package owl-base

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file owl_maths_quadrature.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# 1 "src/base/maths/owl_maths_quadrature.ml"
(*
 * OWL - OCaml Scientific and Engineering Computing
 * Copyright (c) 2016-2019 Liang Wang <liang.wang@cl.cam.ac.uk>
 *)

(** Numerical Integration *)


let trapzd f a b n =
  let error () =
    let s = Printf.sprintf "trapzd requires n > 0 and a <= b whereas n = %i, a = %g, b = %g" n a b in
    Owl_exception.INVALID_ARGUMENT s
  in
  Owl_exception.verify (n > 0 && a <= b) error;

  if n = 1 then (
    0.5 *. (b -. a) *. (f a +. f b)
  )
  else (
    let m = 2. ** float_of_int (n - 1) in
    let d = (b -. a) /. m in
    let x = ref (a +. 0.5 *. d) in
    let s = ref 0. in

    for _i = 1 to (int_of_float m) do
      x := !x +. d;
      s := !s +. f !x;
    done;

    0.5 *. d *. (f a +. f b) +. !s *. d
  )


let trapz ?(n=20) ?(eps=1e-6) f a b =
  let s_new = ref 0. in
  let s_old = ref 0. in
  (
    try
      for i = 1 to n do
        s_new := trapzd f a b i;
        if (i > 5) then (
          let d = abs_float (!s_new -. !s_old) in
          let e = eps *. abs_float !s_old in
          assert (not( (d < e) || (!s_new = 0. && !s_old = 0.) ));
          s_old := !s_new;
        )
      done
    with _ -> ()
  );
  !s_new


let simpson ?(n=20) ?(eps=1e-6) f a b =
  let s_new = ref 0. in
  let s_old = ref 0. in
  let o_new = ref 0. in
  let o_old = ref 0. in
  (
    try
      for i = 1 to n do
        s_new := trapzd f a b i;
        s_old := (4. *. !s_new -. !o_new) /. 3.;
        if (i > 5) then (
          let d = abs_float (!s_old -. !o_old) in
          let e = eps *. abs_float !o_old in
          assert (not( (d < e) || (!s_old = 0. && !o_old = 0.) ));
          o_old := !s_old;
          o_new := !s_new;
        )
      done
    with _ -> ()
  );
  !s_new


let romberg ?(n=20) ?(eps=1e-6) f a b =
  let s = Array.make (n + 1) 0. in
  let h = Array.make (n + 2) 1. in
  let rss = ref 0. in
  let k = 5 in
  (
    try
      for i = 0 to n - 1 do
        s.(i) <- trapzd f a b (i + 1);
        if i >= k then (
          let s' = Array.sub s (i - k) k in
          let h' = Array.sub h (i - k) k in
          let ss, dss = Owl_maths_interpolate.polint h' s' 0. in
          rss := ss;
          assert ( (abs_float dss) > (eps *. abs_float ss) );
        );
        h.(i + 1) <- 0.25 *. h.(i);
      done
    with _ -> ()
  );
  !rss


(* Compute abscissas and weights *)

let gauss_legendre ?(eps=3e-11) ?(a=(-1.)) ?(b=(+1.)) n =
  let m = (n + 1) / 2 in
  let n' = float_of_int n in
  let x = Array.create_float n in
  let w = Array.create_float n in
  let xm = 0.5 *. (b +. a) in
  let xl = 0.5 *. (b -. a) in
  let p1 = ref infinity in
  let p2 = ref infinity in
  let p3 = ref infinity in
  let pp = ref infinity in
  let z  = ref infinity in

  for i = 1 to m do
    let i' = float_of_int i in
    z := cos (Owl_const.pi *. (i' -. 0.25) /. (n' +. 0.5));
    (
      try
        while true do
          p1 := 1.;
          p2 := 0.;
          for j = 1 to n do
            p3 := !p2;
            p2 := !p1;
            let j' = float_of_int j in
            p1 := ((2. *. j' -. 1.) *. !z *. !p2 -. (j' -. 1.) *. !p3) /. j';
          done;
          pp := n' *. (!z *. !p1 -. !p2) /. (!z *. !z -. 1.);
          let z1 = !z in
          z := z1 -. !p1 /. !pp;
          assert (abs_float (!z -. z1) > eps);
        done
      with _ -> ()
    );
    x.(i - 1) <- xm -. xl *. !z;
    x.(n - i) <- xm +. xl *. !z;
    w.(i - 1) <- 2. *. xl /. ((1. -. !z *. !z) *. !pp *. !pp);
    w.(n - i) <- w.(i - 1);
  done;

  x, w


let gauss_legendre_cache = Array.init 50 gauss_legendre


let _gauss_laguerre ?(_eps=3e-11) _a _b _n = ()


let gaussian_fixed ?(n=10) f a b =
  let x, w = match n < Array.length gauss_legendre_cache with
    | true  -> gauss_legendre_cache.(n)
    | false -> gauss_legendre n
  in
  let xr = 0.5 *. (b -. a) in
  let s = ref 0. in

  for i = 0 to n - 1 do
    let c = xr *. (x.(i) +. 1.) +. a in
    s := !s +. w.(i) *. (f c);
  done;

  !s *. xr


let gaussian ?(n=50) ?(eps=1e-6) f a b =
  let s_new = ref infinity in
  let s_old = ref infinity in
  (
    try
      for i = 1 to n do
        s_new := gaussian_fixed ~n:i f a b;
        assert (abs_float (!s_new -. !s_old) > eps);
        s_old := !s_new;
      done
    with _ -> ()
  );
  !s_new



(* ends here *)
OCaml

Innovation. Community. Security.