package ppx_repr

  1. Overview
  2. Docs

Source file engine.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
(*
 * Copyright (c) 2019-2020 Craig Ferguson <me@craigfe.io>
 *
 * Permission to use, copy, modify, and distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 *)

open Ppxlib
open! Utils
include Engine_intf

let map_lident f = function
  | Lapply _ -> invalid_arg "Lident.Lapply not supported"
  | Ldot (l, s) -> Ldot (l, f s)
  | Lident s -> Lident (f s)

let repr_name_of_type_name = function "t" -> "t" | x -> x ^ "_t"

module Located (Attributes : Attributes.S) (A : Ast_builder.S) : S = struct
  type state = {
    rec_flag : rec_flag;
    type_name : string;
    lib : string option;
    repr_name : string;
    rec_detected : bool ref;
    var_repr : ([ `Any | `Var of string ] -> expression option) ref;
        (** Given a type variable in a type, get its corresponding typerep (if
            the variable is properly bound). *)
  }

  let add_var_repr : type a b. (a -> b option) ref -> a * b -> unit =
   fun f_ref (a, b) ->
    let f_old = !f_ref in
    let f_new a' = if a = a' then Some b else f_old a' in
    f_ref := f_new

  open Utils
  open Utils.Make (A)
  module Reader = Monad.Reader

  module Algebraic = struct
    include Algebraic
    include Algebraic.Located (A) (Reader)
  end

  open A
  open Reader.Syntax
  open Reader

  let all_unlabelled = List.map (fun x -> (Nolabel, x))

  let recursive ~lib fparam e =
    let mu = evar (match lib with Some s -> s ^ ".mu" | None -> "mu") in
    [%expr [%e mu] (fun [%p pvar fparam] -> [%e e])]

  type name = { typ : string; repr : string }

  let mutually_recursive ~lib (e1, n1) (e2, n2) =
    let mu2 = evar (match lib with Some s -> s ^ ".mu2" | None -> "mu2") in
    [%expr
      [%e mu2] (fun [%p pvar n1.repr] [%p pvar n2.repr] -> ([%e e1], [%e e2]))]

  let in_lib ~lib x = match lib with Some lib -> lib ^ "." ^ x | None -> x

  let contains_tvar tvar typ =
    (object
       inherit [bool] Ast_traverse.fold as super

       method! core_type_desc t =
         super#core_type_desc t >> fun acc ->
         acc || match t with Ptyp_var v when v = tvar -> true | _ -> false
    end)
      #core_type
      typ false

  let rowfield_is_inherit = function
    | { prf_desc = Rinherit _; _ } -> true
    | _ -> false

  let rec derive_core typ =
    let* { type_name; lib; var_repr; _ } = ask in
    let loc = typ.ptyp_loc in
    match typ.ptyp_desc with
    | Ptyp_constr ({ txt = const_name; _ }, args) -> (
        match Attribute.get Attributes.repr typ with
        | Some e -> return e
        | None ->
            let nobuiltin =
              Option.to_bool (Attribute.get Attributes.nobuiltin typ)
            in
            let* lident = derive_lident ~nobuiltin const_name in
            let+ cons_args =
              args >|= derive_core |> sequence |> map all_unlabelled
            in
            pexp_apply (pexp_ident lident) cons_args)
    | Ptyp_variant (_, Open, _) -> Raise.Unsupported.type_open_polyvar ~loc typ
    | Ptyp_variant (rowfields, Closed, _labellist) ->
        if List.exists rowfield_is_inherit rowfields then
          Raise.Unsupported.polyvar_inherit_case ~loc typ;
        derive_polyvariant type_name rowfields
    | Ptyp_poly _ -> Raise.Unsupported.type_poly ~loc typ
    | Ptyp_tuple args -> derive_tuple args
    | Ptyp_arrow _ -> Raise.Unsupported.type_arrow ~loc typ
    | Ptyp_any -> Location.raise_errorf ~loc "Unbound type variable"
    | Ptyp_var v -> (
        match !var_repr (`Var v) with
        | Some r -> return r
        | None -> Location.raise_errorf ~loc "Unbound type variable" v)
    | Ptyp_package _ -> Raise.Unsupported.type_package ~loc typ
    | Ptyp_extension _ -> Raise.Unsupported.type_extension ~loc typ
    | Ptyp_alias (c, var) ->
        if contains_tvar var c then (
          add_var_repr var_repr (`Var var, evar var);
          let+ inner = derive_core c in
          recursive ~lib var inner)
        else derive_core c
    | Ptyp_object _ | Ptyp_class _ -> invalid_arg "unsupported"

  and derive_tuple args =
    let* { lib; _ } = ask in
    match args with
    | [ t ] ->
        (* This case can occur when the tuple type is nested inside a variant *)
        derive_core t
    | _ ->
        let tuple_type =
          (match List.length args with
          | 2 -> "pair"
          | 3 -> "triple"
          | n -> Raise.Unsupported.tuple_size ~loc n)
          |> in_lib ~lib
          |> evar
        in
        args
        >|= derive_core
        |> sequence
        |> map (all_unlabelled >> pexp_apply tuple_type)

  and derive_record ls =
    let* { type_name; lib; _ } = ask in
    let subderive label_decl =
      let field_name = label_decl.pld_name.txt in
      let+ field_repr = derive_core label_decl.pld_type in
      Algebraic.Typ.{ field_name; field_repr }
    in
    Algebraic.(encode Typ.Record) ~subderive ~lib ~type_name ls

  and derive_variant cs =
    let* { type_name; lib; _ } = ask in
    let subderive c =
      let case_name = c.pcd_name.txt in
      let+ case_cons =
        match c.pcd_args with
        | Pcstr_record _ -> invalid_arg "Inline record types unsupported"
        | Pcstr_tuple [] -> return None
        | Pcstr_tuple cs ->
            let+ tuple_typ = derive_tuple cs in
            Some (tuple_typ, List.length cs)
      in
      Algebraic.Typ.{ case_name; case_cons }
    in
    Algebraic.(encode Variant) ~subderive ~lib ~type_name cs

  and derive_polyvariant name rowfields =
    let* { lib; _ } = ask in
    let subderive f =
      let+ case_name, case_cons =
        match f.prf_desc with
        | Rtag (label, _, []) -> return (label.txt, None)
        | Rtag (label, _, typs) ->
            let+ tuple_typ = derive_tuple typs in
            (label.txt, Some (tuple_typ, List.length typs))
        | Rinherit _ -> assert false
      in
      Algebraic.Typ.{ case_name; case_cons }
    in
    Algebraic.(encode Polyvariant) ~subderive ~lib ~type_name:name rowfields

  and derive_lident :
      nobuiltin:bool -> longident -> (longident loc, state) Reader.t =
   fun ~nobuiltin txt ->
    let+ { lib; type_name; rec_flag; rec_detected; repr_name; _ } = ask in
    match (rec_flag, txt) with
    | Recursive, Lident const_name when String.equal const_name type_name ->
        (* If this type is the one we are deriving and the 'nonrec'
           keyword hasn't been used, replace with the repr
           name *)
        rec_detected := true;
        Located.lident repr_name
    | _ -> (
        match (nobuiltin, Dsl.type_to_combinator_name txt) with
        | true, (Some _ | None) | false, None ->
            map_lident repr_name_of_type_name txt |> Located.mk
        | false, Some combinator_name ->
            in_lib ~lib combinator_name |> Located.lident)

  let derive_type_decl : type_declaration -> (expression, state) Reader.t =
   fun typ ->
    match typ.ptype_kind with
    | Ptype_abstract -> (
        match typ.ptype_manifest with
        | None -> invalid_arg "No manifest"
        | Some c -> (
            match c.ptyp_desc with
            (* No need to open library module *)
            | Ptyp_constr ({ txt; loc = _ }, []) -> (
                match Attribute.get Attributes.repr c with
                | Some repr -> return repr
                | None ->
                    let nobuiltin =
                      match Attribute.get Attributes.nobuiltin c with
                      | Some () -> true
                      | None -> false
                    in
                    let+ name = derive_lident ~nobuiltin txt in
                    pexp_ident name)
            (* Type constructor: list, tuple, etc. *)
            | _ -> derive_core c))
    | Ptype_variant cs -> derive_variant cs
    | Ptype_record ls -> derive_record ls
    | Ptype_open -> Raise.Unsupported.type_open ~loc

  let parse_lib expr =
    let pattern =
      let open Ast_pattern in
      let none = map0 ~f:None @@ pexp_construct (lident (string "None")) none in
      let some =
        map1 ~f:Option.some
        @@ pexp_construct (lident (string "Some")) (some (estring __))
      in
      none ||| some
    in
    Ast_pattern.parse pattern loc expr
      (fun k -> k)
      ~on_error:(fun () ->
        Location.raise_errorf ~loc:expr.pexp_loc
          "Could not process `lib' argument: must be either `Some \"Lib\"' or \
           `None'")

  (* Remove duplicate elements from a list (preserving the order of the first
     occurrence of each duplicate). *)
  let list_uniq_stable =
    let rec inner ~seen acc = function
      | [] -> List.rev acc
      | x :: xs when not (List.mem x seen) ->
          inner ~seen:(x :: seen) (x :: acc) xs
      | _ :: xs (* seen *) -> inner ~seen acc xs
    in
    inner ~seen:[] []

  module Unbound_tvars = struct
    type acc = { free : string list; ctx_bound : string list }

    (* Find all unbound type variables, renaming any instances of [Ptyp_any] to a
       fresh variable. *)
    let find typ =
      (object
         inherit [acc] Ast_traverse.fold_map as super

         method! core_type_desc t acc =
           match t with
           | Ptyp_var v when not (List.mem v acc.ctx_bound) ->
               (t, { acc with free = v :: acc.free })
           | Ptyp_any ->
               let name = gen_symbol () in
               (Ptyp_var name, { acc with free = name :: acc.free })
           | Ptyp_alias (c, v) ->
               (* Push [v] to the bound stack, traverse the alias, then remove it. *)
               let c, acc =
                 super#core_type c { acc with ctx_bound = v :: acc.ctx_bound }
               in
               let ctx_bound =
                 match acc.ctx_bound with
                 | v' :: ctx_bound when v = v' -> ctx_bound
                 | _ -> assert false
               in
               (Ptyp_alias (c, v), { acc with ctx_bound })
           | _ -> super#core_type_desc t acc
      end)
        #core_type
        typ
        { free = []; ctx_bound = [] }
  end

  let expand_typ ?lib typ =
    let typ, Unbound_tvars.{ free = tvars; _ } = Unbound_tvars.find typ in
    let tvars = List.rev tvars |> list_uniq_stable in
    let env =
      {
        rec_flag = Nonrecursive;
        type_name = "t";
        repr_name = "t";
        rec_detected = ref false;
        lib;
        var_repr =
          ref (function
            | `Any ->
                assert false
                (* We already renamed all instances of [Ptyp_any] *)
            | `Var x -> Some (evar x));
      }
    in
    run (derive_core typ) env |> lambda tvars

  let derive_sig ~plugins ~name ~lib (_rec_flag, type_declarations) =
    List.concat_map type_declarations ~f:(fun typ ->
        let type_name = typ.ptype_name.txt in
        let name =
          Located.mk
            (match name with
            | Some n -> n
            | None -> repr_name_of_type_name type_name)
        in
        let ty_lident =
          (match lib with
          | Some _ -> in_lib ~lib "t"
          | None -> (
              (* This type decl may shadow the repr type ['a t] *)
              match name.txt with "t" -> "ty" | _ -> "t"))
          |> Located.lident
        in
        let type_ =
          combinator_type_of_type_declaration typ ~f:(fun ~loc:_ t ->
              ptyp_constr ty_lident [ t ])
        in
        let plugin_derivations =
          let td = name_type_params_in_td typ in
          let params =
            ListLabels.map td.ptype_params ~f:(function v, _ ->
                ptyp_constr ty_lident [ v ])
          in
          let ctyp = core_type_of_type_declaration td in
          ListLabels.map plugins
            ~f:(Meta_deriving.Plugin.derive_sig ~loc ~type_name ~params ~ctyp)
        in
        psig_value (value_description ~name ~type_ ~prim:[])
        :: plugin_derivations)

  module Typerep_derivation = struct
    type t = { params : string list; body : expression }
    (** A typerep derivation is an expression defined in terms of combinators,
        potentially scoped inside a list of parameters (if the corresponding
        type has type parameters). *)

    let to_expr ?(transform_body = Fun.id) t =
      lambda t.params (transform_body t.body)
  end

  let repr_of_type_decl ~(handle_recursion : bool) ~(lib : string option)
      ~rec_flag typ repr_name :
      pattern * Typerep_derivation.t * [ `Param_required of bool ] =
    let tparams =
      typ.ptype_params
      |> List.map (function
           | { ptyp_desc = Ptyp_var v; _ }, _ -> v
           | { ptyp_desc = Ptyp_any; _ }, _ -> "_"
           | _ -> assert false)
    in
    let env =
      let type_name = typ.ptype_name.txt in
      let rec_detected = ref false in
      let var_repr =
        ref (function
          | `Any -> Raise.Unsupported.type_any ~loc
          | `Var v -> if List.mem v tparams then Some (evar v) else None)
      in
      { rec_flag; type_name; repr_name; rec_detected; lib; var_repr }
    in
    let expr = run (derive_type_decl typ) env in
    (* If the type is syntactically self-referential, wrap with [mu] *)
    let expr =
      if handle_recursion && !(env.rec_detected) then
        recursive ~lib:env.lib env.repr_name expr
      else expr
    in
    let expr = Typerep_derivation.{ params = tparams; body = expr } in
    let pat = pvar env.repr_name in
    (pat, expr, `Param_required (List.length tparams > 0))

  let derive_str ~plugins ~name ~lib = function
    | Recursive, [] -> assert false
    | Recursive, tds when List.length tds > 2 ->
        failwith "Mutually-recursive groups of size > 2 supported"
    | rec_flag, type_declarations ->
        let multiple_tds = List.length type_declarations > 1 in
        let repr_names =
          match (name, type_declarations) with
          | _, [] -> assert false
          | Some _, _ :: _ :: _ ->
              failwith "Cannot specify name of mutually-recursive group"
          | Some repr, [ typ ] -> [ { repr; typ = typ.ptype_name.txt } ]
          | None, _ ->
              ListLabels.map type_declarations ~f:(fun typ ->
                  let typ = typ.ptype_name.txt in
                  let repr = repr_name_of_type_name typ in
                  { typ; repr })
        in

        let pats, named_treps =
          (* If there is only one type declaration – and it's potentially
             recursive – we might want to add a [mu] combinator inside the repr
             derivation.

             Mutually-recursive declarations are handled separately with [mu2]
             combinators below. *)
          let handle_recursion = rec_flag = Recursive && not multiple_tds in
          ListLabels.map2 type_declarations repr_names ~f:(fun typ name ->
              let pat, expr, `Param_required pr =
                repr_of_type_decl ~rec_flag ~handle_recursion ~lib typ name.repr
              in
              if pr && multiple_tds then
                failwith
                  "Can't support mutually-recursive types with type parameters";
              (pat, (expr, name)))
          |> List.split
        in
        let pat, expr =
          match (pats, named_treps) with
          | [ p1 ], [ (e1, _) ] -> (p1, Typerep_derivation.to_expr e1)
          | ps, es ->
              let pat =
                List.reduce_exn ps ~f:(fun p1 p2 -> [%pat? [%p p1], [%p p2]])
              in
              let expr =
                if rec_flag = Recursive then
                  match (es : (Typerep_derivation.t * name) list) with
                  | [ (e1, n1); (e2, n2) ] ->
                      (* Mutual recursion with type parameters rejected above *)
                      assert (e1.params = []);
                      assert (e2.params = []);
                      mutually_recursive ~lib (e1.body, n1) (e2.body, n2)
                  | _ ->
                      (* Recursive groups of size n > 2 rejected above *)
                      assert false
                else
                  List.map (fst >> Typerep_derivation.to_expr) es
                  |> List.reduce_exn ~f:(fun e1 e2 -> [%expr [%e e1], [%e e2]])
              in
              (pat, expr)
        in
        let plugin_derivations =
          List.concat_map named_treps ~f:(fun (typerep, name) ->
              ListLabels.map plugins ~f:(fun plugin ->
                  Meta_deriving.Plugin.derive_str ~loc ~type_name:name.typ
                    ~params:typerep.Typerep_derivation.params
                    ~expr:typerep.Typerep_derivation.body plugin))
        in
        pstr_value Nonrecursive [ value_binding ~pat ~expr ]
        :: plugin_derivations
end
OCaml

Innovation. Community. Security.