package oseq

  1. Overview
  2. Docs
Legend:
Page
Library
Module
Module type
Parameter
Class
Class type
Source

Source file OSeq.ml

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
(** {1 OSeq: Functional Iterators} *)

(*$inject
  [@@@ocaml.warning "-33-5"]
  open CCShims_

  let plist f l = "["^String.concat ";" (List.map f l) ^"]"
  let ppair f1 f2 (x,y) = Printf.sprintf "(%s,%s)" (f1 x)(f2 y)
  let pint i = string_of_int i
  let pilist l = plist pint l
  let pilistlist l = plist (plist pint) l
  let pi2list l = plist (ppair pint pint) l
  let pstrlist l = plist (Printf.sprintf "%S") l

  let lsort l=List.sort Stdlib.compare l
*)

open Seq

(* compat test, ensure Seq.t and OSeq.t are the same *)
(*$inject
  let () =
    ignore (Seq.empty : int OSeq.t);
    ignore (OSeq.empty : int Seq.t)
*)

type 'a seq = 'a Seq.t (* alias *)
type 'a iter = ('a -> unit) -> unit
type 'a gen = unit -> 'a option
type 'a equal = 'a -> 'a -> bool
type 'a ord = 'a -> 'a -> int
type 'a printer = Format.formatter -> 'a -> unit

let empty () = Nil

let is_empty l =
  match l () with
  | Nil -> true
  | Cons _ -> false

let return x () = Cons (x, empty)
let cons a b () = Cons (a, b)

let head_exn g =
  match g () with
  | Cons (x, _) -> x
  | Nil -> invalid_arg "OSeq.head_exn"

let tail_exn g : _ t =
  match g () with
  | Cons (_, l) -> l
  | Nil -> invalid_arg "OSeq.tail_exn"

let rec ( -- ) i j () =
  if i = j then
    Cons (i, empty)
  else if i < j then
    Cons (i, i + 1 -- j)
  else
    Cons (i, i - 1 -- j)

(*$= & ~printer:pilist
  [0;1;2;3;4;5] (0-- 5 |> to_list)
  [0]           (0-- 0 |> to_list)
  [5;4;3;2]     (5-- 2 |> to_list)
*)

let ( --^ ) i j =
  if i = j then
    empty
  else if i < j then
    i -- (j - 1)
  else
    i -- (j + 1)

(*$= & ~printer:pilist
  [1;2;3;4] (1 --^ 5 |> to_list)
  [5;4;3;2] (5 --^ 1 |> to_list)
  [1]       (1 --^ 2 |> to_list)
  []        (0 --^ 0 |> to_list)
*)

let rec map f l () =
  match l () with
  | Nil -> Nil
  | Cons (x, tail) -> Cons (f x, map f tail)

let rec fold_map f acc l () =
  match l () with
  | Nil -> Nil
  | Cons (x, tl) ->
    let acc = f acc x in
    Cons (acc, fold_map f acc tl)

let rec repeatedly f () = Cons (f (), repeatedly f)
let rec repeat x () = Cons (x, repeat x)

(*$T
  repeat 0 |> take 4 |> to_list = [0;0;0;0]
  repeat 1 |> take 0 |> to_list = []
*)

let init n f =
  let rec aux r () =
    if r >= n then
      Nil
    else (
      let x = f r in
      Cons (x, aux (r + 1))
    )
  in
  aux 0

(*$T init
  init 5 (fun i->i) |> to_list = [0;1;2;3;4]
*)

let mapi f l =
  let rec aux f l i () =
    match l () with
    | Nil -> Nil
    | Cons (x, tl) -> Cons (f i x, aux f tl (i + 1))
  in
  aux f l 0

(*$T
  mapi (fun i x -> i,x) (1 -- 3) |> to_list = [0, 1; 1, 2; 2, 3]
*)

let rec filter_map f (l : 'a t) () =
  match l () with
  | Nil -> Nil
  | Cons (x, l') ->
    (match f x with
    | None -> filter_map f l' ()
    | Some y -> Cons (y, filter_map f l'))

(*$T
  filter_map (fun x -> if x mod 2=0 then Some (x*3) else None) (1--10) |> to_list \
    = [6;12;18;24;30]
*)

let filter f l =
  let rec aux f l () =
    match l () with
    | Nil -> Nil
    | Cons (x, tl) when f x -> Cons (x, aux f tl)
    | Cons (_, tl) -> aux f tl ()
  in
  aux f l

let rec append a b () =
  match a () with
  | Nil -> b ()
  | Cons (x, tl) -> Cons (x, append tl b)

let rec cycle l () = append l (cycle l) ()

let iterate f x =
  let rec aux f x () =
    let y = f x in
    Cons (x, aux f y)
  in
  aux f x

(*$T iterate
  iterate ((+)1) 0 |> take 5 |> to_list = [0;1;2;3;4]
*)

let rec fold f acc l =
  match l () with
  | Nil -> acc
  | Cons (x, tl) -> fold f (f acc x) tl

let fold_left = fold

(*$T foldi
  (foldi (fun i acc x ->(i,x)::acc) [] (of_list ["a"; "b"])) = [1,"b";0,"a"]
  *)
let foldi f acc l =
  let rec foldi f i acc l =
    match l () with
    | Nil -> acc
    | Cons (x, tl) -> foldi f (succ i) (f i acc x) tl
  in
  foldi f 0 acc l

let reduce f g =
  match g () with
  | Nil -> invalid_arg "reduce"
  | Cons (x, tl) -> fold f x tl

let rec iter f l =
  match l () with
  | Nil -> ()
  | Cons (x, l') ->
    f x;
    iter f l'

let iteri f l =
  let rec aux f l i =
    match l () with
    | Nil -> ()
    | Cons (x, l') ->
      f i x;
      aux f l' (i + 1)
  in
  aux f l 0

let length l = fold (fun acc _ -> acc + 1) 0 l

(*$T
  cycle (of_list [1;2]) |> take 5 |> to_list = [1;2;1;2;1]
  cycle (of_list [1; ~-1]) |> take 100_000 |> fold (+) 0 = 0
*)

let rec unfold f acc () =
  match f acc with
  | None -> Nil
  | Some (x, acc') -> Cons (x, unfold f acc')

(*$T
  let f = function  10 -> None | x -> Some (x, x+1) in \
  unfold f 0 |> to_list = [0;1;2;3;4;5;6;7;8;9]
*)

let rec flat_map f l () =
  match l () with
  | Nil -> Nil
  | Cons (x, tl) -> fm_app_ f (f x) tl ()

and fm_app_ f l l' () =
  match l () with
  | Nil -> flat_map f l' ()
  | Cons (x, tl) -> Cons (x, fm_app_ f tl l')

(*$Q
  Q.(pair (fun1 Observable.int (small_list int)) (small_list int)) (fun (f, l) -> \
    (of_list l |> flat_map (fun x -> of_list (Q.Fn.apply f x)) |> to_list) \
    = CCList.flat_map (Q.Fn.apply f) l)
  Q.(pair (fun1 Observable.int (small_list int)) (small_list int)) (fun (f, l) -> \
    (of_list l |> flat_map (fun x -> of_list (Q.Fn.apply f x)) |> to_list) \
    = (of_list l |> map (Q.Fn.apply f) |> map of_list |> flatten |> to_list))
*)

let take_nth n g =
  let rec aux i g () =
    match g () with
    | Nil -> Nil
    | Cons (_, tl) when i > 0 -> aux (i - 1) tl ()
    | Cons (x, tl) ->
      assert (i = 0);
      Cons (x, aux (n - 1) tl)
  in
  aux 0 g

let rec nth i l =
  match l () with
  | Nil -> raise Not_found
  | Cons (x, _) when i = 0 -> x
  | Cons (_, tl) -> nth (i - 1) tl

(*$= nth & ~printer:string_of_int
  4 (nth 4 (0--10))
  8 (nth 8 (0--10))
*)

(*$T
  (try ignore (nth 11 (1--10)); false with Not_found -> true)
*)

let mem eq x gen =
  let rec mem eq x gen =
    match gen () with
    | Nil -> false
    | Cons (y, tl) -> eq x y || mem eq x tl
  in
  mem eq x gen

let rec for_all p gen =
  match gen () with
  | Nil -> true
  | Cons (x, tl) -> p x && for_all p tl

let rec exists p gen =
  match gen () with
  | Nil -> false
  | Cons (x, tl) -> p x || exists p tl

let min ~lt gen =
  match gen () with
  | Cons (x, tl) ->
    fold
      (fun min x ->
        if lt x min then
          x
        else
          min)
      x tl
  | Nil -> invalid_arg "min"

(*$T
  min ~lt:(<) (of_list [1;4;6;0;11; -2]) = ~-2
  (try ignore (min ~lt:(<) empty); false with Invalid_argument _ -> true)
*)

let max ~lt gen =
  match gen () with
  | Cons (x, tl) ->
    fold
      (fun max x ->
        if lt max x then
          x
        else
          max)
      x tl
  | Nil -> invalid_arg "max"

(*$T
  max ~lt:(<) (of_list [1;4;6;0;11; -2]) = 11
  (try ignore (max ~lt:(<) empty); false with Invalid_argument _ -> true)
*)

let equal eq gen1 gen2 =
  let rec check gen1 gen2 =
    match gen1 (), gen2 () with
    | Nil, Nil -> true
    | Cons (x1, tl1), Cons (x2, tl2) when eq x1 x2 -> check tl1 tl2
    | _ -> false
  in
  check gen1 gen2

(*$Q
  (Q.pair (Q.list Q.small_int)(Q.list Q.small_int)) (fun (l1,l2) -> \
    equal Stdlib.(=) (of_list l1)(of_list l2) = (l1 = l2))
*)

(* [partition p l] returns the elements that satisfy [p],
   and the elements that do not satisfy [p] *)
let partition p gen = filter p gen, filter (fun x -> not (p x)) gen

(*$T
  partition (fun x -> x mod 2 = 0) (1--10) |> \
    (fun (x,y)->to_list x, to_list y) = ([2;4;6;8;10], [1;3;5;7;9])
*)

let zip_index gen =
  let rec aux r gen () =
    match gen () with
    | Nil -> Nil
    | Cons (x, tl) -> Cons ((r, x), aux (r + 1) tl)
  in
  aux 0 gen

(*$T
  zip_index (1--5) |> to_list = [0,1; 1,2; 2,3; 3,4; 4,5]
*)

let rec map2 f l1 l2 () =
  match l1 (), l2 () with
  | Nil, _ | _, Nil -> Nil
  | Cons (x1, l1'), Cons (x2, l2') -> Cons (f x1 x2, map2 f l1' l2')

let rec fold2 f acc l1 l2 =
  match l1 (), l2 () with
  | Nil, _ | _, Nil -> acc
  | Cons (x1, l1'), Cons (x2, l2') -> fold2 f (f acc x1 x2) l1' l2'

let rec iter2 f l1 l2 =
  match l1 (), l2 () with
  | Nil, _ | _, Nil -> ()
  | Cons (x1, l1'), Cons (x2, l2') ->
    f x1 x2;
    iter2 f l1' l2'

let rec for_all2 f l1 l2 =
  match l1 (), l2 () with
  | Nil, _ | _, Nil -> true
  | Cons (x1, l1'), Cons (x2, l2') -> f x1 x2 && for_all2 f l1' l2'

let rec exists2 f l1 l2 =
  match l1 (), l2 () with
  | Nil, _ | _, Nil -> false
  | Cons (x1, l1'), Cons (x2, l2') -> f x1 x2 || exists2 f l1' l2'

let rec zip a b () =
  match a (), b () with
  | Nil, _ | _, Nil -> Nil
  | Cons (x, a'), Cons (y, b') -> Cons ((x, y), zip a' b')

let unzip l =
  let rec first l () =
    match l () with
    | Nil -> Nil
    | Cons ((x, _), tl) -> Cons (x, first tl)
  and second l () =
    match l () with
    | Nil -> Nil
    | Cons ((_, y), tl) -> Cons (y, second tl)
  in
  first l, second l

(*$Q
  Q.(list (pair int int)) (fun l -> \
    let l = of_list l in let a, b = unzip l in equal (=) l (zip a b))
*)

let compare cmp gen1 gen2 : int =
  let rec aux gen1 gen2 =
    match gen1 (), gen2 () with
    | Nil, Nil -> 0
    | Cons (x1, tl1), Cons (x2, tl2) ->
      let c = cmp x1 x2 in
      if c <> 0 then
        c
      else
        aux tl1 tl2
    | Cons _, Nil -> 1
    | Nil, Cons _ -> -1
  in
  aux gen1 gen2

(*$Q
  (Q.pair (Q.list Q.small_int)(Q.list Q.small_int)) (fun (l1,l2) -> \
    let sign x = if x < 0 then -1 else if x=0 then 0 else 1 in \
    sign (compare Stdlib.compare (of_list l1)(of_list l2)) = sign (Stdlib.compare l1 l2))
*)

let rec find p e =
  match e () with
  | Nil -> None
  | Cons (x, _) when p x -> Some x
  | Cons (_, tl) -> find p tl

(*$T
   find (fun x -> x>=5) (1--10) = Some 5
   find (fun x -> x>5) (1--4) = None
*)

let rec find_map f e =
  match e () with
  | Nil -> None
  | Cons (x, tl) ->
    (match f x with
    | None -> find_map f tl
    | Some _ as res -> res)

(*$T
   find_map (fun x -> if x >= 5 then Some (- x) else None) (1--10) = Some (-5)
   find_map (fun x -> if x > 5 then Some (- x) else None) (1--4) = None
   find_map (fun _ -> None) (1--10) = None
*)

let sum e = fold ( + ) 0 e

(*$T
  sum (1--10) = 55
*)

(** {2 Fair Combinations} *)

let rec interleave a b () =
  match a () with
  | Nil -> b ()
  | Cons (x, tail) -> Cons (x, interleave b tail)

let rec flat_map_interleave f a () =
  match a () with
  | Nil -> Nil
  | Cons (x, tail) ->
    let y = f x in
    interleave y (flat_map_interleave f tail) ()

let rec app_interleave f a () =
  match f () with
  | Nil -> Nil
  | Cons (f1, fs) -> interleave (map f1 a) (app_interleave fs a) ()

let rec flatten l () =
  match l () with
  | Nil -> Nil
  | Cons (x, tl) -> flat_app_ x tl ()

and flat_app_ l l' () =
  match l () with
  | Nil -> flatten l' ()
  | Cons (x, tl) -> Cons (x, flat_app_ tl l')

let rec take n (l : 'a t) () =
  if n = 0 then
    Nil
  else (
    match l () with
    | Nil -> Nil
    | Cons (x, l') -> Cons (x, take (n - 1) l')
  )

let rec take_while p l () =
  match l () with
  | Nil -> Nil
  | Cons (x, l') ->
    if p x then
      Cons (x, take_while p l')
    else
      Nil

(*$T
  of_list [1;2;3;4] |> take_while (fun x->x < 4) |> to_list = [1;2;3]
*)

let rec drop n (l : 'a t) () =
  match l () with
  | l' when n = 0 -> l'
  | Nil -> Nil
  | Cons (_, l') -> drop (n - 1) l' ()

let rec drop_while p l () =
  match l () with
  | Nil -> Nil
  | Cons (x, l') when p x -> drop_while p l' ()
  | Cons _ as res -> res

(*$Q
  (Q.pair (Q.list Q.small_int) Q.small_int) (fun (l,n) -> \
    let s = of_list l in let s1, s2 = take n s, drop n s in \
    append s1 s2 |> to_list = l  )
*)

let rec fold_while f acc gen =
  match gen () with
  | Nil -> acc
  | Cons (x, tl) ->
    let acc, cont = f acc x in
    (match cont with
    | `Stop -> acc
    | `Continue -> fold_while f acc tl)

(*$T
  fold_while (fun acc b -> if b then acc+1, `Continue else acc, `Stop) 0 \
    (of_list [true;true;false;true]) = 2
*)

let scan f acc g : _ t =
  let rec aux f acc g () =
    match g () with
    | Nil -> Cons (acc, empty)
    | Cons (x, tl) ->
      let acc' = f acc x in
      Cons (acc, aux f acc' tl)
  in
  aux f acc g

(*$T scan
  scan (fun acc x -> x+1::acc) [] (1--5) |> to_list \
    = [[]; [2]; [3;2]; [4;3;2]; [5;4;3;2]; [6;5;4;3;2]]
*)

let unfold_scan f acc g =
  let rec aux f acc g () =
    match g () with
    | Nil -> Nil
    | Cons (x, tl) ->
      let acc, res = f acc x in
      Cons (res, aux f acc tl)
  in
  aux f acc g

(*$T unfold_scan
  unfold_scan (fun acc x -> x+acc,acc) 0 (1--5) |> to_list \
    = [0; 1; 3; 6; 10]
*)

let product_with f l1 l2 =
  (* take next element from [l1] *)
  let rec loop l1 () =
    match l1 () with
    | Nil -> Nil
    | Cons (x1, tl1) ->
      let seq = interleave (map (fun x2 -> f x1 x2) l2) (loop tl1) in
      seq ()
  in
  loop l1

(*$Q
  Q.(pair (small_list int)(small_list int)) (fun (l1,l2) -> \
    lsort (List.flatten@@List.map (fun x ->List.map (fun y->x,y) l2)l1) = \
    lsort (product (of_list l1)(of_list l2) |> to_list))
*)

let product l1 l2 = product_with (fun x y -> x, y) l1 l2

(*$R
  let l = product (of_list [true;false]) (1--max_int) |> take 10 |> to_list in
  assert_bool "a bit fair" (List.exists (fun (b,_) -> b=false) l)
*)

let app fs xs = product_with (fun f x -> f x) fs xs

module Infix = struct
  let[@inline] ( >>= ) xs f = flat_map f xs
  let[@inline] ( >|= ) xs f = map f xs
  let[@inline] ( >>| ) xs f = map f xs
  let ( <*> ) = app
  let ( -- ) = ( -- )
  let ( --^ ) = ( --^ )
  let[@inline] ( let+ ) x f = map f x
  let[@inline] ( let* ) x f = flat_map f x
  let ( and+ ) = product
  let ( and* ) = product
end

include Infix

let product3 l1 l2 l3 =
  (fun x1 x2 x3 -> x1, x2, x3) |> return <*> l1 <*> l2 <*> l3

let product4 l1 l2 l3 l4 =
  (fun x1 x2 x3 x4 -> x1, x2, x3, x4) |> return <*> l1 <*> l2 <*> l3 <*> l4

let product5 l1 l2 l3 l4 l5 =
  (fun x1 x2 x3 x4 x5 -> x1, x2, x3, x4, x5)
  |> return <*> l1 <*> l2 <*> l3 <*> l4 <*> l5

let product6 l1 l2 l3 l4 l5 l6 =
  (fun x1 x2 x3 x4 x5 x6 -> x1, x2, x3, x4, x5, x6)
  |> return <*> l1 <*> l2 <*> l3 <*> l4 <*> l5 <*> l6

let product7 l1 l2 l3 l4 l5 l6 l7 =
  (fun x1 x2 x3 x4 x5 x6 x7 -> x1, x2, x3, x4, x5, x6, x7)
  |> return <*> l1 <*> l2 <*> l3 <*> l4 <*> l5 <*> l6 <*> l7

let rec cartesian_product l () =
  match l () with
  | Nil -> Cons ([], empty)
  | Cons (l1, tail) ->
    let tail = cartesian_product tail in
    product_with (fun x tl -> x :: tl) l1 tail ()

(*$inject
  let ofll l = l |> of_list |> map of_list
  let cmp_lii_unord l1 l2 : bool =
    List.sort CCOrd.compare l1 = List.sort CCOrd.compare l2
*)

(*$= & ~printer:Q.Print.(list (list int)) ~cmp:cmp_lii_unord
  [[1;3;4];[1;3;5];[1;3;6];[2;3;4];[2;3;5];[2;3;6]] \
    (to_list @@ cartesian_product @@ ofll [[1;2];[3];[4;5;6]])
  [] (to_list @@ cartesian_product @@ ofll [[1;2];[];[4;5;6]])
  [[]] (to_list @@ cartesian_product empty)
  [[1;3;4;5;6];[2;3;4;5;6]] \
    (to_list @@ cartesian_product @@ ofll [[1;2];[3];[4];[5];[6]])
*)

(* cartesian product of lists of lists *)
let map_product_l f l =
  let l = map f l in
  cartesian_product l

let rec group eq l () =
  match l () with
  | Nil -> Nil
  | Cons (x, l') ->
    Cons (cons x (take_while (eq x) l'), group eq (drop_while (eq x) l'))

(*$T
  of_list [1;1;1;2;2;3;3;1] |> group (=) |> map to_list |> to_list = \
    [[1;1;1]; [2;2]; [3;3]; [1]]
*)

(*$Q
    Q.(small_list int) (fun l -> \
      (of_list l |> group (=) |> flatten |> to_list) = l)
    *)

let rec uniq_rec_ eq prev l () =
  match prev, l () with
  | _, Nil -> Nil
  | None, Cons (x, l') -> Cons (x, uniq_rec_ eq (Some x) l')
  | Some y, Cons (x, l') ->
    if eq x y then
      uniq_rec_ eq prev l' ()
    else
      Cons (x, uniq_rec_ eq (Some x) l')

let uniq eq l = uniq_rec_ eq None l

let chunks n e =
  let rec aux e () =
    match e () with
    | Nil -> Nil
    | Cons (x, tl) ->
      let a = Array.make n x in
      fill a 1 tl
  and fill a i e =
    (* fill the array. [i]: current index to fill *)
    if i = n then
      Cons (a, aux e)
    else (
      match e () with
      | Nil -> Cons (Array.sub a 0 i, empty) (* last array is not full *)
      | Cons (x, tl) ->
        a.(i) <- x;
        fill a (i + 1) tl
    )
  in
  aux e

(*$T
  chunks 25 (0--100) |> map Array.to_list |> to_list = \
    List.map to_list [(0--24); (25--49);(50--74);(75--99);(100--100)]
*)

(* Put [x] between elements of [enum] *)
let intersperse x g =
  let rec aux_with_sep g () =
    match g () with
    | Nil -> Nil
    | Cons (y, g') -> Cons (x, cons y (aux_with_sep g'))
  in
  fun () ->
    match g () with
    | Nil -> Nil
    | Cons (x, g) -> Cons (x, aux_with_sep g)

(*$= & ~printer:pilist
  [] (intersperse 0 empty |> to_list)
  [1] (intersperse 0 (return 1) |> to_list)
  [1;0;2;0;3;0;4;0;5] (intersperse 0 (1--5) |> to_list)
*)

(* functional queue *)
module F_queue = struct
  type 'a t = { hd: 'a list; tl: 'a list }
  (** Queue containing elements of type 'a *)

  let empty = { hd = []; tl = [] }

  (* invariant: if hd=[], then tl=[] *)
  let make_ hd tl =
    match hd with
    | [] -> { hd = List.rev tl; tl = [] }
    | _ :: _ -> { hd; tl }

  let list_is_empty = function
    | [] -> true
    | _ :: _ -> false

  let is_empty q = list_is_empty q.hd
  let push x q = make_ q.hd (x :: q.tl)

  let pop_exn q =
    match q.hd with
    | [] ->
      assert (list_is_empty q.tl);
      invalid_arg "F_queue.pop_exn"
    | x :: hd' ->
      let q' = make_ hd' q.tl in
      x, q'
end

type 'a merge_op = Merge_from of 'a t | Merge_start of 'a t t

let merge gens : _ t =
  (* recursive function to get next element
     @param q the already produced generators
     @param tl the generators still untouched *)
  let rec next (q : 'a merge_op F_queue.t) () =
    if F_queue.is_empty q then
      Nil
    else (
      match F_queue.pop_exn q with
      | Merge_from g, q' -> yield_from g q'
      | Merge_start gens, q' ->
        (match gens () with
        | Nil -> next q' ()
        | Cons (g, gens') ->
          let q' = F_queue.push (Merge_start gens') q' in
          yield_from g q')
    )
  and yield_from g q =
    match g () with
    | Nil -> next q ()
    | Cons (x, g') -> Cons (x, next (F_queue.push (Merge_from g') q))
  in
  let q = F_queue.push (Merge_start gens) F_queue.empty in
  next q

(*$= & ~printer:Q.Print.(list int)
  [1;2;3;4;5;6;7;8;9] \
  (merge (of_list [of_list [1;3;5]; of_list [2;4;6]; of_list [7;8;9]]) \
    |> to_list |> List.sort Stdlib.compare)
  [1;2;3;4;5;6] (merge (of_list [of_list [1;3;6]; of_list [2;5]; of_list [4]]) |> to_list)
*)

(*$T
  mem (=) (3,5) @@ \
  take 20_000 @@ merge @@ \
  map (fun i -> iterate succ 0 |> map (fun j -> (i, j))) @@ iterate succ 0
*)

(*$R
  let e = of_list [1--3; 4--6; 7--9] in
  let e' = merge e in
  OUnit.assert_equal [1;2;3;4;5;6;7;8;9]
    (to_list e' |> List.sort Stdlib.compare);
*)

let intersection cmp gen1 gen2 : _ t =
  let rec next x1 x2 () =
    match x1, x2 with
    | Cons (y1, tl1), Cons (y2, tl2) ->
      let c = cmp y1 y2 in
      if c = 0 (* equal elements, yield! *) then
        Cons (y1, fun () -> next (tl1 ()) (tl2 ()) ())
      else if c < 0 (* drop y1 *) then
        next (tl1 ()) x2 ()
      else
        (* drop y2 *)
        next x1 (tl2 ()) ()
    | _ -> Nil
  in
  fun () -> next (gen1 ()) (gen2 ()) ()

(*$= & ~printer:pilist
  [1;2;4;8] (intersection Stdlib.compare \
    (of_list [1;1;2;3;4;8]) (of_list [1;2;4;5;6;7;8;9]) |> to_list)
*)

let rec zip_with f a b () =
  match a (), b () with
  | Cons (xa, tla), Cons (xb, tlb) -> Cons (f xa xb, zip_with f tla tlb)
  | _ -> Nil

(*$Q
  (Q.list Q.small_int) (fun l -> \
    zip_with (fun x y->x,y) (of_list l) (of_list l) \
      |> unzip |> fst |> to_list = l)
*)

(*$R
  let e = zip_with (+) (repeat 1) (4--7) in
  OUnit.assert_equal [5;6;7;8] (to_list e);
*)

let sorted_merge cmp gen1 gen2 : _ t =
  let rec next x1 x2 () =
    match x1, x2 with
    | Nil, Nil -> Nil
    | Cons (y1, tl1), Cons (y2, tl2) ->
      if cmp y1 y2 <= 0 then
        Cons (y1, next (tl1 ()) x2)
      else
        Cons (y2, next x1 (tl2 ()))
    | Cons _, Nil -> x1
    | Nil, Cons _ -> x2
  in
  fun () -> next (gen1 ()) (gen2 ()) ()

(*$T
  sorted_merge Stdlib.compare \
  (of_list [1;2;2;3;5;10;100]) (of_list [2;4;5;6;11]) \
    |> to_list = [1;2;2;2;3;4;5;5;6;10;11;100]
*)

let round_robin ?(n = 2) gen : _ t list =
  let rec start i =
    if i = n then
      []
    else (
      let g = take_nth n (drop i gen) in
      g :: start (i + 1)
    )
  in
  start 0

(*$= & ~printer:pilistlist
  [[1;4;7;10]; [2;5;8;11]; [3;6;9;12]] \
  (round_robin ~n:3 (1--12) |> List.map to_list)
*)

(*$R round_robin
  let e = round_robin ~n:2 (1--10) in
  match e with
  | [a;b] ->
    OUnit.assert_equal ~printer:pilist [1;3;5;7;9] (to_list a);
    OUnit.assert_equal ~printer:pilist [2;4;6;8;10] (to_list b)
  | _ -> OUnit.assert_failure "wrong list lenght"
*)

(*$R round_robin
  let e = round_robin ~n:3 (1 -- 999) in
  let l = List.map length e in
  OUnit.assert_equal ~printer:pilist [333;333;333] l;
*)

(** {2 Combinatorics} *)

(* state of the permutation machine. One machine manages one element [x],
   and depends on a deeper machine [g] that generates permutations of the
   list minus this element (down to the empty list).
   The machine can do two things:
    - insert the element in the current list of [g], at any position
    - obtain the next list of [g]
*)

let permutations l =
  let rec aux n l =
    match l with
    | [] ->
      assert (n = 0);
      return []
    | x :: tail -> aux (n - 1) tail >>= fun tail -> insert_ x [] tail
  (* insert [x] in [tail[i…n]] *)
  and insert_ x left right : _ t =
    match right with
    | [] -> return (List.rev (x :: left))
    | y :: right' ->
      cons (List.rev_append left (x :: right)) (insert_ x (y :: left) right')
  in
  aux (List.length l) l

(*$= permutations & ~printer:pilistlist
  [[1;2;3]; [1;3;2]; [2;1;3]; [2;3;1]; [3;1;2]; [3;2;1]] \
  (permutations CCList.(1--3) |> to_list |> List.sort Stdlib.compare)
  [[]] (permutations [] |> to_list)
  [[1]] (permutations [1] |> to_list)
*)

let combinations n g =
  assert (n >= 0);
  let rec make_state n l () =
    match n, l () with
    | 0, _ -> Cons ([], empty)
    | _, Nil -> Nil
    | _, Cons (x, tail) ->
      let m1 = make_state (n - 1) tail in
      let m2 = make_state n tail in
      add x m1 m2 ()
  and add x m1 m2 () =
    match m1 () with
    | Nil -> m2 ()
    | Cons (l, m1') -> Cons (x :: l, add x m1' m2)
  in
  make_state n g

(*$= & ~printer:pilistlist
  [[1;2]; [1;3]; [1;4]; [2;3]; [2;4]; [3;4]] \
    (combinations 2 (1--4) |> map (List.sort Stdlib.compare) \
    |> to_list |> List.sort Stdlib.compare)
  [[]] (combinations 0 (1--4) |> to_list)
  [[1]] (combinations 1 (return 1) |> to_list)
*)

let power_set g : _ t =
  let rec make_state l () =
    match l with
    | [] -> Cons ([], empty)
    | x :: tail ->
      let m = make_state tail in
      add x m ()
  and add x m () =
    match m () with
    | Nil -> Nil
    | Cons (l, m') -> Cons (x :: l, cons l (add x m'))
  in
  let l = fold (fun acc x -> x :: acc) [] g in
  make_state l

(*$= & ~printer:pilistlist
  [[]; [1]; [1;2]; [1;2;3]; [1;3]; [2]; [2;3]; [3]] \
  (power_set (1--3) |> map (List.sort Stdlib.compare) \
    |> to_list |> List.sort Stdlib.compare)
  [[]] (power_set empty |> to_list)
  [[]; [1]] (power_set (return 1) |> map (List.sort Stdlib.compare) \
    |> to_list |> List.sort Stdlib.compare)
*)

(** {2 Conversions} *)

let rec to_rev_list_rec_ acc l =
  match l () with
  | Nil -> acc
  | Cons (x, l') -> to_rev_list_rec_ (x :: acc) l'

let to_rev_list l = to_rev_list_rec_ [] l

let to_list l =
  let rec direct i (l : 'a t) =
    match l () with
    | Nil -> []
    | _ when i = 0 -> List.rev (to_rev_list_rec_ [] l)
    | Cons (x, f) -> x :: direct (i - 1) f
  in
  direct 200 l

let of_list l =
  let rec aux l () =
    match l with
    | [] -> Nil
    | x :: l' -> Cons (x, aux l')
  in
  aux l

let of_array ?(start = 0) ?len a =
  let len =
    match len with
    | Some l -> l
    | None -> Array.length a - start
  in
  let rec aux a i () =
    if i = len then
      Nil
    else
      Cons (a.(i), aux a (i + 1))
  in
  aux a start

let to_array l =
  match l () with
  | Nil -> [||]
  | Cons (x, _) ->
    let n = length l in
    let a = Array.make n x in
    (* need first elem to create [a] *)
    iteri (fun i x -> a.(i) <- x) l;
    a

(*$Q
   Q.(array int) (fun a -> of_array a |> to_array = a)
*)

(*$T
  of_array [| 1; 2; 3 |] |> to_list = [1;2;3]
  of_list [1;2;3] |> to_array = [| 1; 2; 3; |]
*)

let to_buffer buf g = iter (Buffer.add_char buf) g

let of_string ?(start = 0) ?len s =
  let len =
    match len with
    | None -> String.length s - start
    | Some n ->
      assert (n + start < String.length s);
      n
  in
  let rec aux i () =
    if i >= start + len then
      Nil
    else (
      let x = s.[i] in
      Cons (x, aux (i + 1))
    )
  in
  aux 0

let to_string s =
  let buf = Buffer.create 16 in
  to_buffer buf s;
  Buffer.contents buf

(*$Q
   Q.(pair (list string) string) (fun (s, sep) -> String.concat sep s = concat_string ~sep (of_list s))
*)
(*$T
  concat_string ~sep:"" (of_list [ "a"; "b"; "coucou" ]) = "abcoucou"
  concat_string ~sep:"random" (return "a") = "a"
  concat_string ~sep:"," (of_list [ "a"; "b"; "c"; ""; ""; "d" ]) = "a,b,c,,,d"
  concat_string ~sep:"random" empty = ""
*)
let concat_string ~sep s =
  match s () with
  | Nil -> ""
  | Cons (x, tl) ->
    let sep_len = String.length sep in
    let len =
      fold (fun len s -> String.length s + sep_len + len) (String.length x) tl
    in
    let bytes = Bytes.make len '\000' in
    let (_ : int) =
      fold
        (fun off s ->
          let slen = String.length s in
          assert (off + slen <= len);
          Bytes.unsafe_blit (Bytes.unsafe_of_string s) 0 bytes off slen;
          if off + slen < len then (
            (* not the last chunk *)
            Bytes.unsafe_blit
              (Bytes.unsafe_of_string sep)
              0 bytes (off + slen) sep_len;
            off + slen + sep_len
          ) else
            off + slen)
        0 s
    in
    Bytes.unsafe_to_string bytes

let rec to_iter res k =
  match res () with
  | Nil -> ()
  | Cons (s, f) ->
    k s;
    to_iter f k

let to_gen l =
  let l = ref l in
  fun () ->
    match !l () with
    | Nil -> None
    | Cons (x, l') ->
      l := l';
      Some x

type 'a of_gen_state = Of_gen_thunk of 'a gen | Of_gen_saved of 'a node

let of_gen g =
  let rec consume r () =
    match !r with
    | Of_gen_saved cons -> cons
    | Of_gen_thunk g ->
      (match g () with
      | None ->
        r := Of_gen_saved Nil;
        Nil
      | Some x ->
        let tl = consume (ref (Of_gen_thunk g)) in
        let l = Cons (x, tl) in
        r := Of_gen_saved l;
        l)
  in
  consume (ref (Of_gen_thunk g))

(*$R
  let g = let n = ref 0 in fun () -> Some (incr n; !n) in
  let l = of_gen g in
  assert_equal [1;2;3;4;5;6;7;8;9;10] (take 10 l |> to_list);
  assert_equal [1;2;3;4;5;6;7;8;9;10] (take 10 l |> to_list);
  assert_equal [11;12] (drop 10 l |> take 2 |> to_list);
*)

let rec of_gen_transient f () =
  match f () with
  | None -> Nil
  | Some x -> Cons (x, of_gen_transient f)

let sort cmp l =
  let l = to_list l in
  of_list (List.sort cmp l)

let sort_uniq cmp l =
  let l = to_list l in
  uniq (fun x y -> cmp x y = 0) (of_list (List.sort cmp l))

let lines g : _ t =
  let rec aux g buf () =
    match g () with
    | Nil ->
      (* only return a non-empty line *)
      if Buffer.length buf = 0 then
        Nil
      else (
        let s = Buffer.contents buf in
        Buffer.clear buf;
        Cons (s, empty)
      )
    | Cons (c, tl) ->
      if c = '\n' then (
        let s = Buffer.contents buf in
        Buffer.clear buf;
        Cons (s, aux tl buf)
      ) else (
        Buffer.add_char buf c;
        aux tl buf ()
      )
  in
  aux g (Buffer.create 16)

(*$= & ~printer:Q.Print.(list string)
  ["abc"; "de"; ""] (lines (of_string "abc\nde\n\n") |> to_list)
*)

let unlines g : _ t =
  let rec aux g st () =
    match st with
    | `Stop -> Nil
    | `Next ->
      (match g () with
      | Nil -> Nil
      | Cons ("", tl) -> Cons ('\n', aux tl st) (* empty line *)
      | Cons (s, tl) -> Cons (s.[0], aux tl (`Consume (s, 1))))
    | `Consume (s, i) when i = String.length s -> Cons ('\n', aux g `Next)
    | `Consume (s, i) -> Cons (s.[i], aux g (`Consume (s, i + 1)))
  in
  aux g `Next

(*$Q
  Q.printable_string (fun s -> \
    of_string s |> lines |> unlines |> to_string |> String.trim = String.trim s)
*)

type 'a memoize = MemoThunk | MemoSave of 'a node | MemoExn of exn

let rec memoize f =
  let r = ref MemoThunk in
  fun () ->
    match !r with
    | MemoSave l -> l
    | MemoExn e -> raise e
    | MemoThunk ->
      (try
         let l =
           match f () with
           | Nil -> Nil
           | Cons (x, tail) -> Cons (x, memoize tail)
         in
         r := MemoSave l;
         l
       with e ->
         r := MemoExn e;
         raise e)

module Generator = struct
  type 'a t =
    | Skip
    | Yield of 'a
    | Delay of (unit -> 'a t)
    | Append of 'a t * 'a t

  let empty = Skip
  let yield x = Yield x
  let ( >>= ) x f = Append (x, Delay f)
  let delay f = Delay f

  let run (x : 'a t) : 'a seq =
    let rec aux l () =
      match l with
      | [] -> Nil
      | Skip :: tl -> aux tl ()
      | Yield x :: tl -> Cons (x, aux tl)
      | Delay f :: tl -> aux (f () :: tl) ()
      | Append (x1, x2) :: tl -> aux (x1 :: x2 :: tl) ()
    in
    aux [ x ]
end

(*$R
  let naturals =
    Generator.(let rec aux n = yield n>>= fun () -> aux (n+1) in run (aux 0))
  in
  let naturals' = unfold (fun n -> Some (n,n+1)) 0 in
  assert_equal ~printer:Q.Print.(list int)
    (take 100 naturals' |> to_list) (take 100 naturals |> to_list)
*)

(*$QR
  Q.(small_list int) (fun l ->
    let seq = of_list l in
    let seq2 =
      let open Generator in
      let rec aux seq = match seq() with
        | Nil -> empty
        | Cons (x, tl) -> yield x >>= fun () -> aux tl
      in
      run (aux seq)
    in
    equal Stdlib.(=) seq seq2)
*)

module type HashedType = Hashtbl.HashedType

let group_by_fold (type k) (module K : HashedType with type t = k) ~project
    ~fold ~init seq =
  let module Tbl = Hashtbl.Make (K) in
  (* compute group table *)
  let tbl =
    lazy
      (let tbl = Tbl.create 32 in
       iter
         (fun x ->
           let key = project x in
           let acc = try Tbl.find tbl key with Not_found -> init in
           let acc = fold acc x in
           Tbl.replace tbl key acc)
         seq;
       Tbl.to_seq tbl)
  in
  (* delay start *)
  fun () -> (Lazy.force tbl) ()

let group_by key ~project seq =
  group_by_fold key ~project ~fold:(fun l x -> x :: l) ~init:[] seq

let group_count key seq =
  group_by_fold key ~project:(fun x -> x) ~fold:(fun n _x -> n + 1) ~init:0 seq

(*$inject
  module IntK = struct type t=int let equal=(=) let hash x=x land max_int end
  *)

(*$R
  [1;2;3;3;2;2;3;4]
   |> of_list
   |> group_by (module IntK) ~project:(fun x->x)
   |> map snd |> sort CCOrd.compare
   |> to_list
   |> OUnit.assert_equal [[1];[2;2;2];[3;3;3];[4]]
*)

let join_by (type k) (module Key : HashedType with type t = k) ~project_left
    ~project_right ~merge seq1 seq2 : _ t =
  let module Tbl = Hashtbl.Make (Key) in
  let tbl_left = Tbl.create 16 in
  let tbl_right = Tbl.create 16 in

  let seq1 = ref seq1 in
  let seq2 = ref seq2 in

  let get_l tbl k = try Tbl.find tbl k with Not_found -> [] in

  let next_left = ref true in
  let q = Queue.create () in

  let rec gen () =
    match Queue.take q with
    | x -> Some x
    | exception Queue.Empty ->
      if !next_left then (
        next_left := false;
        match !seq1 () with
        | Nil -> ()
        | Cons (x, tl1) ->
          seq1 := tl1;
          let key = project_left x in
          Tbl.replace tbl_left key (x :: get_l tbl_left key);
          (* join [x] with the RHS items that have the same key *)
          let ys = get_l tbl_right key in
          List.iter
            (fun y ->
              match merge key x y with
              | None -> ()
              | Some r -> Queue.push r q)
            ys
      ) else (
        next_left := true;
        match !seq2 () with
        | Nil -> ()
        | Cons (y, tl2) ->
          seq2 := tl2;
          let key = project_right y in
          Tbl.replace tbl_right key (y :: get_l tbl_right key);
          (* join [y] with the LHS items that have the same key *)
          let xs = get_l tbl_left key in
          List.iter
            (fun x ->
              match merge key x y with
              | None -> ()
              | Some r -> Queue.push r q)
            xs
      );
      gen ()
  in
  memoize (of_gen_transient gen)

let join_by_fold (type k) (module Key : HashedType with type t = k)
    ~project_left ~project_right ~init ~merge seq1 seq2 : _ t =
  let module Tbl = Hashtbl.Make (Key) in
  let tbl_left = Tbl.create 16 in
  let get_l tbl k = try Tbl.find tbl k with Not_found -> [] in

  (* index all of [seq1] by key *)
  iter
    (fun x ->
      let key = project_left x in
      Tbl.replace tbl_left key (x :: get_l tbl_left key))
    seq1;

  let tbl = Tbl.create 16 in

  (* do product by iterating on [seq2] *)
  iter
    (fun y ->
      let key = project_right y in
      let xs = get_l tbl_left key in
      match xs with
      | [] -> ()
      | _ ->
        let acc = try Tbl.find tbl key with Not_found -> init in
        let acc = List.fold_left (fun acc x -> merge key x y acc) acc xs in
        Tbl.replace tbl key acc)
    seq2;

  Tbl.to_seq tbl |> map snd

module IO = struct
  let with_file_in ?(mode = 0o644) ?(flags = []) filename f =
    let ic = open_in_gen flags mode filename in
    try
      let x = f ic in
      close_in_noerr ic;
      x
    with e ->
      close_in_noerr ic;
      raise e

  let with_in ?mode ?flags filename f =
    with_file_in ?mode ?flags filename (fun ic ->
        f @@ of_gen
        @@ fun () -> try Some (input_char ic) with End_of_file -> None)

  let with_lines ?mode ?flags filename f =
    with_file_in ?mode ?flags filename (fun ic ->
        f @@ of_gen
        @@ fun () -> try Some (input_line ic) with End_of_file -> None)

  let with_file_out ?(mode = 0o644) ?(flags = [ Open_creat; Open_wronly ])
      filename f =
    let oc = open_out_gen flags mode filename in
    try
      let x = f oc in
      close_out oc;
      x
    with e ->
      close_out_noerr oc;
      raise e

  let write_str ?mode ?flags ?(sep = "") filename g =
    with_file_out ?mode ?flags filename (fun oc ->
        iteri
          (fun i s ->
            if i > 0 then output_string oc sep;
            output_string oc s)
          g)

  let write ?mode ?flags filename g =
    with_file_out ?mode ?flags filename (fun oc ->
        iter (fun c -> output_char oc c) g)

  let write_lines ?mode ?flags filename g =
    with_file_out ?mode ?flags filename (fun oc ->
        iter
          (fun s ->
            output_string oc s;
            output_char oc '\n')
          g)
end

module type MONAD = sig
  type 'a t

  val return : 'a -> 'a t
  val ( >>= ) : 'a t -> ('a -> 'b t) -> 'b t
end

module Traverse (M : MONAD) = struct
  open M

  let map_m f l =
    let rec aux acc l =
      match l () with
      | Nil -> return (of_list (List.rev acc))
      | Cons (x, l') -> f x >>= fun x' -> aux (x' :: acc) l'
    in
    aux [] l

  let sequence_m l = map_m (fun x -> x) l

  let rec fold_m f acc l =
    match l () with
    | Nil -> return acc
    | Cons (x, l') -> f acc x >>= fun acc' -> fold_m f acc' l'
end

let pp ?(sep = ",") pp_item fmt l =
  let rec pp fmt l =
    match l () with
    | Nil -> ()
    | Cons (x, l') ->
      Format.pp_print_string fmt sep;
      Format.pp_print_cut fmt ();
      pp_item fmt x;
      pp fmt l'
  in
  match l () with
  | Nil -> ()
  | Cons (x, l') ->
    pp_item fmt x;
    pp fmt l'

include Seq

(* test for compat with seq *)
(*$inject
  module Foo : module type of Seq = OSeq
*)
OCaml

Innovation. Community. Security.