachable =
let term_of_graphterm mu0 t =
match filter_of_var_or_term mu0 t with
(_, None) -> assert false
| (_, Some term) -> term
in
let rec iter mu0 gterm path var (seen, acc_ms) =
let term = term_of_graphterm mu0 gterm in
match TSet.mem term seen with
true -> (seen, acc_ms)
| false ->
let seen = TSet.add term seen in
let ms = eval_triple mu0 (gterm, path, Sparql_types.Var var) in
let f (seen, acc_ms) mu =
try
let acc_ms = add_if_not_present mu acc_ms in
let node = P.rdfterm (Mu.find var.var_name mu) in
iter mu0 (GraphTerm (GraphTermNode node)) path var (seen, acc_ms)
with Not_found -> (seen, acc_ms)
in
List.fold_left f (seen, acc_ms) ms
in
fun ?(zero=false) mu0 term path var ->
let (_,ms) =
let ms_start =
if zero then
[ Mu.singleton var.var_name (term_of_graphterm mu0 term) ]
else
[]
in
iter mu0 term path var (TSet.empty, ms_start)
in
ms
and eval_triple_path_or_more mu ~zero x p y =
match x, y with
| GraphTerm _, Var v ->
eval_reachable ~zero mu x p v
| Var v, GraphTerm _ ->
begin
let p = match p with A.Inv p -> p | p -> A.Inv p in
eval_reachable ~zero mu y p v
end
| GraphTerm _, GraphTerm _ ->
let term =
match filter_of_var_or_term mu y with
(_, None) -> assert false
| (_, Some term) -> term
in
let v = { var_loc = Loc.dummy_loc ; var_name = "__"^(Sparql_ms.gen_blank_id()) } in
let solutions = eval_reachable ~zero mu x p v in
let pred mu =
try P.compare (Mu.find v.var_name mu) term = 0
with Not_found -> false
in
if List.exists pred solutions then
[ Mu.empty ]
else
[]
| Var v1, Var v2 ->
let all_sub_and_obj = active_graph_subjects_and_objects () in
let f term acc_ms =
let ms = eval_reachable ~zero mu
(GraphTerm (GraphTermNode (P.rdfterm term))) p v2
in
let f acc_ms mu =
let mu = Mu.add v1.var_name term mu in
mu :: acc_ms
in
List.fold_left f acc_ms ms
in
TSet.fold f all_sub_and_obj []
and eval_triple_path_nps mu x iris y =
let forbidden = List.fold_left
(fun set iri -> TSet.add (P.term (Term.Iri iri.iri_iri)) set)
TSet.empty iris
in
let v = { var_loc = Loc.dummy_loc ; var_name = "__"^(Sparql_ms.gen_blank_id()) } in
let ms = eval_simple_triple mu x (A.Var v) y in
let pred mu =
try
let p = Mu.find v.var_name mu in
not (TSet.mem p forbidden)
with Not_found -> false
in
List.filter pred ms
and eval_triple mu (x, path, y) =
match path with
A.Var _
| A.Iri _ -> eval_simple_triple mu x path y
| A.Inv p -> eval_triple mu (y, p, x)
| A.Seq (p1, p2) ->
let blank =
let id = Sparql_ms.gen_blank_id () in
GraphTerm
(GraphTermBlank
{ bnode_loc = Loc.dummy_loc ;
bnode_label = Some id ;
})
in
eval_triples [ (x, p1, blank) ; (blank, p2, y) ]
| A.Alt (p1, p2) ->
let o1 = eval_triples [ (x, p1, y) ] in
let o2 = eval_triples [ (x, p2, y) ] in
List.rev_append o1 o2
| A.ZeroOrOne p ->
eval_triple_path_zero_or_one mu x p y
| A.ZeroOrMore p ->
eval_triple_path_or_more ~zero: true mu x p y
| A.OneOrMore p ->
let ms = eval_triple_path_or_more ~zero: false mu x p y in
ms
| A.NPS iris ->
eval_triple_path_nps mu x iris y
let eval_bgp =
let graphmu_to_mu mu =
Mu.fold
(fun v term mu -> Sparql_ms.mu_add v (P.rdfterm term) mu)
mu Sparql_ms.mu_0
in
fun triples ->
let mus = eval_triples triples in
List.fold_left (fun o mu -> Sparql_ms.omega_add (graphmu_to_mu mu) o)
Sparql_ms.Multimu.empty mus
end