Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source
Page
Library
Module
Module type
Parameter
Class
Class type
Source
pbrt.ml
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869
(* Copyright (c) 2014 Peter Zotov <whitequark@whitequark.org> Copyright (c) 2016 Maxime Ransan <maxime.ransan@gmail.com> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. *) type payload_kind = | Varint | Bits32 | Bits64 | Bytes let min_int_as_int32, max_int_as_int32 = Int32.of_int min_int, Int32.of_int max_int let min_int_as_int64, max_int_as_int64 = Int64.of_int min_int, Int64.of_int max_int module Decoder = struct type error = | Incomplete | Overlong_varint | Malformed_field | Overflow of string | Unexpected_payload of string * payload_kind | Missing_field of string | Malformed_variant of string let error_to_string e = match e with | Incomplete -> "Incomplete" | Overlong_varint -> "Overlong_varint" | Malformed_field -> "Malformed_field" | Overflow fld -> Printf.sprintf "Overflow(%S)" fld | Unexpected_payload (field, kind) -> let kind' = match kind with | Varint -> "Varint" | Bits32 -> "Bits32" | Bits64 -> "Bits64" | Bytes -> "Bytes" in Printf.sprintf "Unexpected_payload(%S, %s)" field kind' | Missing_field field -> Printf.sprintf "Missing_field(%S)" field | Malformed_variant name -> Printf.sprintf "Malformed_variant(%S)" name exception Failure of error let () = Printexc.register_printer (fun exn -> match exn with | Failure e -> Some ( Printf.sprintf "Pbrt.Decoder.Failure(%s)" (error_to_string e) ) | _ -> None) type t = { source : bytes; limit : int; mutable offset : int; } let of_bytes source = { source; offset = 0; limit = Bytes.length source; } let of_string source = (* safe: we won't modify the bytes *) of_bytes (Bytes.unsafe_of_string source) let malformed_variant variant_name = raise (Failure (Malformed_variant variant_name)) let unexpected_payload field_name pk = raise (Failure (Unexpected_payload (field_name, pk))) let missing_field field_name = raise (Failure (Missing_field field_name)) let at_end d = d.limit = d.offset let byte d = if d.offset >= d.limit then raise (Failure Incomplete); let byte = int_of_char (Bytes.get d.source d.offset) in d.offset <- d.offset + 1; byte let[@inline] bool_of_int64 fld v = if v = Int64.zero then false else if v = Int64.one then true else raise (Failure (Overflow fld)) let int_of_int32 fld v = if Sys.word_size = 32 && (v < min_int_as_int32 || v > max_int_as_int32) then raise (Failure (Overflow fld)) else Int32.to_int v let[@inline] int_of_int64 fld v = if (v < min_int_as_int64 || v > max_int_as_int64) then raise (Failure (Overflow fld)) else Int64.to_int v let varint d : int64 = let shift = ref 0 in let res = ref 0L in let continue = ref true in while !continue do let b = byte d in let cur = b land 0x7f in if cur <> b then ( (* at least one byte follows this one *) res := Int64.(logor !res (shift_left (of_int cur) !shift)); shift := !shift + 7; ) else if !shift < 63 || (b land 0x7f) <= 1 then ( res := Int64.(logor !res (shift_left (of_int b) !shift)); continue := false; ) else ( raise (Failure Overlong_varint) ); done; !res let zigzag d : int64 = let v = (varint[@inlined]) d in Int64.(logxor (shift_right v 1) (neg (logand v Int64.one))) let bits32 d = let b1 = byte d in let b2 = byte d in let b3 = byte d in let b4 = byte d in Int32.(add (shift_left (of_int b4) 24) (add (shift_left (of_int b3) 16) (add (shift_left (of_int b2) 8) (of_int b1)))) let bits64 d = let b1 = byte d in let b2 = byte d in let b3 = byte d in let b4 = byte d in let b5 = byte d in let b6 = byte d in let b7 = byte d in let b8 = byte d in Int64.(add (shift_left (of_int b8) 56) (add (shift_left (of_int b7) 48) (add (shift_left (of_int b6) 40) (add (shift_left (of_int b5) 32) (add (shift_left (of_int b4) 24) (add (shift_left (of_int b3) 16) (add (shift_left (of_int b2) 8) (of_int b1)))))))) let int_as_varint d = Int64.to_int @@ (varint[@inlined]) d let bytes d = (* strings are always shorter than range of int *) let len = int_as_varint d in if d.offset + len > d.limit then raise (Failure Incomplete); let str = Bytes.sub d.source d.offset len in d.offset <- d.offset + len; str let nested d = (* strings are always shorter than range of int *) let len = int_as_varint d in if d.offset + len > d.limit then raise (Failure Incomplete); let d' = { d with limit = d.offset + len; } in d.offset <- d.offset + len; d' let key d = if d.offset = d.limit then None else (* keys are always in the range of int, * but prefix might only fit into int32 *) let prefix = (varint[@inlined]) d in let key, ty = Int64.(to_int (shift_right prefix 3)), Int64.logand 0x7L prefix in match ty with | 0L -> Some (key, Varint) | 1L -> Some (key, Bits64) | 2L -> Some (key, Bytes) | 5L -> Some (key, Bits32) | _ -> raise (Failure Malformed_field) let skip d kind = let skip_len n = if d.offset + n > d.limit then raise (Failure Incomplete) else d.offset <- d.offset + n in let rec skip_varint () = let b = byte d in if b land 0x80 <> 0 then skip_varint () else () in match kind with | Bits32 -> skip_len 4 | Bits64 -> skip_len 8 (* strings are always shorter than range of int *) | Bytes -> skip_len (int_as_varint d) | Varint -> skip_varint () let map_entry d ~decode_key ~decode_value = let d = nested d in let key_v = ref None in let value_v = ref None in let rec loop () = match key d with | None -> () | Some (1, _) -> key_v := Some (decode_key d); loop () | Some (2, _) -> value_v := Some (decode_value d); loop () | Some (_, pk) -> ( skip d pk; loop () ) in loop (); match !key_v, !value_v with | Some key, Some value -> (key, value) | _ -> failwith "Missing key or value for map entry" let empty_nested d = let len = int_as_varint d in if len <> 0 then raise (Failure Incomplete) else () let packed_fold f e0 d = let d' = nested d in let rec loop acc = if at_end d' then acc else loop (f acc d') in loop e0 let int_as_zigzag d = Int64.to_int @@ (zigzag[@inlined]) d let int32_as_varint d = Int64.to_int32 ((varint[@inlined]) d) let int32_as_zigzag d = Int64.to_int32 ((zigzag[@inlined]) d) let int64_as_varint = varint let int64_as_zigzag = zigzag let int32_as_bits32 = bits32 let int64_as_bits64 = bits64 let bool d = bool_of_int64 "" ((varint[@inlined]) d) let float_as_bits32 d = Int32.float_of_bits (bits32 d) let float_as_bits64 d = Int64.float_of_bits (bits64 d) let int_as_bits32 d = int_of_int32 "" (bits32 d) let int_as_bits64 d = int_of_int64 "" (bits64 d) let string d = (* strings are always shorter than range of int *) let len = int_as_varint d in if d.offset + len > d.limit then raise (Failure Incomplete); let str = Bytes.sub_string d.source d.offset len in d.offset <- d.offset + len; str let wrapper_double_value d = let d = nested d in match key d with | Some (1, Bits64) -> Some (float_as_bits64 d) | _ -> None let wrapper_float_value d = let d = nested d in match key d with | Some (1, Bits32) -> Some (float_as_bits32 d) | _ -> None let wrapper_int64_value d = let d = nested d in match key d with | Some (1, Varint) -> Some (int64_as_varint d) | _ -> None let wrapper_int32_value d = let d = nested d in match key d with | Some (1, Varint) -> Some (int32_as_varint d) | _ -> None let wrapper_bool_value d = let d = nested d in match key d with | Some (1, Varint) -> Some (bool d) | _ -> None let wrapper_string_value d = let d = nested d in match key d with | Some (1, Bytes) -> Some (string d) | _ -> None let wrapper_bytes_value d = let d = nested d in match key d with | Some (1, Bytes) -> Some (bytes d) | _ -> None end module Encoder = struct type error = | Overflow of string let error_to_string e = match e with | Overflow fld -> Printf.sprintf "Overflow(%S)" fld exception Failure of error let () = Printexc.register_printer (fun exn -> match exn with | Failure e -> Some ( Printf.sprintf "Protobuf.Encoder.Failure(%s)" (error_to_string e) ) | _ -> None) type t = { mutable b: bytes; mutable len: int; initial: bytes; mutable sub: t option; } let create () = let b = Bytes.create 16 in { b; len=0; initial=b; sub=None; } let[@inline] clear self = self.len <- 0 let[@inline] length self = self.len let[@inline] cap self = Bytes.length self.b let reset self = self.len <- 0; self.b <- self.initial let to_string self = Bytes.sub_string self.b 0 self.len let to_bytes self = Bytes.sub self.b 0 self.len let write_chunks w self = w self.b 0 self.len let next_cap_ self = min Sys.max_string_length (let n=cap self in n + n lsr 1) let[@inline never] grow_to_ self newcap = if newcap = self.len then raise (Failure (Overflow "encoder size reached its max")); let b' = Bytes.create newcap in Bytes.blit self.b 0 b' 0 self.len; self.b <- b' let[@inline never] grow_ self = grow_to_ self (next_cap_ self) let[@inline] add_char self c = if self.len = cap self then grow_ self; Bytes.unsafe_set self.b self.len c; self.len <- 1 + self.len let add_bytes self b = let n = Bytes.length b in if cap self < self.len + n then ( grow_to_ self (max (next_cap_ self) (self.len + n)); ); Bytes.blit b 0 self.b self.len n; self.len <- n + self.len let add_buffer self sub = let n = sub.len in if cap self < self.len + n then ( grow_to_ self (max (next_cap_ self) (self.len + n)); ); Bytes.blit sub.b 0 self.b self.len n; self.len <- n + self.len let varint (i:int64) e = let i = ref i in let continue = ref true in while !continue do let cur = Int64.(logand !i 0x7fL) in if cur = !i then ( continue := false; add_char e (Char.unsafe_chr Int64.(to_int cur)) ) else ( add_char e (Char.unsafe_chr Int64.( to_int (logor 0x80L cur) )); i := Int64.shift_right_logical !i 7; ) done let int_as_varint i e = (varint[@inlined]) (Int64.of_int i) e let zigzag i e = (varint[@inlined]) Int64.(logxor (shift_left i 1) (shift_right i 63)) e let bits32 i e = add_char e (char_of_int Int32.(to_int (logand 0xffl i))); add_char e (char_of_int Int32.(to_int ( logand 0xffl (shift_right i 8)))); add_char e (char_of_int Int32.(to_int ( logand 0xffl (shift_right i 16)))); add_char e (char_of_int Int32.(to_int ( logand 0xffl (shift_right i 24)))) let bits64 i e = add_char e (char_of_int Int64.(to_int (logand 0xffL i))); add_char e (char_of_int Int64.(to_int ( logand 0xffL (shift_right i 8)))); add_char e (char_of_int Int64.(to_int ( logand 0xffL (shift_right i 16)))); add_char e (char_of_int Int64.(to_int ( logand 0xffL (shift_right i 24)))); add_char e (char_of_int Int64.(to_int ( logand 0xffL (shift_right i 32)))); add_char e (char_of_int Int64.(to_int ( logand 0xffL (shift_right i 40)))); add_char e (char_of_int Int64.(to_int ( logand 0xffL (shift_right i 48)))); add_char e (char_of_int Int64.(to_int ( logand 0xffL (shift_right i 56)))) let bytes b e = int_as_varint (Bytes.length b) e; add_bytes e b let nested f e = let e' = match e.sub with | Some e' -> e' | None -> let e' = create () in e.sub <- Some e'; e' in f e'; int_as_varint (length e') e; add_buffer e e'; clear e' let[@inline] key (k, pk) e = let pk' = match pk with | Varint -> 0 | Bits64 -> 1 | Bytes -> 2 | Bits32 -> 5 in int_as_varint (pk' lor (k lsl 3)) e let map_entry ~encode_key ~encode_value kv t = let ( (key_value, key_pk), (value_value, value_pk)) = kv in nested (fun t -> key (1, key_pk) t; encode_key key_value t; key (2, value_pk) t; encode_value value_value t; ) t let empty_nested e = add_char e (Char.unsafe_chr 0) let int_as_zigzag i e = (zigzag[@inlined]) (Int64.of_int i) e let int32_as_varint i e = (varint[@inlined]) (Int64.of_int32 i) e let int32_as_zigzag i e = (zigzag[@inlined]) (Int64.of_int32 i) e let int64_as_varint = varint let int64_as_zigzag = zigzag let int32_as_bits32 = bits32 let int64_as_bits64 = bits64 let bool b e = add_char e (Char.unsafe_chr (if b then 1 else 0)) let float_as_bits32 f e = bits32 (Int32.bits_of_float f) e let float_as_bits64 f e = bits64 (Int64.bits_of_float f) e let int_as_bits32 i e = bits32 (Int32.of_int i) e let int_as_bits64 i e = bits64 (Int64.of_int i) e let string s e = (* safe: we're not going to modify the bytes, and [s] will not change. *) bytes (Bytes.unsafe_of_string s) e let double_value_key = (1, Bits64) let wrapper_double_value v e = nested (fun e -> key double_value_key e; begin match v with | None -> () | Some f -> float_as_bits64 f e end ) e let float_value_key = (1, Bits32) let wrapper_float_value v e = nested (fun e -> key float_value_key e; begin match v with | None -> () | Some f -> float_as_bits32 f e end ) e let int64_value_key = (1, Varint) let wrapper_int64_value v e = nested (fun e -> key int64_value_key e; begin match v with | None -> () | Some i -> int64_as_varint i e end ) e let int32_value_key = (1, Varint) let wrapper_int32_value v e = nested (fun e -> key int32_value_key e; begin match v with | None -> () | Some i -> int32_as_varint i e end ) e let bool_value_key = (1, Varint) let wrapper_bool_value v e = nested (fun e -> key bool_value_key e; begin match v with | None -> () | Some b -> bool b e end ) e let string_value_key = (1, Bytes) let wrapper_string_value v e = nested (fun e -> key string_value_key e; begin match v with | None -> () | Some s -> string s e end ) e let bytes_value_key = (1, Bytes) let wrapper_bytes_value v e = nested (fun e -> key bytes_value_key e; begin match v with | None -> () | Some b -> bytes b e end ) e end module Repeated_field = struct (** [t] is a container optimized for fast repeated inserts. It is made of a list of growing size array [l] as well as a current array [a] in which inserts are performed until [a] is full and appended to [l]. The main growing logic is implemented in the [add] functions. *) type 'a t = { mutable s : int; (* total size (allocated) of the partial array [a] *) mutable i : int; (* current number of inserted element in [a] *) mutable a : 'a array; (* partial array *) mutable l : 'a array list; (* previously filled array [List.hd l] is the last filled array *) } let make v = { s = 16; i = 0; a = Array.make 16 v; l = []; } let of_array_no_copy a = { (* We intentionally don't put [a] argument in [l] directly since it would require the allocation of a new array and an initial value. Since [Array.length a] could be [0] we would not be able to get such a value from the [a] argument. Hence the transfer of [a] to [l] will be done in the subsequent [add v t] call in which [v] argument is used to initialize the new array. *) s = Array.length a; i = Array.length a; a = a; l = []; } let add v ({s; i; a; l} as tmp) = match i with | i when i = s -> ( (* [1.3] is an emperical growth factor found to be a good balance for allocation of a new array. *) tmp.s <- int_of_float (float_of_int s *. 1.3); tmp.i <- 1; tmp.l <- a :: l; tmp.a <- Array.make tmp.s v; ) | i -> ( Array.unsafe_set a i v; tmp.i <- i + 1; ) let to_array {s; i; a; l} = let l = match i with | 0 -> l | i when i = s -> a :: l | i -> (Array.sub a 0 i) :: l in Array.concat (List.rev l) (** [list_rev_iter f l] iterate over the list in reverse order *) let rec list_rev_iter f = function | [] -> () | hd::tl -> ( list_rev_iter f tl; f hd ) let iter f {i; a; l; _} = list_rev_iter (fun a -> let len = Array.length a - 1 in for j = 0 to len do f (Array.unsafe_get a j) done ) l; let len = i - 1 in for j = 0 to len do f (Array.unsafe_get a j) done let iteri f {i; a; l; _} = let counter = ref 0 in list_rev_iter (fun a -> let len = Array.length a - 1 in for j = 0 to len do f !counter (Array.unsafe_get a j); incr counter; done ) l; let len = i - 1 in for j = 0 to len do f !counter (Array.unsafe_get a j); incr counter; done let fold_left f e0 t = let acc = ref e0 in iter (fun e -> acc := f !acc e ) t; !acc let length {s = _ ; i; a=_; l } : int= let len = List.fold_left (fun len a -> len + (Array.length a) ) 0 l in len + i let map_to_array f t = let len = length t in let dest = Array.make len (f @@ Array.unsafe_get t.a 0) in let index = ref 0 in iter (fun e -> Array.unsafe_set dest !index (f e); incr index ) t; dest let map_to_list f ({s = _ ; i; a; l}) = let rec a_to_list a i res = if i < 0 then res else a_to_list a (i - 1) (f (Array.unsafe_get a i) :: res) in (* start with last (partial) array and its last index *) let res = a_to_list a (i - 1) [] in (* go over the filled array *) List.fold_left (fun acc a -> a_to_list a (Array.length a - 1) acc ) res l external identity : 'a -> 'a = "%identity" let to_list t = map_to_list identity t end (* Repeated_field*) module Pp = struct module F = Format type formatter = F.formatter let pp_unit fmt () = F.pp_print_string fmt "()" let pp_int = F.pp_print_int let pp_float = F.pp_print_float let pp_bool = F.pp_print_bool let pp_int32 fmt i = F.pp_print_string fmt (Int32.to_string i) let pp_int64 fmt i = F.pp_print_string fmt (Int64.to_string i) let pp_string fmt s = F.fprintf fmt "\"%a\"" F.pp_print_string s let pp_bytes fmt b = F.fprintf fmt "<bytes len=%d>" (Bytes.length b) let pp_option pp_f fmt = function | None -> F.fprintf fmt "@[None@]" | Some x -> F.fprintf fmt "@[<hv2>Some(@,%a)@]" pp_f x let pp_wrapper_float fmt v = pp_option pp_float fmt v let pp_wrapper_bool fmt v = pp_option pp_bool fmt v let pp_wrapper_int32 fmt v = pp_option pp_int32 fmt v let pp_wrapper_int64 fmt v = pp_option pp_int64 fmt v let pp_wrapper_string fmt v = pp_option pp_string fmt v let pp_wrapper_bytes fmt v = pp_option pp_bytes fmt v let pp_list pp_element fmt l = let rec pp_i fmt = function | [h] -> Format.fprintf fmt "%a" pp_element h | h::t -> Format.fprintf fmt "%a;@,%a" pp_element h pp_i t | [] -> () in F.fprintf fmt "[@[<hv>%a@,@]]" pp_i l let pp_associative_list pp_key pp_value fmt l = let pp_element fmt (k, v) = F.fprintf fmt "(@[%a,@ %a@])" pp_key k pp_value v in pp_list pp_element fmt l let pp_hastable pp_key pp_value fmt h = let l = Hashtbl.fold (fun a b l -> (a, b)::l ) h [] in pp_associative_list pp_key pp_value fmt l let pp_record_field ?(first=false) field_name pp_val fmt val_ = if not first then F.fprintf fmt "@ "; F.fprintf fmt "@[<hv2>%s =@ %a;@]" field_name pp_val val_ let pp_brk pp_record (fmt:F.formatter) r : unit = F.fprintf fmt "@[<hv2>{ %a@;<1 -2>@]}" pp_record r end (* Pp *)