Source file fs_tree.ml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
open Result_lwt.Syntax
open Result_lwt.Infix
open Fs_types
type name = Name.t
module Name = Name
module Path = Path
module FsError = FsError
module FSC = Fs_impl
type tree = FSC.cursor
type error = FSC.error
type raw_cursor = FSC.raw_cursor
type view = Node_type.view
type hash = Hash.Prefix.t
let make = FSC.make
let empty = FSC.empty
let context = FSC.context
let get_raw_cursor = FSC.get_raw_cursor
let relative path c =
let cpath = List.rev c.FSC.rev_path in
let rec loop cpath path =
match cpath, path with
| cn::cpath', n::path' ->
if Name.equal cn n then loop cpath' path'
else List.length cpath, path
| _ -> List.length cpath, path
in
loop cpath path
let index tree = Cursor.index @@ get_raw_cursor tree
let forget_info tree = { tree with FSC.cur = Cursor.forget_info @@ get_raw_cursor tree }
let top_tree tree =
let enc = tree.FSC.enc in
make (Cursor.go_top @@ get_raw_cursor tree) enc []
let compute_hash tree =
let cur, h = Cursor.compute_hash @@ get_raw_cursor tree in
Fs_impl.{ tree with cur }, h
let write_top_tree tree =
let open Result_lwt.Syntax in
let+? (raw_cursor, index, hash) = Cursor.Cursor_storage.write_top_cursor @@ get_raw_cursor tree in
(make raw_cursor tree.enc [], (index, hash))
let may_forget tree =
match Cursor.may_forget @@ get_raw_cursor tree with
| Some cur -> { tree with cur }
| None -> tree
module Op = struct
include FSC.Op.Monad
let lift_result = fun r c -> Result.map (fun x -> (c, x)) r
let check_tree_invariant = FSC.Op.check_cursor_invariant
let fail = FSC.Op.fail
let raw_cursor = FSC.Op.raw_cursor
let do_then = FSC.Op.do_then
let run = FSC.Op.run
let rec chdir_parents n c =
match n with
| 0 -> Ok c
| n -> FSC.Op.chdir_parent c >>? fun (c,()) -> chdir_parents (n-1) c
let with_move path f = fun c ->
let ups, path = relative path c in
chdir_parents ups c >>? f path
let with_move' path f = fun c ->
let path, n = FSC.split path in
let ups, path = relative path c in
chdir_parents ups c >>? f (path @ [n])
let get path c =
with_move path FSC.Op.Loose.get c
>|? fun (c, (c', v)) -> (c, ({c' with rev_path = []}, v))
let get_tree = get
let cat path = with_move path FSC.Op.Loose.cat
let write path value =
with_move' path @@ fun path -> FSC.Op.Loose.write path value
let _unlink path check =
with_move' path @@ fun path -> FSC.Op.Loose.unlink path check
let set path c' =
with_move' path @@ fun path -> FSC.Op.Loose.set path c'
let set_tree path tree c =
FSC.Op.chdir_root tree >>? fun (tree, ()) ->
set path tree c
let copy from to_ : unit t = fun c ->
get from c >>? fun (c, (c_from, _v_from)) ->
set to_ c_from c
let rm ?recursive ?ignore_error path =
with_move' path @@ FSC.Op.Loose.rm ?recursive ?ignore_error
let rmdir ?ignore_error path =
with_move' path @@ FSC.Op.Loose.rmdir ?ignore_error
let compute_hash path =
with_move path @@ fun path c ->
FSC.Op.Loose.seek path c >>? fun (c, _v) ->
let cur, h = Cursor.compute_hash c.cur in
let hp = fst h in
assert (snd h = "");
Ok ({c with cur}, hp)
let may_forget path =
with_move path @@ fun path c ->
FSC.Op.Loose.seek path c >>? fun (c, _v) ->
let cur =
match Cursor.may_forget c.cur with
| Some cur -> cur
| None -> c.cur
in
Ok ({c with cur}, ())
let tree c = Ok (c, c)
end
module Op_lwt = struct
include FSC.Op_lwt.Monad
let lift = FSC.Op_lwt.lift
let lift_op = FSC.Op_lwt.lift_op
let lift_lwt = FSC.Op_lwt.lift_lwt
let lift_result = FSC.Op_lwt.lift_result
let lift_result_lwt = FSC.Op_lwt.lift_result_lwt
let fail e = lift (Op.fail e)
let raw_cursor = lift Op.raw_cursor
let copy from to_ = lift (Op.copy from to_)
let cat path = lift (Op.cat path)
let write path value = lift (Op.write path value)
let rm ?recursive ?ignore_error path = lift (Op.rm ?recursive ?ignore_error path)
let rmdir ?ignore_error path = lift (Op.rmdir ?ignore_error path)
let compute_hash path = lift @@ Op.compute_hash path
let may_forget path = lift @@ Op.may_forget path
let do_then f g c = f c; g c
let get_tree p = lift @@ Op.get_tree p
let set_tree p t = lift @@ Op.set_tree p t
let tree = lift Op.tree
let run = FSC.Op_lwt.run
let at_dir name path (f : _ t) : _ t = fun c ->
match Op.get path c with
| Error _ as e -> Lwt.return e
| Ok (c, (_c, v)) ->
match v with
| Leaf _ -> Lwt.return @@ FsError.error (Is_file (name, path))
| Bud _ -> f c
| Internal _ | Extender _ -> assert false
let fold init path f : _ t =
at_dir "fold" path
(FSC.Op_lwt.fold_here init
(fun a path c -> f a path { c with rev_path = [] }))
let fold' ?depth init path f =
at_dir "fold'" path
(FSC.Op_lwt.fold'_here ?depth init
(fun a path c -> f a path { c with rev_path = [] }))
let ls path0 : (name * tree) list t = fun c ->
let f a path tree =
match path with
| [] | _::_::_ -> assert false
| [name] -> Lwt.return @@ Ok ((name, {tree with FSC.rev_path = []}) :: a)
in
Result_lwt.map (fun (c,xs) -> c, List.rev xs)
@@ fold' ~depth:(`Eq 1) [] path0 f c
let count : Path.t -> int t = fun path0 ->
at_dir "count" path0 @@ fun c ->
if not (Cursor.context c.cur).with_count then Lwt.return @@ FsError.error No_pagination_count
else
let cnt, cur = Option.from_Some @@ Cursor.count c.cur in
Lwt.return @@ Ok ({ c with cur }, cnt)
let ls2 ~offset ~length path : (name * tree) list t =
at_dir "count" path @@ fun c ->
let+=? c, xs = FSC.Op_lwt.rev_ls2_raw ~offset ~length c in
c, List.rev_map (fun (name, c) -> (name, {c with FSC.rev_path= []})) xs
end
module Merkle_proof = struct
type t = FSC.Merkle_proof.t
type detail = Path.t * Segment.segment list * Node_type.node option
let encoding = FSC.Merkle_proof.encoding
let check = FSC.Merkle_proof.check
let pp = FSC.Merkle_proof.pp
let make from paths ({ FSC.enc; _ } as c) =
FSC.Op.Loose.seek from c >>? fun ({ cur; _ } as c, _) ->
let Cursor.Cursor (_, n, ctxt, _) = cur in
let proof, details = Plebeia__Merkle_proof.make ctxt n (List.map (Fs_nameenc.to_segments enc) paths) in
let+? details = FSC.Merkle_proof.convert_details enc details in
(c, (proof, details))
end
module Vc = FSC.Vc