package parsexp

  1. Overview
  2. Docs

Source file positions.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
(* This module builds a buffer of "instructions", in order to represent a compact sequence
   of delimiting positions and newlines. The parser stores the positions of each:

   - newline
   - beginning of atom
   - end of atom
   - left parenthesis
   - right parenthesis

   Instructions are encoded as a sequence bits. The next instruction is determined by
   looking at the next few bits:

   - bit 0 represents a saved position followed by an offset increment
   - bits 10 represent an offset increment
   - bits 110 are followed by 5 bits of payload. The 5-bit payloads of any subsequent 110-
     instructions are squashed to form a number (least significant 5-bit chunk first).
     This number + 5 represents an offset increment
   - bits 1110 marks the beginning of a new line (with offset incremented)
   - bits 1111 represent a position saved twice followed by an offset increment

   For instance let's consider the following sexp:

   {[
     {|
(abc
      "foo
 bar"
)
|}
   ]}

   the sequence of instructions to record in order to reconstruct the position of any
   sub-sexp is:

   - 0         save position and advance 1: first '('
   - 0         save position and advance 1: start of "abc"
   - 10        advance 1
   - 0         save position and advance 1: end of "abc"
   - 1110      newline
   - 1100_0001 advance 6
   - 0         save position and advance 1: start of "foo\n  bar"
   - 10        advance 1
   - 10        advance 1
   - 10        advance 1
   - 1110      newline
   - 1100_0000 advance 5
   - 0         save position and advance 1: end of "foo\n  bar"
   - 1110      newline
   - 0         save position and advance 1: last ')'

   (we save the position after the closing parenthesis)

   The total sequence is 42 bits, so we need 6 bytes to store it

   The sequence of bits is encoded as a sequence of 16-bit values, where the earlier bits
   are most significant.

   Note that the parser stores the end positions as inclusive. This way only single
   character atoms require a double positions. If we were storing end positions as
   exclusive, we would need double positions for [)(] and [a(], which are likely to be
   frequent in s-expressions printed with the non [_hum] printer. We expect single
   character atoms to be less frequent so it makes sense to penalize them instead.
*)

open! Import

type pos =
  { line : int
  ; col : int
  ; offset : int
  }
[@@deriving_inline sexp_of]

let sexp_of_pos =
  (function
    | { line = v_line; col = v_col; offset = v_offset } ->
      let bnds = [] in
      let bnds =
        let arg = sexp_of_int v_offset in
        Ppx_sexp_conv_lib.Sexp.List [ Ppx_sexp_conv_lib.Sexp.Atom "offset"; arg ] :: bnds
      in
      let bnds =
        let arg = sexp_of_int v_col in
        Ppx_sexp_conv_lib.Sexp.List [ Ppx_sexp_conv_lib.Sexp.Atom "col"; arg ] :: bnds
      in
      let bnds =
        let arg = sexp_of_int v_line in
        Ppx_sexp_conv_lib.Sexp.List [ Ppx_sexp_conv_lib.Sexp.Atom "line"; arg ] :: bnds
      in
      Ppx_sexp_conv_lib.Sexp.List bnds
      : pos -> Ppx_sexp_conv_lib.Sexp.t)
;;

[@@@end]

let compare_pos = Caml.compare
let beginning_of_file = { line = 1; col = 0; offset = 0 }
let shift_pos pos ~cols = { pos with col = pos.col + cols; offset = pos.offset + cols }

type range =
  { start_pos : pos
  ; end_pos : pos
  }
[@@deriving_inline sexp_of]

let sexp_of_range =
  (function
    | { start_pos = v_start_pos; end_pos = v_end_pos } ->
      let bnds = [] in
      let bnds =
        let arg = sexp_of_pos v_end_pos in
        Ppx_sexp_conv_lib.Sexp.List [ Ppx_sexp_conv_lib.Sexp.Atom "end_pos"; arg ] :: bnds
      in
      let bnds =
        let arg = sexp_of_pos v_start_pos in
        Ppx_sexp_conv_lib.Sexp.List [ Ppx_sexp_conv_lib.Sexp.Atom "start_pos"; arg ]
        :: bnds
      in
      Ppx_sexp_conv_lib.Sexp.List bnds
      : range -> Ppx_sexp_conv_lib.Sexp.t)
;;

[@@@end]

let compare_range = Caml.compare

let make_range_incl ~start_pos ~last_pos =
  { start_pos; end_pos = shift_pos last_pos ~cols:1 }
;;

module Chunk : sig
  (** Represents an array of [length/2] signed 16-bit values *)
  type t

  (** Length in bytes. *)
  val length : int

  val alloc : unit -> t

  (** [get16 ~pos] and [set16 ~pos] manipulate the [pos/2]th stored value.
      [pos] must be even.
      [set16 x] only uses the 16 least significant bits of [x]. *)
  val get16 : t -> pos:int -> int

  val set16 : t -> pos:int -> int -> unit
end = struct
  type t = bytes

  (* OCaml strings always waste two bytes at the end, so we take a power of two minus two
     to be sure we don't waste space. *)
  let length = 62
  let alloc () = Bytes.create length
  let get16 = Bytes0.get16
  let set16 = Bytes0.set16

  (* If we want to make a [Positions.t] serializable:

     {[
       external bswap16 : int -> int = "%bswap16";;

       let get16 =
         if Caml.Sys.arch_big_endian then
           fun buf ~pos -> get16 buf ~pos |> bswap16
         else
           get16

       let set16 =
         if Caml.Sys.arch_big_endian then
           fun buf ~pos x -> set16 buf ~pos (bswap16 x)
         else
           set16
     ]}

  *)
end

type t_ =
  { chunks : Chunk.t list
  ; (* [num_bytes * 8 + extra_bits] is the number of bits stored in [chunks].
       The last [extra_bits] bits will be stored as the *least* significant bits
       of the appropriate pair of bytes of the last chunk. *)
    num_bytes : int
  ; extra_bits : int
  ; initial_pos : pos
  }

type t = t_ Lazy.t

let memory_footprint_in_bytes (lazy t) =
  let num_fields = 4 in
  let header_words = 1 in
  let word_bytes =
    match Sys.word_size with
    | 32 -> 4
    | 64 -> 8
    | _ -> assert false
  in
  let chunk_words =
    let div_ceil a b = (a + b - 1) / b in
    let n =
      div_ceil
        (Chunk.length
         + 1 (* NUL terminating bytes *)
         + 1 (* number of wasted bytes to fill a word *))
        word_bytes
    in
    n + header_words
  in
  let pos_fields = 3 in
  let pos_words = header_words + pos_fields in
  let list_cons_words = header_words + 2 in
  (header_words
   + num_fields
   + pos_words
   + (List.length t.chunks * (chunk_words + list_cons_words)))
  * word_bytes
;;

module Builder = struct
  type t =
    { mutable chunk : Chunk.t
    ; mutable chunk_pos : int
    ; mutable filled_chunks : Chunk.t list (* Filled chunks in reverse order *)
    ; mutable offset : int
    (* Offset of the last saved position or newline plus
       one, or [initial_pos] *)
    ; mutable int_buf : int
    (* the [num_bits] least significant bits of [int_buf]
       are the bits not yet pushed to [chunk]. *)
    ; mutable num_bits : int (* number of bits stored in [int_buf] *)
    ; mutable initial_pos : pos
    }

  let invariant t =
    assert (t.chunk_pos >= 0 && t.chunk_pos <= Chunk.length);
    assert (t.offset >= t.initial_pos.offset);
    assert (t.num_bits <= 15)
  ;;

  let check_invariant = false
  let invariant t = if check_invariant then invariant t

  let create ?(initial_pos = beginning_of_file) () =
    { chunk = Chunk.alloc ()
    ; chunk_pos = 0
    ; filled_chunks = []
    ; offset = initial_pos.offset
    ; int_buf = 0
    ; num_bits = 0
    ; initial_pos
    }
  ;;

  let reset t (pos : pos) =
    (* We need a new chunk as [contents] keeps the current chunk in the closure of the
       lazy value. *)
    t.chunk <- Chunk.alloc ();
    t.chunk_pos <- 0;
    t.filled_chunks <- [];
    t.offset <- pos.offset;
    t.int_buf <- 0;
    t.num_bits <- 0;
    t.initial_pos <- pos
  ;;

  let[@inlined never] alloc_new_chunk t =
    t.filled_chunks <- t.chunk :: t.filled_chunks;
    t.chunk <- Chunk.alloc ();
    t.chunk_pos <- 0
  ;;

  let add_uint16 t n =
    if t.chunk_pos = Chunk.length then alloc_new_chunk t;
    Chunk.set16 t.chunk ~pos:t.chunk_pos n
  ;;

  let add_bits t n ~num_bits =
    let int_buf = (t.int_buf lsl num_bits) lor n in
    let num_bits = t.num_bits + num_bits in
    t.int_buf <- int_buf;
    if num_bits < 16
    then t.num_bits <- num_bits
    else (
      let num_bits = num_bits - 16 in
      t.num_bits <- num_bits;
      add_uint16 t (int_buf lsr num_bits);
      t.chunk_pos <- t.chunk_pos + 2
      (* no need to clear the bits of int_buf we just wrote, as further set16 will ignore
         these extra bits. *))
  ;;

  let contents t =
    (* Flush the current [t.int_buf] *)
    add_uint16 t t.int_buf;
    let rev_chunks = t.chunk :: t.filled_chunks in
    let chunk_pos = t.chunk_pos in
    let extra_bits = t.num_bits in
    let initial_pos = t.initial_pos in
    lazy
      { chunks = List.rev rev_chunks
      ; num_bytes = ((List.length rev_chunks - 1) * Chunk.length) + chunk_pos
      ; extra_bits
      ; initial_pos
      }
  ;;

  let long_shift t n =
    let n = ref (n - 5) in
    while !n > 0 do
      add_bits t (0b1100_0000 lor (!n land 0b0001_1111)) ~num_bits:8;
      n := !n lsr 5
    done
  ;;

  (* precondition: n >= 5 *)
  let[@inlined never] add_gen_slow t n ~instr ~instr_bits =
    long_shift t n;
    add_bits t instr ~num_bits:instr_bits
  ;;

  let shift4 = 0b10_10_10_10

  let[@inline always] add_gen t ~offset ~instr ~instr_bits =
    invariant t;
    let n = offset - t.offset in
    t.offset <- offset + 1;
    match n with
    | 0 | 1 | 2 | 3 | 4 ->
      let num_bits = (n lsl 1) + instr_bits in
      add_bits
        t
        ((shift4 lsl instr_bits) lor instr land ((1 lsl num_bits) - 1))
        ~num_bits
    | 5
    | 6
    | 7
    | 8
    | 9
    | 10
    | 11
    | 12
    | 13
    | 14
    | 15
    | 16
    | 17
    | 18
    | 19
    | 20
    | 21
    | 22
    | 23
    | 24
    | 25
    | 26
    | 27
    | 28
    | 29
    | 30
    | 31
    | 32
    | 33
    | 34
    | 35
    | 36 ->
      add_bits
        t
        (((0b1100_0000 lor (n - 5)) lsl instr_bits) lor instr)
        ~num_bits:(8 + instr_bits)
    | _ ->
      if n < 0 then invalid_arg "Parsexp.Positions.add_gen";
      add_gen_slow t n ~instr ~instr_bits
  ;;

  let add t ~offset = add_gen t ~offset ~instr:0b0 ~instr_bits:1
  let add_twice t ~offset = add_gen t ~offset ~instr:0b1111 ~instr_bits:4
  let add_newline t ~offset = add_gen t ~offset ~instr:0b1110 ~instr_bits:4
end

type positions = t

module Iterator : sig
  type t

  val create : positions -> t

  exception No_more

  (* [advance t ~skip] ignores [skip] saved positions and returns the next saved position.
     Raises [No_more] when reaching the end of the position set. *)
  val advance_exn : t -> skip:int -> pos
end = struct
  type t =
    { mutable chunk : Chunk.t
    ; mutable chunks : Chunk.t list
    ; (* [num_bytes * 8 + extra_bits] is the number of bits available from [instr_pos] in
         [chunk :: chunks]. *)
      mutable num_bytes : int
    ; extra_bits : int
    ; mutable instr_pos : int (* position in [chunk] *)
    ; mutable offset : int
    ; mutable line : int
    ; mutable bol : int
    ; mutable int_buf : int
    ; mutable num_bits : int (* Number of bits not yet consumed in [int_buf] *)
    ; mutable pending : pos option
    }

  let create ((lazy p) : positions) =
    match p.chunks with
    | [] -> assert false
    | chunk :: chunks ->
      { chunk
      ; chunks
      ; num_bytes = p.num_bytes
      ; extra_bits = p.extra_bits
      ; instr_pos = 0
      ; offset = p.initial_pos.offset
      ; line = p.initial_pos.line
      ; bol = p.initial_pos.offset - p.initial_pos.col
      ; int_buf = 0
      ; num_bits = 0
      ; pending = None
      }
  ;;

  exception No_more

  let no_more () = raise_notrace No_more

  let[@inlined never] fetch_chunk t =
    match t.chunks with
    | [] -> assert false
    | chunk :: chunks ->
      t.instr_pos <- 0;
      t.num_bytes <- t.num_bytes - Chunk.length;
      t.chunk <- chunk;
      t.chunks <- chunks
  ;;

  let fetch t =
    if t.instr_pos > t.num_bytes then no_more ();
    if t.instr_pos = Chunk.length then fetch_chunk t;
    let v = Chunk.get16 t.chunk ~pos:t.instr_pos in
    let added_bits = if t.instr_pos = t.num_bytes then t.extra_bits else 16 in
    t.int_buf <- (t.int_buf lsl added_bits) lor (v land ((1 lsl added_bits) - 1));
    t.num_bits <- t.num_bits + added_bits;
    t.instr_pos <- t.instr_pos + 2
  ;;

  let next_instruction_bits t ~num_bits =
    if t.num_bits < num_bits
    then (
      fetch t;
      if t.num_bits < num_bits then no_more ());
    let n = (t.int_buf lsr (t.num_bits - num_bits)) land ((1 lsl num_bits) - 1) in
    t.num_bits <- t.num_bits - num_bits;
    n
  ;;

  (* [offset_shift] and [offset_shift_num_bits] encode the offset number
     specified by the immediately preceding [110] instructions. *)
  let rec advance t ~skip ~offset_shift ~offset_shift_num_bits =
    match next_instruction_bits t ~num_bits:1 with
    | 0 ->
      (* bit seq 0 -> new item *)
      let offset = t.offset + offset_shift in
      t.offset <- offset + 1;
      if skip = 0
      then { line = t.line; col = offset - t.bol; offset }
      else advance t ~skip:(skip - 1) ~offset_shift:0 ~offset_shift_num_bits:0
    | _ ->
      (match next_instruction_bits t ~num_bits:1 with
       | 0 ->
         (* bit seq 10 -> shift *)
         t.offset <- t.offset + offset_shift + 1;
         advance t ~skip ~offset_shift:0 ~offset_shift_num_bits:0
       | _ ->
         (match next_instruction_bits t ~num_bits:1 with
          | 0 ->
            (* bit seq 110 -> long shift *)
            let n = next_instruction_bits t ~num_bits:5 in
            let offset_shift = if offset_shift_num_bits = 0 then 5 else offset_shift in
            advance
              t
              ~skip
              ~offset_shift:(offset_shift + (n lsl offset_shift_num_bits))
              ~offset_shift_num_bits:(offset_shift_num_bits + 5)
          | _ ->
            (match next_instruction_bits t ~num_bits:1 with
             | 0 ->
               (* bit seq 1110 -> newline *)
               t.offset <- t.offset + offset_shift + 1;
               t.bol <- t.offset;
               t.line <- t.line + 1;
               advance t ~skip ~offset_shift:0 ~offset_shift_num_bits:0
             | _ ->
               (* bit seq 1111 -> 2 new items *)
               let offset = t.offset + offset_shift in
               t.offset <- offset + 1;
               if skip <= 1
               then (
                 let pos = { line = t.line; col = offset - t.bol; offset } in
                 if skip = 0 then t.pending <- Some pos;
                 pos)
               else advance t ~skip:(skip - 2) ~offset_shift:0 ~offset_shift_num_bits:0)))
  ;;

  let advance_exn t ~skip =
    match t.pending with
    | Some pos ->
      t.pending <- None;
      if skip = 0
      then pos
      else advance t ~skip:(skip - 1) ~offset_shift:0 ~offset_shift_num_bits:0
    | None -> advance t ~skip ~offset_shift:0 ~offset_shift_num_bits:0
  ;;
end

let find t a b =
  if a < 0 || b <= a then invalid_arg "Parsexp.Positions.find";
  let iter = Iterator.create t in
  try
    let start_pos = Iterator.advance_exn iter ~skip:a in
    let last_pos = Iterator.advance_exn iter ~skip:(b - a - 1) in
    make_range_incl ~start_pos ~last_pos
  with
  | Iterator.No_more -> failwith "Parsexp.Position.find"
;;

let rec sub_sexp_count (sexp : Sexp.t) =
  match sexp with
  | Atom _ -> 1
  | List l -> List.fold_left l ~init:1 ~f:(fun acc x -> acc + sub_sexp_count x)
;;

module Sexp_search = struct
  exception Found of int

  let rec loop ~sub index (sexp : Sexp.t) =
    if sexp == sub
    then raise_notrace (Found index)
    else (
      match sexp with
      | Atom _ -> index + 2
      | List l ->
        let index = loop_list ~sub (index + 1) l in
        index + 1)

  and loop_list ~sub index (sexps : Sexp.t list) =
    List.fold_left sexps ~init:index ~f:(loop ~sub)
  ;;

  let finalize t ~sub a =
    let b = a + (sub_sexp_count sub * 2) - 1 in
    Some (find t a b)
  ;;

  let find_sub_sexp_phys t sexp ~sub =
    match loop ~sub 0 sexp with
    | (_ : int) -> None
    | exception Found n -> finalize t ~sub n
  ;;

  let find_sub_sexp_in_list_phys t sexps ~sub =
    match loop_list ~sub 0 sexps with
    | (_ : int) -> None
    | exception Found n -> finalize t ~sub n
  ;;
end

let find_sub_sexp_phys = Sexp_search.find_sub_sexp_phys
let find_sub_sexp_in_list_phys = Sexp_search.find_sub_sexp_in_list_phys

let to_list t =
  let iter = Iterator.create t in
  let rec loop acc =
    match Iterator.advance_exn iter ~skip:0 with
    | exception Iterator.No_more -> List.rev acc
    | pos -> loop (pos :: acc)
  in
  loop []
;;

let to_array t = to_list t |> Array.of_list
let compare t1 t2 = Caml.compare (to_array t1) (to_array t2)
let sexp_of_t t = sexp_of_array sexp_of_pos (to_array t)
OCaml

Innovation. Community. Security.