package pfff

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file transpile_js.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
(* Yoann Padioleau
 *
 * Copyright (C) 2019 Yoann Padioleau
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public License
 * version 2.1 as published by the Free Software Foundation, with the
 * special exception on linking described in file license.txt.
 *
 * This library is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the file
 * license.txt for more details.
 *)
open Common

module A = Ast_js
module C = Cst_js

(*****************************************************************************)
(* Prelude *)
(*****************************************************************************)
(* Poor's man Javascript transpiler! 
 * Probably incorrect and incomplete but good enough for codegraph.
 *
 * You can test the babel transpiler and see live how it transpiles code
 * here: https://babeljs.io/repl (great ressource).
 *
 * alt:
 *  - just call babel
 *  - r2s's transpiler (calls babel internally)
 *
 * related:
 *  - babel and its "polyfill"
 *)

(*****************************************************************************)
(* Xhp *)
(*****************************************************************************)
(* TODO probably incomplete *)

let id_of_tag tag =
  A.Id (tag, ref A.NotResolved)

let xhp_attr_value expr x =
  match x with
  | C.XhpAttrString str -> A.String str
  | C.XhpAttrExpr (_, e, _) -> expr e

(* todo: should probably use Obj instead of tuples with string keys *)
let xhp_attribute expr x = 
  match x with
  | C.XhpAttrNoValue (str) -> A.Arr [A.String str]
  | C.XhpAttrValue (str, _tok, attrval) ->
    let v = xhp_attr_value expr attrval in
    A.Arr [A.String str; v]
  | C.XhpAttrSpread (_, (tokdot, e), _) ->
    A.Apply (A.IdSpecial (A.Spread, tokdot), [expr e])

let rec xhp expr x =
  match x with
  | C.XhpSingleton (tag, attrs, _tok) ->
    let id = id_of_tag tag in
    let args1 = List.map (xhp_attribute expr) attrs in
    let args2 = [] in
    (* TODO: is it the actual result? good enough for codegraph for now *)
    A.Apply(id, [A.Arr args1; A.Arr args2])
  | C.Xhp (tag, attrs, _tok, body, _endtag_opt) ->
    let id = id_of_tag tag in
    let args1 = List.map (xhp_attribute expr) attrs in
    let args2 = List.map (xhp_body expr) body in
    A.Apply (id, [A.Arr args1; A.Arr args2])
and xhp_body expr x = 
  match x with
  (* todo: contain enclosing quote? *)
  | C.XhpText str -> A.String str
  | C.XhpNested x -> xhp expr x
  | C.XhpExpr (_, eopt, _) -> 
     (match eopt with
     | None -> A.Nop
     | Some e -> expr e
     )

(*****************************************************************************)
(* Patterns *)
(*****************************************************************************)
(* TODO incomplete, handle all patterns, and compare with
 * what babel actually does.
 *)

(* mostly a dupe of graph_code.ml, but avoid deps and take a tok *)
let cnt = ref 0
let gensym_name s tok =
  incr cnt;
  spf "!%s__%d!" s !cnt, tok


let var_of_simple_pattern (expr, fname) init_builder pat =
  match pat with
  (* { x } = varname; -~> x = varname.x *)
  | C.PatId (name, None) ->
    let name = fname name in
    let init = init_builder name in
    { A.v_name = name; v_kind = A.Let; v_init = init;
      v_resolved = ref A.NotResolved;
    }
  (* { x = y } = varname; -~> x = pfff_builtin_default(varname.x, y) *)
  | C.PatId (name, Some (tok, e)) ->
    let name = fname name in
    let e = expr e in
    let init1 = init_builder name in
    let init = A.Apply (A.Id (("pfff_builtin_default", tok),ref A.NotResolved),
                       [init1; e]) in
    { A.v_name = name; v_kind = A.Let; v_init = init;
      v_resolved = ref A.NotResolved;
    }
  | _ -> failwith "TODO: simple pattern not handled"


let compile_pattern (expr, fname, fpname) varname pat =
  match pat with
  (* 'var { x, y } = varname'  -~> 'var x = varname.x; var y = varname.y;' *)
  | C.PatObj x ->
    x |> C.unbrace |> C.uncomma |> List.map (fun pat ->
     (match pat with
     | C.PatId _ ->
       let init_builder name = 
         A.ObjAccess (A.Id (varname, ref A.NotResolved), A.PN name)
       in
       var_of_simple_pattern (expr, fname) init_builder pat 
     (* { x: y, z } = varname; *)
     | C.PatProp (pname, _tok, pat) ->
       let pname = fpname pname in
       let init_builder _name = 
         A.ObjAccess (A.Id (varname, ref A.NotResolved), pname)
       in
       var_of_simple_pattern (expr, fname) init_builder pat
     | _ -> failwith "TODO: PatObj pattern not handled"
    ))
  (* 'var [x,y] = varname' -~> 'var x = varname[0]; var y = varname[1] *)
  | C.PatArr x ->
    let xs = x |> C.unbrace in
    let idx = ref 0 in
    let aux_pat pat =
      match pat with
      | C.PatId _ ->
        let init_builder (_name, tok) = 
          A.ArrAccess (A.Id (varname, ref A.NotResolved), 
                       A.Num (string_of_int !idx, tok))
        in
        var_of_simple_pattern (expr, fname) init_builder pat
      | C.PatDots (tok, pat) -> 
         let init_builder (_name, _tok) = 
          A.Apply(A.ObjAccess (A.Id (varname, ref A.NotResolved),
                              (A.PN (("slice", tok)))),
                  [A.Num (string_of_int !idx, tok)])
        in
        var_of_simple_pattern (expr, fname) init_builder pat
      | _ -> failwith "TODO: PatArr pattern not handled"
    in
    let rec aux xs = 
      match xs with
      | [] -> []
      | [Right _] -> failwith "useless comma"
      | [Left pat] -> [aux_pat pat]
      | (Left pat)::(Right _)::xs -> 
           let var = aux_pat pat in
           incr idx;
           var :: aux xs
      (* elision *)
      | (Right _)::xs -> 
           incr idx;
           aux xs
      | Left _::Left _::_ -> failwith "Impossible Left Left"
    in
    aux xs
  | _ -> failwith "TODO: pattern not handled"
        
   

let var_pattern (expr, fname, fpname) x =
  match x.C.vpat_init with 
  | None -> failwith "weird var_pattern without init; Part of ForOf?"
  | Some (tok, e) ->
    let e = expr e in
    let vname, vars = 
      match e with
      | A.Id (name, _) -> name, []
      | _ ->
        let intermediate = gensym_name "tmp" tok in
        let var = { A.v_name = intermediate; v_kind = A.Let; v_init = e;
                    v_resolved = ref A.NotResolved } in
        intermediate, [var]
    in
    vars @ compile_pattern (expr, fname, fpname) vname x.C.vpat

(*****************************************************************************)
(* Iterator for of *)
(*****************************************************************************)
(* for (xx of yy) -~> 
 *   for (var _iterator = yy[Symbol.iterator](), _step;
 *        !(_step = _iterator.next()).done;;) {
 *     xx = _step.value;
 * TODO probably incomplete.
 *)

let forof (lhs_var, tok, e2, st) (expr, stmt, var_binding) =
  let e2 = expr e2 in
  let st = stmt st in

  let iterator = "!iterator!", tok in
  let step = "!step!", tok in
  let symbol_iterator = 
    A.ObjAccess (A.Id (("Symbol", tok), ref A.NotResolved),
                 A.PN ("iterator", tok))
  in

  let for_init = 
    Left [
      { A.v_name = iterator; v_kind = A.Let; v_resolved = ref A.NotResolved;
        v_init = A.Apply (A.ArrAccess (e2, symbol_iterator), []) };
      { A.v_name = step; v_kind = A.Let; v_resolved = ref A.NotResolved;
        v_init = A.Nop; }
    ]
  in
  let for_cond = 
    A.Apply (A.IdSpecial (A.Not, tok), [
      A.ObjAccess (A.Assign (A.Id (step, ref A.NotResolved),
                          A.Apply (A.ObjAccess (A.Id (iterator, 
                                                      ref A.NotResolved),
                                                A.PN ("next", tok)),
                                   [])),
        A.PN ("done", tok))
       ])
  in
  let step_value = A.ObjAccess (A.Id (step, ref A.NotResolved),
                               A.PN ("value", tok)) 
  in
  let step_value_cst = 
    C.Period (C.V step, tok, ("value", tok)) 
  in

  let vars_or_assign_stmts =
   match lhs_var with
   | C.LHS2 e -> 
     let e = expr e in
     [A.ExprStmt (A.Assign (e, step_value))]
   | C.ForVar ((vkind,_tok), binding) -> 
      let binding = 
        match binding with
        | C.VarClassic x -> 
            if x.C.v_init <> None
            then failwith "for-of loop variable can not have an initializer";
            C.VarClassic { x with C.v_init = Some (tok, step_value_cst) }
        | C.VarPattern x ->
            if x.C.vpat_init <> None
            then failwith "for-of loop variable can not have an initializer";
            C.VarPattern { x with C.vpat_init = Some (tok, step_value_cst) }
      in
      var_binding vkind binding |> List.map (fun var -> A.VarDecl var)
  in 
  let finalst = vars_or_assign_stmts @ st  in
  [A.For (A.ForClassic (for_init, for_cond, A.Nop), A.Block finalst)]
OCaml

Innovation. Community. Security.