package prbnmcn-stats

  1. Overview
  2. Docs

Source file fin.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
let measure (type t r) (module R : Basic_intf.Reals with type t = r)
    (module V : Basic_intf.Free_module_std
      with type R.t = r
       and type Basis.t = t) (elements : (t * r) list) :
    (t, r) Stats_intf.fin_mes =
  let all_nonnegative = List.for_all (fun (_, r) -> R.(r >= zero)) elements in
  if not all_nonnegative then invalid_arg "measure: negative weight" ;
  M
    (module struct
      type nonrec t = t

      type nonrec r = r

      module V = V

      let total_weight =
        List.fold_left (fun acc (_, w) -> R.add w acc) R.zero elements

      let weightmap = V.of_list elements
    end)
  [@@inline]

let probability (type t r) (module R : Basic_intf.Reals with type t = r)
    (module V : Basic_intf.Free_module_std
      with type R.t = r
       and type Basis.t = t) (elements : (t * r) list) :
    (t, r) Stats_intf.fin_prb =
  let (_points, weights) = List.split elements in
  let total_weight = List.fold_left R.add R.zero weights in
  if not R.(total_weight = R.one) then
    Format.kasprintf
      invalid_arg
      "probability: weights do not sum up to 1 (%a)"
      R.pp
      total_weight ;
  let (M m) = measure (module R) (module V) elements in
  P m
  [@@inline]

let as_measure (Stats_intf.P prob) = Stats_intf.M prob

module Make (Reals : Basic_intf.Reals) = struct
  type r = Reals.t

  type 'a finfn = ('a, r) Stats_intf.fin_fun

  type 'a prb = ('a, r) Stats_intf.fin_prb

  type 'a mes = ('a, r) Stats_intf.fin_mes

  let measure v elements = measure (module Reals) v elements

  let probability v elements = probability (module Reals) v elements

  let total_mass (type t) (M (module D) : (t, r) Stats_intf.fin_mes) : r =
    D.total_weight

  let normalize (type t) (M (module D) : (t, r) Stats_intf.fin_mes) :
      (t, r) Stats_intf.fin_prb =
    if Reals.equal D.total_weight Reals.zero then
      invalid_arg "normalize: null measure" ;
    let imass = Reals.div Reals.one D.total_weight in
    P
      (module struct
        type t = D.t

        type nonrec r = r

        module V = D.V

        let total_weight = Reals.one

        let weightmap = V.smul imass D.weightmap
      end)

  let sample : type a. (a, r) Stats_intf.fin_mes -> Random.State.t -> a =
    fun (type t)
        (Stats_intf.M
          (module D : Stats_intf.Fin_fun with type t = t and type r = r))
        rng_state ->
     let exception Sampled of t in
     let r = Reals.(D.total_weight * lebesgue rng_state) in
     try
       let _ =
         D.V.fold
           (fun elt weight cumu ->
             let cumu = Reals.add cumu weight in
             if Reals.(r <= cumu) then raise (Sampled elt) else cumu)
           D.weightmap
           Reals.zero
       in
       (* should be unreachable *)
       assert false
     with Sampled x -> x

  let counts_of_empirical (type t)
      (module V : Basic_intf.Free_module_std
        with type R.t = Reals.t
         and type Basis.t = t) (p : t array) : (t, r) Stats_intf.fin_mes =
    let weightmap =
      Array.fold_left
        (fun vec elt -> V.add vec (V.of_list [(elt, Reals.one)]))
        V.zero
        p
    in
    M
      (module struct
        type nonrec t = t

        type nonrec r = r

        module V = V

        let total_weight = Reals.of_int (Array.length p)

        let weightmap = weightmap
      end)

  let uniform (type t)
      (module V : Basic_intf.Free_module_std
        with type R.t = Reals.t
         and type Basis.t = t) (arr : t array) : (t, r) Stats_intf.fin_prb =
    let len = Array.length arr in
    if Int.equal len 0 then failwith "uniform: empty array"
    else
      let prb = Reals.(div one (of_int len)) in
      P
        (module struct
          type nonrec t = t

          type nonrec r = r

          module V = V

          let total_weight = Reals.one

          let weightmap =
            Array.fold_left
              (fun map x -> V.add (V.of_list [(x, prb)]) map)
              V.zero
              arr
        end)

  let eval_prb (type t) (P (module P) : (t, r) Stats_intf.fin_prb) (x : t) : r =
    P.V.eval P.weightmap x

  let eval_mes (type t) (M (module P) : (t, r) Stats_intf.fin_mes) (x : t) : r =
    P.V.eval P.weightmap x

  let integrate (type t) (M (module P) : (t, r) Stats_intf.fin_mes) (f : t -> r)
      : r =
    P.V.fold (fun x w acc -> Reals.(acc + (w * f x))) P.weightmap Reals.zero

  let kernel (type a b) ?(h : (module Basic_intf.Std with type t = a) option)
      (module V : Basic_intf.Free_module_std
        with type R.t = Reals.t
         and type Basis.t = b) (kernel : a -> (b * r) list) :
      (a, b, r) Stats_intf.kernel =
    let kernel =
      match h with
      | None -> fun x -> V.of_list (kernel x)
      | Some (module H) -> (
          let module Element = struct
            type t = { key : H.t; data : V.t }

            let hash { key; _ } = H.hash key

            let equal x1 x2 = H.equal x1.key x2.key
          end in
          let module Table = Weak.Make (Element) in
          let table = Table.create 11 in
          fun x ->
            match Table.find_opt table { Element.key = x; data = V.zero } with
            | None ->
                let res = V.of_list (kernel x) in
                Table.add table { Element.key = x; data = res } ;
                res
            | Some { Element.data; _ } -> data)
    in
    let module K = struct
      type t = a

      type u = b

      type nonrec r = r

      module V = V

      let kernel = kernel
    end in
    (module K)

  let compose :
      type a b c.
      ?h:(module Basic_intf.Std with type t = a) ->
      (a, b, r) Stats_intf.kernel ->
      (b, c, r) Stats_intf.kernel ->
      (a, c, r) Stats_intf.kernel =
   fun ?h (module K1) (module K2) ->
    let kernel =
      match h with
      | None ->
          fun x ->
            let vec = K1.kernel x in
            K1.V.fold
              (fun b pb acc ->
                let vec = K2.kernel b in
                K2.V.add (K2.V.smul pb vec) acc)
              vec
              K2.V.zero
      | Some (module H) -> (
          let module Element = struct
            type t = { key : H.t; data : K2.V.t }

            let hash { key; _ } = H.hash key

            let equal x1 x2 = H.equal x1.key x2.key
          end in
          let module Table = Weak.Make (Element) in
          let table = Table.create 11 in
          fun x ->
            match
              Table.find_opt table { Element.key = x; data = K2.V.zero }
            with
            | None ->
                let vec = K1.kernel x in
                let res =
                  K1.V.fold
                    (fun b pb acc ->
                      let vec = K2.kernel b in
                      K2.V.(add (smul pb vec) acc))
                    vec
                    K2.V.zero
                in
                Table.add table { Element.key = x; data = res } ;
                res
            | Some { Element.data; _ } -> data)
    in
    let module Kernel = struct
      type t = K1.t

      type u = K2.u

      type nonrec r = r

      module V = K2.V

      let kernel = kernel
    end in
    (module Kernel)

  let constant_kernel :
      type a b. (b, r) Stats_intf.fin_prb -> (a, b, r) Stats_intf.kernel =
   fun (P (module P)) ->
    let module Kernel = struct
      type t = a

      type u = P.t

      type nonrec r = r

      module V = P.V

      let kernel _x = P.weightmap
    end in
    (module Kernel)

  let eval_kernel : type a b. a -> (a, b, r) Stats_intf.kernel -> (b * r) list =
   fun x (module K) -> K.V.fold (fun k p acc -> (k, p) :: acc) (K.kernel x) []

  let raw_data_measure (type t) (M (module D) : (t, r) Stats_intf.fin_mes) =
    let den = D.V.fold (fun elt w acc -> (elt, w) :: acc) D.weightmap [] in
    `Measure den

  let raw_data_probability (type t) (P (module D) : (t, r) Stats_intf.fin_prb) =
    let den = D.V.fold (fun elt w acc -> (elt, w) :: acc) D.weightmap [] in
    `Probability den

  let pp_fin_mes : type a. Format.formatter -> (a, r) Stats_intf.fin_mes -> unit
      =
   fun f den ->
    let (M (module D)) = den in
    let (`Measure l) = raw_data_measure den in
    Format.fprintf
      f
      "@[<h>%a@]"
      (Format.pp_print_list (fun elt_fmt (elt, pr) ->
           Format.fprintf elt_fmt "(%a, %a);@," D.V.Basis.pp elt Reals.pp pr))
      l

  let pp_fin_mes_by_measure :
      type a. Format.formatter -> (a, r) Stats_intf.fin_mes -> unit =
   fun f den ->
    let (M (module D)) = den in
    let (`Measure l) = raw_data_measure den in
    let l = List.sort (fun (_, r1) (_, r2) -> Reals.compare r1 r2) l in
    Format.fprintf
      f
      "@[<h>%a@]"
      (Format.pp_print_list (fun elt_fmt (elt, pr) ->
           Format.fprintf elt_fmt "(%a, %a);@," D.V.Basis.pp elt Reals.pp pr))
      l

  let pushforward (type t u) (prior : (t, r) Stats_intf.fin_mes)
      (likelihood : (t, u, r) Stats_intf.kernel) : (u, r) Stats_intf.fin_mes =
    let (M (module Prior)) = prior in
    let (module Likelihood) = likelihood in
    let map =
      Prior.V.fold
        (fun x px acc ->
          let fx = Likelihood.kernel x in
          Likelihood.V.(add (smul px fx) acc))
        Prior.weightmap
        Likelihood.V.zero
    in
    let module Result = struct
      type t = u

      type nonrec r = r

      module V = Likelihood.V

      let total_weight = V.fold (fun _ w acc -> Reals.add w acc) map Reals.zero

      let weightmap = map
    end in
    M (module Result)

  let inverse (type t u) ?(h : (module Basic_intf.Std with type t = u) option)
      (prior : (t, r) Stats_intf.fin_prb)
      (likelihood : (t, u, r) Stats_intf.kernel) :
      (u, r) Stats_intf.fin_prb * (u, t, r) Stats_intf.kernel =
    let (P (module Prior)) = prior in
    let (module Likelihood) = likelihood in
    let (M (module Pushforward)) = pushforward (M (module Prior)) likelihood in
    let kernel (y : u) =
      let nu_y = Pushforward.V.eval Pushforward.weightmap y in
      Prior.V.fold
        (fun x mu_x acc ->
          let forward = Likelihood.kernel x in
          let f_x_y = Likelihood.V.eval forward y in
          let prob = Reals.(mul mu_x f_x_y / nu_y) in
          Prior.V.(add acc (of_list [(x, prob)])))
        Prior.weightmap
        Prior.V.zero
    in
    let module Kernel = struct
      type t = Likelihood.u

      type u = Likelihood.t

      type nonrec r = r

      module V = Prior.V

      let kernel =
        match h with
        | None -> kernel
        | Some (module H) -> (
            let module Element = struct
              type t = { key : H.t; data : V.t }

              let hash { key; _ } = H.hash key

              let equal x1 x2 = H.equal x1.key x2.key
            end in
            let module Table = Weak.Make (Element) in
            let table = Table.create 11 in
            fun y ->
              match
                Table.find_opt table { Element.key = y; data = Prior.V.zero }
              with
              | None ->
                  let res = kernel y in
                  Table.add table { Element.key = y; data = res } ;
                  res
              | Some res -> res.data)
    end in
    (P (module Pushforward), (module Kernel))

  module Bool_vec =
    Basic_impl.Free_module.Make
      (struct
        include Bool

        let pp = Format.pp_print_bool

        let hash = Hashtbl.hash
      end)
      (Reals)
      (Map.Make (Bool))

  module Int_vec =
    Basic_impl.Free_module.Make (Std.Int) (Reals) (Basic_impl.Int_map)

  let coin ~bias : (bool, r) Stats_intf.fin_prb =
    if Reals.(bias < zero || bias > one) then invalid_arg "coin: invalid bias"
    else
      probability (module Bool_vec) [(true, bias); (false, Reals.(one - bias))]

  let bincoeff n k =
    let n = Reals.of_int n in
    let rec loop i acc =
      if Int.equal i (k + 1) then acc
      else
        let fi = Reals.of_int i in
        loop (i + 1) Reals.(acc * ((n + one - fi) / fi))
    in
    loop 1 Reals.one

  let binomial (coin : (bool, r) Stats_intf.fin_prb) n =
    let p = eval_prb coin true in
    let not_p = eval_prb coin false in
    let elements =
      List.init n (fun k ->
          let n_minus_k = n - k in
          Reals.(k, bincoeff n k * npow p k * npow not_p n_minus_k))
    in
    normalize @@ measure (module Int_vec) elements

  let mean_generic (type elt)
      (module L : Basic_intf.Module with type t = elt and type R.t = Reals.t)
      (M (module Dist) : (elt, r) Stats_intf.fin_mes) =
    Dist.V.fold (fun x w acc -> L.add (L.smul w x) acc) Dist.weightmap L.zero

  let mean (dist : (r, r) Stats_intf.fin_mes) = integrate dist (fun x -> x)

  let variance (dist : (r, r) Stats_intf.fin_mes) =
    let (M (module Dist)) = dist in
    let m = mean dist in
    Dist.V.fold
      (fun x w acc ->
        let acc =
          let open Reals in
          let delta = x - m in
          let delta_squared = delta * delta in
          acc + (delta_squared * w)
        in
        acc)
      Dist.weightmap
      Reals.zero

  let fold_union (type x) f (m1 : x mes) (m2 : x mes) acc =
    let (M (module Dist1)) = m1 in
    let (M (module Dist2)) = m2 in
    let module Table = Hashtbl.Make (Dist1.V.Basis) in
    let table = Table.create 127 in
    Dist1.V.fold (fun x r () -> Table.add table x r) Dist1.weightmap () ;
    let acc =
      Dist2.V.fold
        (fun y r acc ->
          match Table.find_opt table y with
          | None -> f y Reals.zero r acc
          | Some r' ->
              Table.remove table y ;
              f y r r' acc)
        Dist2.weightmap
        acc
    in
    (* process elements in support(m1)\support(m2) *)
    Table.fold (fun x r acc -> f x r Reals.zero acc) table acc
end
[@@inline]

module Float = struct
  include Make (Basic_impl.Reals.Float)

  module Dist = struct
    let kl m1 m2 =
      fold_union (fun _ r1 r2 acc -> acc +. (r1 *. log (r1 /. r2))) m1 m2 0.0

    let lp ~p m1 m2 =
      if p <. 1. then invalid_arg "lp: p < 1" ;
      let res =
        fold_union
          (fun _ r1 r2 acc -> acc +. (abs_float (r1 -. r2) ** p))
          m1
          m2
          0.0
      in
      res ** (1. /. p)

    let maxf x y = if x <. y then y else x

    let linf m1 m2 =
      fold_union (fun _ r1 r2 acc -> maxf acc (abs_float (r1 -. r2))) m1 m2 0.0
  end
end

module Rational = struct
  include Make (Basic_impl.Reals.Rational)

  module Dist = struct
    let maxq x y = if Q.(x < y) then y else x

    let linf m1 m2 =
      fold_union
        (fun _ r1 r2 acc -> maxq acc (Q.abs (Q.sub r1 r2)))
        m1
        m2
        Q.zero
  end
end
OCaml

Innovation. Community. Security.